中国农业大学_848工程流体力学_教案5
- 格式:pdf
- 大小:1.96 MB
- 文档页数:43
合肥学院
流体力学教案
合肥学院
流体力学教案
合肥学院
流体力学教案
合肥学院
流体力学教案
流体力学教案
流体力学教案
流体力学教案
流体力学教案
流体力学教案
流体力学教案
流体力学教案
流体力学教案
流体力学教案
流体力学教案
流体力学教案
流体力学教案
流体力学教案
流体力学教案
流体力学教案
流体力学教案
流体力学教案
流体力学教案
流体力学教案
流体力学教案
流体力学教案
流体力学教案
流体力学教案
流体力学教案。
教 学 内 容 (讲稿)(包括:教学手段、时间分配、临时更改等)第2章 流体静力学1.研究任务:流体在静止状态下的平衡规律及其应用。
根据平衡条件研究静止状态下压力的分布规律,进而确定静止流体作用在各种表面的总压力大小、方向、作用点。
2.静止:是一个相对的概念,流体质点对建立的坐标系没有相对运动。
①绝对静止:流体整体相对于地球没有相对运动。
②相对静止:流体整体(如装在容器中)对地球有相对运动,但液体各部分之间没有相对运动。
共同点:不体现粘性,无切应力 3.适用范围:理想流体、实际流体无论理想流体或实际流体,在静止状态下,流体层与层之间都没有相对运动。
实际立重力 压力重力 压力重力 直线惯性力 压力重力 离心惯性力 压力质量力质量力教 学 内 容 (讲稿)(包括:教学手段、时间分配、临时更改等)有一静止流体微团,用任意平面将其切割为两部分,取阴影部分为隔离体。
设切割面上任一点m 处静压强方向不是内法线方向,则它可分解为n p 和切应力τ。
而静止流体既不能承受切应力,也不能承受拉应力,如果有拉应力或切应力存在,将破坏平衡,这与静止的前提不符。
所以静压强p 的方向只能是沿着作用面内法线方向。
2.静止流体中任何一点上各个方向的静压强大小相等,而与作用面的方位无关,即p 只是位置的函数),,(z y x p p =——大小特性。
(各向相等) 证明思路:1、选取研究对象(微元体)2、受力分析(质量力与表面力)3、导出关系式 ∑=0F4、得出结论1.选取研究对象(微元体)从静止流体中取出一微小四面体OABC ,其坐标如图,三个垂直边的长度分别为dx 、dy 、dz ,设x p 、y p 、z p 、n p (n方向是任意的)分别表示作用在△OAC 、△OBC 、△OAB 、△ABC 表面上的静压强,n p 与x 、y 、z 轴的夹角为α、β、γ。
2.受力分析(质量力与表面力)流体微元所受力分为两类:表面力和质量力。
第1章流体力学基础第一次课(100min)讲授内容:1 基础知识与概念1.1 物理量的单位1.2 量纲分析1.3流体的压缩性和膨胀性1.3.1 体积压缩系数1.3.2 体积膨胀系数1.3.4 流体压强的表示方法第二次课(100min)讲授内容:2流体的粘性与粘度2.1 牛顿内摩擦(粘性)定律2.2牛顿流体与理想流体3 流体流动能量平衡3.1稳定流动体系的能量平衡3.2 稳定流动体系能量方程与柏努利方程第三次课(100min)讲授内容:4 管中流动4.1 管中稳定流动连续性方4.2 雷诺实验与雷诺数4.3 水力直径(当量直径)4.4 圆管中的层流4.4.1 速度分布与流量4.4.2 平均流速和最大流速4.4.3 沿程损失4.5 圆管中的湍流4.6 管路中的沿程阻力4.7 管路中的局部阻力L f,第四次课(100min)讲授内容:5 管路计算与流量测量5.1 管路计算5.1.1 简单管路计算5.1.2 复杂管路计算5.2 流量测量5.2.1 测速管5.2.2 孔板流量计5.2.3 文丘里流量计5.2.4 转子流量计第五次课(100min)讲授内容:6 液体输送设备6.1 泵的类型6.2 叶片泵的主要性能和特性6.2.1 离心泵的主要性能参数6.2.2 正位移泵的主要性能参数6.2.3 泵的特性曲线6.2.4离心泵的性能参数的改变与换算6.3 泵的安装高度第六次课(100min)讲授内容:6.4 管路特性6.5 泵的工作点与流量调节7 气体输送原理7.1离心式通风机和鼓风机7.1.1 离心通风机7.1.2 鼓风机第2章传热第一次课(100min)讲授内容:1 传热的基本概念1.1 传热的基本方式1.2 温度场与温度梯度1.2.1 温度场1.2.2 温度梯度1.3 传热速率与热通量1.4 载热体1.5 换热器第二次课(100min)讲授内容:2 热传导2.1 傅立叶导热定律与热导率2.2 通过单层壁的稳定热传导2.2.1 单层平壁的稳定热传导2.2.2 单层圆筒壁的热传导2.3 通过多层壁的稳定热传导2.3.1 多层平壁的稳定热传导第三次课(100min)讲授内容:3 对流传热3.1 牛顿冷却定律与对流传热系数3.2 对流传热系数关联式的建立方法3.2.1 对流传热系数的获取途径3.2.2 对流传热过程的因次分析3.3 流体对流传热系数关联式3.7 大空间自然对流传热3.8 蒸汽冷凝放热3.8.1 冷凝传热过程分析3.8.2 膜状冷凝传热系数的关联式3.8.3 影响冷凝传热的因素及强化3.9 沸腾传热3.9.1 液体沸腾的分类3.9.2 液体沸腾曲线第四次课(100min)讲授内容:4 辐射传热4.1 基本概念4.2 物体的辐射能力4.3 两固体表面间的辐射传热4.4 对流与辐射的综合传热第五次课(100min)讲授内容:5 稳定传热过程计算5.1 热量衡算5.2 总传热速率方程5.3 总传热系数5.3.1 总传热系数的计算5.3.2 污垢热阻5.4 传热的平均温度差ΔT m5.4.1 恒温传热时的平均温度差5.4.2 变温传热时的平均温度差5.5 传热面积的计算第六次课(100min)讲授内容:6 不稳定传热6.1 流体的间歇式换热6.2 导热微分方程6.3 集总参数分析法6.4 不稳定导热的图解法6.4.1 一维不稳定导热6.4.2 多维不稳定导热第七次课(100min)讲授内容:7 换热器7.1 间壁式换热器的类型7.1.1 管式换热器第4章颗粒与流体之间的相对流动第一次课(100min)讲授内容:1 流体绕过颗粒及颗粒床层的流动1.1 颗粒床层的特性1.1.1 单个颗粒的特性1.1.2 颗粒群的特性1.1.3 床层特性1.2 流体绕球形颗粒的流动1.3 流体通过颗粒床层的流动第二次课(100min)讲授内容:2 颗粒在流体中的运动2.1球形颗粒的沉降2.1.1重力沉降2.1.2 实际沉降速度u t,第三次课(100min)讲授内容:3 固体流态化与气力输送3.1 固体流态化3.1.1 固体流态化的基本概念3.1.2 流化床的流体力学3.1.3 流化床中的传热3.1.4 流化床中的结构形式第四次课(100min)讲授内容:3.2 气力输送3.2.1 概述3.2.2 气力输送的原理4 非均相混合物的分离4.1 沉降4.1.1 重力沉降的应用与设备4.1.2 离心沉降第五次课(100min)讲授内容:4.2过滤4.2.1 过滤操作的基本概念4.2.2 过滤设备4.2.3 过滤基本方程4.2.4间歇过滤操作的计算4.2.5连续式过滤计算第7章吸收与蒸馏第一次课(100min)讲授内容:1 传质学基础1.1 混合物组成的表示方法1.2 扩散现象与分子扩散速率计算1.2.1 分子扩散与Fick定律1.2.2 稳定分子扩散速率1.2.3 扩散系数1.3 对流传质与相间传质1.3.1 对流传质1.3.2 相间传质的双膜理论1.4 传质设备简介第二次课(100min)讲授内容:2 吸收与解吸2.1 概述2.2 汽液相平衡2.2.1 气体在液体中的溶解度2.2 汽液相平衡2.2.1 气体在液体中的溶解度2.2.2 亨利定律2.3 总传质速率方程第三次课(100min)讲授内容:3 吸收塔的计算3.1 物料衡算与操作线方程3.2 吸收剂的用量与最小液气比3.3 塔径的确定3.4 填料层高度的计算3.4.1 填料层高度的基本计算式3.4.2 传质单元数的计算方法第四次课(100min)讲授内容:4 蒸馏4.1 双组分溶液的汽液相平衡4.1.1 相律和拉乌尔定律4.1.2 两组分理想溶液的汽液平衡4.1.3 相对挥发度与汽液平衡方程4.2蒸馏与精馏原理4.2.1 平衡蒸馏4.2.2 简单蒸馏4.2.3 精馏原理第五次课(100min)讲授内容:5 双组分连续精馏塔的计算5.1 理论板的概念及恒摩尔流假定5.1.1 理论板5.2 物料衡算与热量衡算5.2.1 全塔物料衡算5.2.2 进料板及进料热状态参数5.3 操作线方程5.3.1 精馏段操作线方程5.3.2 提馏段操作线方程5.3.3 q线方程与操作方程的图示5.4 理论板的确定与实际板的讨论5.4.1 理论板的确定第六次课(100min)讲授内容:5.4.2 板效率与实际板数5.5 回流比的影响与选择5.5.1 全回流与最少理论板数5.5.2 最小回流比5.5.3适宜回流比5.6 双组分精馏的操作计算5.7 精馏装置的热量衡算5.7.1 冷凝器的热负荷Q C5.8 其他有关实例的讨论5.8.1 直接水蒸汽加热5.8.2 提馏塔5.8.3 侧线出料和多股进料第8章液体吸附与离子交换第一次课(100min)讲授内容:1 液体吸附1.1 吸附作用和吸附剂1.1.1 吸附作用1.1.2 吸附剂及其性能1.2 吸附理论1.2.1 吸附平衡1.2.2 吸附速率1.3 吸附操作1.3.1 吸附操作步骤第二次课(100min)讲授内容:1.4 吸附计算1.4.1 分级接触式吸附1.4.2 连续式吸附2 离子交换2.1 离子交换概念和离子交换树脂2.1.1 基本概念2.1.2 离子交换剂2.1.3 离子交换树脂的性能2.2 离子交换机理2.2.1 离子交换平衡2.2.2 离子交换机理2.3 离子交换速率2.3.1 外扩散速率2.3.2 内扩散速率第三次课(100min)讲授内容:2.3.3 总传质速率和总传质系数2.4 离子交换操作及设备2.4.1 离子交换操作2.4.2 离子交换装置分类2.5 离子交换操作计算2.5.1 交换柱的直径和高度2.5.2 树脂用量、正洗水用量和时间2.5.3 树脂的工作交换容量ω0和有效工作容量ωe 2.5.4 交换柱工作时间和反洗水的用量2.5.5 再生剂用量第8章浸出和萃取第一次课(100min)讲授内容:1 浸出1.1 浸出理论1.1.1 浸出体系组成的表示方法1.1.2 浸出系统的平衡关系1.1.3 溢流与底流平衡关系的表达1.1.4 杠杆规则1.1.5 单级浸出过程的表示1.2 浸出速率第二次课(100min)讲授内容:1.3 浸出操作的流程1.4 浸出操作计算1.5 浸出装置2 萃取2.1 液—液相平衡关系2.2 萃取过程的计算2.2.1 单级萃取的计算第三次课(100min)讲授内容:2.2.2 多级错流萃取2.2.3 多级逆流萃取2.3 萃取操作的设备第11章溶液浓缩第一次课(100min)讲授内容:1 蒸发操作与特点2 单效蒸发2.1溶液的沸点和温度差损失2.2 单效蒸发的计算2.2.1 蒸发器的物料衡算2.2.2 蒸发器的热量衡算2.2.3 传热面积S02.2.4 管内沸腾传热系数αi的关联式第二次课(100min)讲授内容:3 多效蒸发3.1 多效蒸发的原理3.2 多效蒸发的流程3.3 多效蒸发的计算3.3.1 基本情况3.3.33.3.4 传热面积S3.3.5 重新分配各效温差及重算传热面积第三次课(100min)讲授内容:4 多效蒸发效数的限制5 蒸发设备5.1蒸发器结构5.1.1 非膜式蒸发器5.1.2 膜式蒸发器5.2 蒸发器的选用5.3 蒸发器的辅助装置6 冷冻浓缩6.1冷冻浓缩操作原理6.2冷冻浓缩计算第12章食品干燥原理第一次课(100min)讲授内容:1湿空气的热力学性质1.1湿含量(湿度)H1.2相对湿度1.3湿空气的比热容C H和湿比容υH1.4 湿空气的热含量(焓)I1.5 干球温度t和湿球温度t m1.6 露点t d第二次课(100min)讲授内容:2 湿空气的湿焓图及使用方法2.1 湿空气的湿焓图(H-I图)2.2湿焓图的应用3 湿空气的基本状态变化过程3.1 间壁式加热和冷却以及冷(却)凝减湿过程3.2 不同状态湿空气的混合过程3.3 绝热冷却增湿过程第三次课(100min)讲授内容:4 湿物料的基本性质4.1 湿物料的形态和物理性质4.2 湿物料中水分存在形式和表示法4.3 平衡水分5 湿物料常压热风干燥过程5.1 热风干燥过程计算5.2 干燥器的热效率5.3热风干燥基本过程的变型第四次课(100min)讲授内容:6 对流干燥理论6.1 物料干燥机理6.2 干燥速率和干燥特性曲线6.3干燥时间6.3.1恒速干燥时间t16.3.2 降速干燥时间t2第五次课(100min)讲授内容:7 干燥设备7.1干燥器的分类7.2 干燥器。
第一章绪论(基本概念及参数)第一节流体的连续介质模型流体是由无数分子构成的,实质是不连续的,为了能够应用高等数学连续函数来描述流的运动规律,将本来不连续的流体看成是有没有间隙的流体微团(质点)构成的。
在连续性介质假设之下,流体的各种参数都可以看成空间和时间的单值连续函数:在宏观上,流体微团足够小,以至于其体积可以忽略不计。
在微观上要足够大,使得所包容的流体分子的平均物理属性有意义。
当流体流动所涉及到的物体的尺寸能够和分子的平均自由行程和脂分子间的距离相比拟时,流体的连续介质模型不再适用。
第二节作用在流体的力作用在流体上的力有两类:一类是某重力场作用的结果,称为质量力,也称体积力,其大小流体的质量(体积)成正比。
重力场中的重力是质量力,在用动静法来研究有关问题时虚加在流体质点上的惯性力也是质量力。
单位流体的质量力可表示为:其单位为加速度单位:m/s2。
另一类是表面力,是分离体以外的其他物体通过分离体的表面作用在分离体上的力。
一个是剪切应力,一个是法向应力。
在液体与异相物质接触的自由表面上还有表面张力,它是一种特殊类型的表面力,它不是接触面以外物质的作用结果,而恰恰是由液体内的分子对处于表面层的分子的吸引而产生的。
液体自由表面上单位长度的流体线所受到的拉力称为表面张力系数,记作σ,单位是N/m。
液体与固体壁面接触时,在液体表面与固壁面的交界处作液体表面的切面,此切面与固壁面在液体内部所夹的角度θ称为接触角。
当液体表面发生弯曲时,液体内部的压强p与外部的流体介质的压强p0之差与曲面的两个主曲率半径R1 和R2有关:此式称为拉普拉斯表面张力方程。
第三节流体的粘性流体粘性:流体流动时流体质点发生相对滑移产生摩擦力的性质,称为流体的黏性。
动力粘度:流体的粘性大小可用流体的动力粘度来表示,即牛顿内摩擦定律中的比例系数。
上式即为牛顿内摩擦定律,该式表明,各层流间的切向应力和速度梯度成正比,比例系数为流体的动力粘度。