2019年上海市中学生业余数学学校招生预备试题
- 格式:doc
- 大小:36.17 KB
- 文档页数:3
2019上海中学自主招生试卷及答案1、已知0a ≠,求2323a a a a a a++=___________ 【答案】3或1-【解析】①0a >时,23231113a a a a a a++=++=; ②0a <时,23231111a a a a a a++=-+-=-; 2、因式分解:332x x -+【答案】()()212x x -+【解析】拆项()()3323222121x x x x x x x x -+=--+=--- ()()()()()()()2211211212x x x x x x x x x =+---=-+-=-+ 3、已知两个二次方程20ax ax b ++=与20ax bx b ++=各取一根,这两根乘积为1,求这两根的平方和为________【答案】3【解析】设m ,n 分别为20ax ax b ++=与20ax bx b ++=的两个实数根,1m n ⋅=,1n m ∴=,由题意得20am an b ++=①与20an bn b ++=②,将1n m=代入到20an bn b ++=有2110a b b m m++=,变形得20bm bm a ++=③,由①③联立得()()()20b a m b a m a b -+-+-=,讨论:1)0b a -=,0b a =≠时,m ,n 为210x x ++=的实数根,22131024x x x ⎛⎫++=++> ⎪⎝⎭恒成立,所以此种情况无解;2)0b a -≠时,有210m m +-=,有11m m -=-,且222221123m n m m m m ⎛⎫+=+=-+= ⎪⎝⎭4、求三边为整数,且最大边小于16的三角形个数为________个【答案】372【解析】设较小的两边为x 、y ,且x y ≤,则最大边为15的三角形有如下情况:15x y ≤≤,15x y +>①1x =时,15y =;②2x =时,15y =,14y =;③3x =时,15y =,14y =,13y =;④4x =时,15y =,14y =,13y =,12y =;⑤5x =时,15y =,14y =,13y =,12y =,11y =;⑥6x =时,15y =,14y =,13y =,12y =,11y =,10y =;⑦7x =时,15y =,14y =,13y =,12y =,11y =,10y =,9y =;⑧8x =时,15y =,14y =,13y =,12y =,11y =,10y =,9y =,8y =; ⑨9x =时,15y =,14y =,13y =,12y =,11y =,10y =,9y =; ……共有12345678765432164++++++++++++++=种同理:最大边为14的有1234567+765432156++++++++++++=种 最大边为13的有123456765432149++++++++++++=最大边为12的有12345665432142+++++++++++=最大边为11的有1234565432136++++++++++=最大边为10的有123455432130+++++++++=最大边为9的有12345432125++++++++=最大边为8的有1234432120+++++++=最大边为7的有123432116++++++=最大边为6的有12332112+++++=最大边为5的有123219++++=最大边为4的有12216+++=最大边为3的有1214++=最大边为2的有112+=最大边为1的有1综合共有:1246912162025303642495664=372++++++++++++++种5、已知点()3,5C ,()0,1D ,A 、B 两点在x 轴上且2AB =,已知点A 在x 轴右侧,求ABCD C 的最小值为_________ 【答案】737+6、如图,正方形ABCD 边长为2,点E 、F 分别为AB 、BC 中点,AF 分别交线段DE ,DB 于点M 、N ,求DMN S =__________【答案】815【解析】利用比例,延长AF 、DC 交于点G ,//AB CD ,::1:4AM MG AE DG ∴== ::1:2AN NG AB DG ∴==:3:2AM NM ∴=,:3:2AM NM ∴=且::2:1DN NB AD BF ==,2224825531515DMN DAN ABD S S S ==⨯=⨯= 7、已知1a >a a x x -+=143a -+- 【解析】8、已知:()11,2,3,,i x i n <=⋅⋅⋅,且12121000n n x x x x x x ++⋅⋅⋅+=+++⋅⋅⋅+,则n 的最小值为( )A 、999B 、1000C 、1001D 、1002 【答案】D9、已知:在ABC 中,8AB =,6AC =,点D 、E 分别在AC 、AB 上,且2AD =,当ADEACB 时,AE =_________ 【答案】32或83【解析】进行分类,按照斜A 形分为两类,画图计算可得32或83 10、如图,在ABC ,AB AC =,过点B 在ABC ∠内部作任一射线,作AH ⊥射线于点H ,在图上任取一点P ,使得//HP BC ,且12HP BC =,联结AP 、CP ,求证:AP CP ⊥【答案】见解析【解析】延长BH ,CP 交于点M ,联结AM ,借用垂直平分线求证AB AM AC ==,从而易得AP CP ⊥11、一个正方形每条边上有三个四等分点,由这些四等分点最多可组成多少个三角形?【答案】216个附:无答案试卷题目1、已知0a ≠,求2323a a a a a a++=___________ 2、因式分解:332x x -+3、已知两个二次方程20ax ax b ++=与20ax bx b ++=各取一根,这两根乘积为1,求这两根的平方和为________4、求三边为整数,且最大边小于16的三角形个数为________个5、已知点()3,5C ,()0,1D ,A 、B 两点在x 轴上且2AB =,已知点A 在x 轴右侧,求ABCD C 的最小值为_________6、如图,正方形ABCD 边长为2,点E 、F 分别为AB 、BC 中点,AF 分别交线段DE ,DB 于点M 、N ,求DMN S =__________7、已知1a >,解方程:a a x x -+= 8、已知:()11,2,3,,i x i n <=⋅⋅⋅,且12121000n n x x x x x x ++⋅⋅⋅+=+++⋅⋅⋅+,则n 的最小值为( )A 、999B 、1000C 、1001D 、10029、已知:在ABC 中,8AB =,6AC =,点D 、E 分别在AC 、AB 上,且2AD =,当ADE ACB 时,AE =_________10、如图,在ABC ,AB AC =,过点B 在ABC ∠内部作任一射线,作AH ⊥射线于点H ,在图上任取一点P ,使得//HP BC ,且12HP BC =,联结AP 、CP ,求证:AP CP ⊥11、一个正方形每条边上有三个四等分点,由这些四等分点最多可组成多少个三角形?。
2019年上海市中考第二次模拟考试数学试卷一.选择题(满分24分,每小题4分)1.计算(﹣x2)3的结果是()A.﹣x6B.x6C.﹣x5D.﹣x82.下列方程中,有实数解的个数是()①﹣1=0,②=4﹣x,③=,④=﹣xA.0个B.1个C.2个D.3个3.已知一次函数y=mx+n的图象如图所示,则m、n的取值范围()A.m>0,n<0 B.m<0,n>0 C.m>0,n>0 D.m<0,n<0 4.下列事件中,属于必然事件的是()A.随时打开电视机,正在播天气预报B.抛掷一枚质地均匀的骰子,出现4点朝上C.从分别写有3,6两个数字的两张卡片中随机抽出一张,卡片上的数字能被3整除D.长度分别是3cm,3cm,6cm的三根木条首尾相接,组成一个三角形5.⊙O是一个正n边形的外接圆,若⊙O的半径与这个正n边形的边长相等,则n的值为()A.3 B.4 C.6 D.86.如图,⊙O的半径为4,点A,B在⊙O上,点P在⊙O内, sin∠APB=,AB⊥PB,如果OP⊥OA,那么OP的长为()A.B.3 C.D.二.填空题(满分48分,每小题4分)7.计算:a﹣2b2•(a2b﹣2)﹣3=.8.小明在数轴上先作边长为1的正方形,再用圆规画出了点A(如图所示),则点A所表示的数为.9.不等式3x≤x+4的非负整数解是.10.若关于x的一元二次方程(m﹣1)x2﹣4x+1=0有两个不相等的实数根,则m的取值范围为.11.已知反比例函数y=的图象经过点(1,2),则k的值是.12.已知抛物线y=2x2﹣4x+5,将该抛物线沿x轴翻折后的新抛物线的解析式为.13.如图,任意转动正六边形转盘一次,当转盘停止转动时,指针指向大于3的数的概率是.14.在100个数据中,用适当方法抽取50个样本进行统计,在频数分布表中,54.5~57.5这一组的频率是0.2,那么估计总体数据落在54.5~57.5之间的约有个.15.已知两圆内切,半径分别为2厘米和5厘米,那么这两圆的圆心距等于厘米.()=.16.化简:17.如图,在边长为1的正方形网格中,A、B两点在小方格的顶点上.若点C、D也在小方格的顶点上,这四点恰好是面积为2的一个平行四边形的四个顶点,则这样的平行四边形有个.18.如图,已知E为长方形纸片ABCD的边CD上一点,将纸片沿AE对折,点D的对应点D′恰好在线段BE上.若AD=3,DE=1,则AB=.三.解答题19.(10分)先化简代数式1﹣÷,并从﹣1,0,1,3中选取一个合适的代入求值.20.(10分)解二元二次方程组.21.(10分)如图,在△ABC中(1)作图,作BC边的垂直平分线分别交于AC,BC于点D,E(用尺规作图法,保留作图痕迹,不要求写作法)(2)在(1)条件下,连接BD,若BD=9,BC=12,求∠C的余弦值.22.(10分)某景区在同一线路上顺次有三个景点A,B,C,甲、乙两名游客从景点A出发,甲步行到景点C;乙花20分钟时间排队后乘观光车先到景点B,在B处停留一段时间后,再步行到景点C.甲、乙两人离景点A的路程s(米)关于时间t(分钟)的函数图象如图所示.(1)甲的速度是米/分钟;(2)当20≤t≤30时,求乙离景点A的路程s与t的函数表达式;(3)乙出发后多长时间与甲在途中相遇?(4)若当甲到达景点C时,乙与景点C的路程为360米,则乙从景点B步行到景点C的速度是多少?23.(12分)如图,已知ED∥BC,∠EAB=∠BCF.求证:(1)四边形ABCD为平行四边形;(2)OB2=OE•OF;24.(12分)如图,已知抛物线y=﹣x2+bx+c与一直线相交于A(1,0)、C(﹣2,3)两点,与y轴交于点N,其顶点为D.(1)求抛物线及直线AC的函数关系式;(2)若P是抛物线上位于直线AC上方的一个动点,求△APC的面积的最大值及此时点P 的坐标;(3)在对称轴上是否存在一点M,使△ANM的周长最小.若存在,请求出M点的坐标和△ANM周长的最小值;若不存在,请说明理由.25.(14分)如图,在△ABC中,AB=AC,以AB为直径的⊙O分别交BC,AC于点D,E,连结EB,交OD于点F.(1)求证:OD⊥BE.(2)若DE=,AB=6,求AE的长.(3)若△CDE的面积是△OBF面积的,求线段BC与AC长度之间的等量关系,并说明理由.参考答案一.选择题1.解:(﹣x 2)3=﹣x 6,故选:A .2.解:①﹣1=0,=1,2x +8=1,解得x =﹣,经检验x =﹣是原方程的解;②=4﹣x , x ﹣6=(4﹣x )2,整理得x 2﹣9x +22=0,△=92﹣4×22>0,方程没有实数解,所以原方程无实数解;③=x +5=2﹣x ,所以x =﹣,经检验x =﹣是原方程的解;④=﹣x ,x +1=x 2,整理得x 2﹣x ﹣1=0,解得x 1=,x 2=,经检验x =为原方程无实数解.故选:D .3.解:∵一次函数y =mx +n 的图象过二、四象限,∴m <0,∵函数图象与y 轴交于正半轴,∴n >0,故选:B.4.解:A,随时打开电视机,正在播天气预报是随机事件;B,抛掷一枚质地均匀的骰子,出现4点朝上是随机事件;C,从分别写有3,6两个数字的两张卡片中随机抽出一张,卡片上的数字能被3整除是必然事件;D,长度分别是3cm,3cm,6cm的三根木条首尾相接,组成一个三角形是不可能事件;故选:C.5.解:∵⊙O的半径与这个正n边形的边长相等,∴这个多边形的中心角=60°,∴=60°,∴n=6,故选:C.6.解:如图,连接OB,作BM⊥OP交OP的延长线于M,作AN⊥MB交MB的延长线于N.则四边形AOMN是矩形,∵∠AOP=∠ABP=90°,∴A、O、P、B四点共圆,∴∠BOP=∠BAP,∵sin∠APB=,∴tan∠BAP=,tan∠BOM=tan∠BAP==,设BM=4k,OM=3k,在Rt△OMB中,(4k)2+(3k)2=42,解得k=(负根已经舍弃),∴BM=,OM=,BN=MN﹣BM=,∵∠MBP+∠BPM=90°,∠MBP+∠ABN=90°,∴∠BPM=∠ABN,∵∠BMP=∠ANB=90°,∴△BMP∽△ANB,∴=,∴=,∴PM =,∴OP =OM ﹣PM =.故选:D .二.填空题(共12小题,满分48分,每小题4分)7.解:原式=•=.故答案为.8.解:根据勾股定理得,正方形的对角线的长度为=,则点A 表示的数为1+, 故答案为:1+. 9.解:解不等式3x ≤x +4得,x ≤2,∴不等式3x ≤x +4的非负整数解是0,1,2,故答案为:0,1,2.10.解:∵关于x 的一元二次方程(m ﹣1)x 2﹣4x +1=0有两个不相等的实数根,∴△>0且m ﹣1≠0,即(﹣4)2﹣4(m ﹣1)>0且m ≠1,解得m <5且m ≠1,故答案为:m <5且m ≠1.11.解:∵点(1,2)在函数y =上,则有2=,即k =2.故答案为:2.12.解:抛物线y =2x 2﹣4x +5=2(x ﹣1)2+3,其顶点坐标是(1,3),将该抛物线沿x 轴翻折后的新抛物线的顶点坐标是(1,﹣3),抛物线开口方向与原抛物线方向相反,所以新抛物线的解析式为y =﹣2(x ﹣1)2﹣3.故答案是:y =﹣2(x ﹣1)2﹣3.13.解:∵共6个数,大于3的数有3个,∴P (大于3)==;故答案为.14.解:用样本估计总体:在频数分布表中,54.5~57.5这一组的频率是0.2, 估计总体数据落在54.5~57.5这一组的频率同样是0.2,那么总体数据落在54.5~57.5之间的约有100×0.2=20个.故答案为:20.15.解:∵两圆的半径分别为2和5,两圆内切,∴d =R ﹣r =5﹣2=3cm ,故答案为:3.16.解:()=﹣=(﹣+)+(1﹣)=.故答案是:. 17.解:根据题意作图可发现符合题意的有5种情况:▱ABC 2D 3、▱ABC 1D 2、▱AC 1BD 1、▱AC 2BC 3、正方形ABD 1C 2、正方形ABC 3C 1.故答案为:6.18.解:∵折叠,∴△ADE≌△AD'E,∴AD=AD'=3,DE=D'E=1,∠DEA=∠D'EA,∵四边形ABCD是矩形,∴AB∥CD,∴∠DEA=∠EAB,∴∠E AB=∠AEB,∴AB=BE,∴D'B=BE﹣D'E=AB﹣1,在Rt△ABD'中,AB2=D'A2+D'B2,∴AB2=9+(AB﹣1)2,∴AB=5故答案为:5三.解答题(共7小题,满分78分)19.解:原式=1﹣×=1﹣=﹣=﹣,由题意得,x≠﹣1,0,1,当x=3时,原式=﹣20.解:,把(1)变形y=1﹣x,代入(2)得x2﹣(1﹣x)﹣2x﹣1=0,化简整理得x2﹣x﹣2=0,∴x1=﹣1,x2=2,把x=2代入(1)得y=﹣1,把x=﹣1代入(1)得y=2,所以原方程组的解.21.解:(1)如图所示,直线DE即为所求;(2)∵DE是BC的垂直平分线,∴EC=BC=6,BD=CD=9,∴cos∠C===.22.解:(1)甲的速度==60米/分钟,故答案为:60(2)当20≤t≤30时,设s=mt+n,由题意得解得∴s=300t﹣6000(3)当20≤t≤30时,60t=300t﹣6000,解得t=25,∴乙出发后时间=25﹣20=5,当30≤t≤60时,60t=3000,解得t=50,∴乙出发后时间=50﹣20=30,综上所述:乙出发5分钟和30分钟时与甲在途中相遇;(4)设乙从B步行到C的速度是x米/分钟,由题意得5400﹣3000﹣(90﹣60)x=360,解得x =68,所以乙从景点B 步行到景点C 的速度是68米/分钟.23.解:(1)∵DE ∥BC ,∴∠D =∠BCF ,∵∠EAB =∠BCF ,∴∠EAB =∠D ,∴AB ∥CD ,∵DE ∥BC ,∴四边形ABCD 为平行四边形;(2)∵DE ∥BC ,∴=,∵AB ∥CD ,∴=,∴,∴OB 2=OE •OF ;24.解:(1)将A (1,0),C (﹣2,3)代入y =﹣x 2+bx +c ,得:,解得:,∴抛物线的函数关系式为y =﹣x 2﹣2x +3;设直线AC 的函数关系式为y =mx +n (m ≠0),将A (1,0),C (﹣2,3)代入y =mx +n ,得:,解得:,∴直线AC 的函数关系式为y =﹣x +1.(2)过点P 作PE ∥y 轴交x 轴于点E ,交直线AC 于点F ,过点C 作CQ ∥y 轴交x 轴于点Q ,如图1所示.设点P 的坐标为(x ,﹣x 2﹣2x +3)(﹣2<x <1),则点E 的坐标为(x ,0),点F 的坐标为(x ,﹣x +1),∴PE =﹣x 2﹣2x +3,EF =﹣x +1,EF=PE﹣EF=﹣x2﹣2x+3﹣(﹣x+1)=﹣x2﹣x+2.∵点C的坐标为(﹣2,3),∴点Q的坐标为(﹣2,0),∴AQ=1﹣(﹣2)=3,=AQ•PF=﹣x2﹣x+3=﹣(x+)2+.∴S△APC∵﹣<0,∴当x=﹣时,△APC的面积取最大值,最大值为,此时点P的坐标为(﹣,).(3)当x=0时,y=﹣x2﹣2x+3=3,∴点N的坐标为(0,3).∵y=﹣x2﹣2x+3=﹣(x+1)2+4,∴抛物线的对称轴为直线x=﹣1.∵点C的坐标为(﹣2,3),∴点C,N关于抛物线的对称轴对称.令直线AC与抛物线的对称轴的交点为点M,如图2所示.∵点C,N关于抛物线的对称轴对称,∴MN=CM,∴AM+MN=AM+MC=AC,∴此时△ANM周长取最小值.当x=﹣1时,y=﹣x+1=2,∴此时点M的坐标为(﹣1,2).∵点A的坐标为(1,0),点C的坐标为(﹣2,3),点N的坐标为(0,3),∴AC==3,AN==,∴C=AM+MN+AN=AC+AN=3+.△ANM∴在对称轴上存在一点M(﹣1,2),使△ANM的周长最小,△ANM周长的最小值为3+.25.解:(1)连接AD,∵AB是直径,∴∠AEB=∠ADB=90°,∵AB=AC,∴∠CAD=∠BAD,BD=CD,∴=,∴OD⊥BE;(2)∵∠AEB=90°,∴∠BEC=90°,∵BD=CD,∴BC=2DE=2,∵四边形ABDE内接于⊙O,∴∠BAC+∠BDE=180°,∵∠CDE+∠BDE=180°,∴∠CDE=∠BAC,∵∠C=∠C,∴△CDE∽△CAB,∴=,即=,∴CE=2,∴AE=AC﹣CE=AB﹣CE=4;(3)∵BD=CD,∴S△CDE =S△BDE,∵BD=CD,AO=BO,∴OD∥AC,∵△OBF∽△ABE,∴=()2=,∴S△ABE =4S△OBF,∵=,∴S△ABE =4S△OBF=6S△CDE,∴S△CAB =S△CDE+S△BDE+S△ABE=8S△CDE,∵△CDE∽△CAB,∴=()2=,∴=,∵BD=CD,AB=AC,∴=,即AC=BC.。
2019年上海中学自主招生数学试卷
一、填空题(共11小题,每小题0分,满分0分)
1.已知a≠0,求++=.
2.因式分解:x3﹣3x+2=.#MUSTA
3.已知两二次方程ax2+ax+b=0与ax2+bx+b=0各取一根,这两根乘积为1,求这两根的平方和为.
4.求三边为整数,且最大边小于16的三角形个数为个.
5.已知点C(3,5),D(0,1),A、B两点在x轴上且AB=2.已知点A在x轴右侧,求
C ABCCD的最小值为.
6.如图,正方形ABCD边长为2,点E、F分别为边AB、BC中点,AF分别交线段DE、DB于点M、N,则S△DMN=.
7.已知a>1,解方程:=x.#MUSTA
8.已知:|x i|<1(i=1,2,3,…,n),且|x1|+|x2|+…+|x n|=1000+|x1+x2+…+x n|,则n的最小值为()
A.999B.1000C.1001D.1002
9.已知,在△ABC中,AB=8,AC=6,点D、E分别在边AC、AB上,且AD=2.当△ADE∽△ACB时,AE=.
10.如图,在△ABC中,AB=AC,过点B在∠ABC内部作任一射线,作AH⊥射线于点H,在图上取一点P,使得HP∥BC,且HP=BC.联结AP、CP,求证:AP⊥CP.
11.一个正方形上每条边上有三个四等分点,由这些四等分点,最多可组成多少个三角形?。
2019年交大附中自招数学试卷一、填空题1、求值:cos30sin 45tan 60⋅⋅=.2、反比例函数1y x =与二次函数243y x x =-+-的图像的交点个数为.3、已知210x x --=,则3223x x -+=.4、设方程()()()()()()11111211210x x x x x x ++++++++=的两根为1x ,2x ,则()()1211x x ++=.5、直线y x k =+(0k <)上依次有,,,A B C D 四点,它们分别是直线与x 轴、双曲线k y x=、y 轴的交点,若AB BC CD ==,则k =.6、交大附中文化体行设施齐全,学生既能在教室专心学习,也能在操场开心运动,德智体美劳全面发展,某次体育课,英才班部分学生参加篮球小组、其余学生参加排球小组。
篮球小组中男生比女生多五分之一,排球小组男女生人数相等;一段时间后,有一名男生从篮球小组转到排球小组,一名女生从排球小组转到篮球小组,这样篮球小组的男女生人数相等,排球小组女生人数比男生人数少四分之一,问英才班有人.7、已知,,,a b c n 是互不相等的正整数,且1111a b c n +++也是整数,则n 的最大值是.8、如图,ABCDE 是边长为1的正五边形,则它的内切圆与外接圆所围圆环的面积为.9、若关于x 的方程()()2460x x x m --+=的三个根恰好可以组成某直角三角形的三边长,则m =.10、设ABC 的三边,,a b c 均为正整数,且40a b c ++=,当乘积abc 最大时,ABC 的面积为.11、如图,在直角坐标系中,将AOB 绕原点旋转到OCD ,其中()3,1A -,()4,3B ,点D 在x 轴正半轴上,则点C 的坐标为.二、解答题12、如图,数轴上从左到右依次有,,,A B C D 四个点,它们对应的实数分别为,,,a b c d ,如果存在实数λ,满足:对线段AB 和CD 上的任意M W,其对应的数为x ,实数xλ对应的点N 仍然在线段AB 或CD 上,则称(),,,,a b c d λ为“完美数组”。
2019年上海市初中数学毕业统一学业考试模拟试题 考生注意:1.本试卷共25题.2.试卷满分150分,考试时间100分钟.3.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效.4.除第一、二大题外,其余各题如无特殊说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤.一、选择题(本大题共6题,每题4分,满分24分)1. 下列数中是无理数的是……………………………………………………………………(▲)A. 3.1415B. 81C. cos 30°D. 827 2. 如果将一个二次函数图像沿着坐标轴向左平移3个单位,向下平移4个单位后得到的是 y = 2(x - 6)2 + 4,则原函数解析式是……………………………………………………(▲)A. y =(x - 9)2 + 8B. y = 2(x - 6)2C. y = 2(x - 3)2 + 8D. y = 2(x - 9)2 + 83. 某商店9月份的销售额为a 万元,在10月份与11月份这两个月份中,此商店的销售额平均每月增长x %,那么下列11月份此商店的销售额正确的是…………………………(▲)A. a (1 + x %)B. (1 + x %)2C. a (x %)2D. a (1 + x %)24. 在一组数据中的每项数据后加10,则该组数据的哪个数值不会发生变化………… (▲)A . 标准差 B. 平均数 C. 中位数 D. 众数5. 如图,已知Rt △ABC ,AC =8,AB =4,以点B 为圆心作圆,当⊙B 与线段AC 只有一个交点时,则⊙B 的半径的取值范围是…………………………………………………………(▲)A. r B =32B. 4 < r B ≤34C. r B =32 或4 < r B ≤34D. r B 为任意实数 第5题图6. 如果二元一次方程x 2 - mx + 2 = 0的解为两个不相等的负实数根,则m 的取值范围是(▲)A. m > 22B. m < 22-C. m > 22或 m < 22-D. 无解二、填空题(本大题共12题,每题4分,满分48分)7. 计算:38--= ▲ .8. 分解因式:a 2 - 2a - 3 = ▲ .9. 方程组⎩⎨⎧=+-=+096322y xy x y x 的解是 ▲ . 10. 已知一次函数y = kx + b 图像不经过第二象限,那么b 的取值范围是 ▲ .11. 与b a +互为有理化因式的是 ▲ .12. 将两枚骰子同时抛出,得到的两个点中,一个能被另一个整除的概率为 ▲ .13. 如图,已知⊙A 、⊙B 、⊙C 两两相切,连接圆心构成△ABC ,如果AC =3,BC =5,AB =6,那么⊙C 的半径长为 ▲ .14. 近期,某区与某技术支持单位合作,组织策划了该区“低碳先锋行动”,开展低碳测量和排行活动.根据调查数据制作了频数分布直方图和扇形统计图,图(1)中从左到右各矩形的高度之比为2 : 8 : 9 : 7 : 3 : 1,那么在下图(2)中碳排放值5≤x <7(千克/平方米·月)部分的圆心角为 ▲ 度.第13题图 第14题图15. 如图,在△ABC 中,点D 在边AB 上,且BD = 2AD ,点E 是边AC 的中点,设=,=,那么= ▲ .(用与来表示)16. 在△ABC 中,AB = AC = 5,tanB =34. 若⊙O 的半径为10,且⊙O 经过点B 与C ,那么线段OA 的长等于 ▲ .17. 对于平面直角坐标系xOy 中的点P 和图形G ,给出如下定义:在图形G 上若存在两点M ,N ,使△PMN 为正三角形,则称图形G 为点P 的T 型线,点P 为图形G 的T 型点,△PMN 为图形G 关于点P 的T 型三角形.如图,已知点A (0,-3),B (3,0),以原点O 为圆心的⊙O 的半径为1. 在A ,B 两点中,⊙O 的T 型点是 ▲ .18. 如图,在Rt △ABC 中,∠ACB =90°,∠B =30°,AC =2.作△ABC 的高CD ,作△CDB 的高DC 1,作△DC 1B 的高C 1D 1,……,如此下去,那么得到的所有阴影三角形的面积之和为 ▲ .第15题图 第17题图 第18题图三、解答题(共7题,满分78分)19. 求不等式组⎪⎩⎪⎨⎧≥-+->-225312x x x 的正整数解.20. 先化简,再求值:⎪⎭⎫ ⎝⎛++÷-+-x x x x x 21121222,其中x =22-.21. 如图,在△ABC 中,AB =AC ,点D 在边AB 上,以点A 为圆心,线段AD 的长为半径的⊙A 与边AC 相交于点E ,AF ⊥DE ,垂足为点F ,AF 的延长线与边BC 相交于点G ,联结GE .已知DE =10,cos ∠BAG =1312,21=DB AD . 求 :(1)⊙A 的半径AD 的长;(2)∠EGC 的余切值.22. 周末,小明骑自行车从家里出发到野外郊游.从家出发0.5小时后到达甲地,游玩一段时间后按原速前往乙地,小明离家1小时20分钟后,妈妈驾车沿相同路线前往乙地,如图是他们离家的路程y (km )与小明离家时间x (h )的函数图象,已知妈妈驾车的速度是小明骑车速度的3倍.(1)求小明骑车的速度为 ▲ km /h .在甲地游玩的时间为▲ h .;(2)小明从家出发多少小时后被妈妈追上?此时离家多远?(3)若妈妈比小明早10分钟到达乙地,求从家到乙地的路程.第22题图第21题图23.如图,△ABC中,点D、E分别是边BC、AC的中点,过点A作AF∥BC交线段DE的延长线相交于F点,取AF的中点G,如果BC=2AB.求证:(1)四边形ABDF是菱形;(2)AC=2DG.第23题图24. 如果两个二次函数的图象关于y 轴对称,我们就称这两个二次函数互为“关于y 轴对称二次函数”,如图所示二次函数y 1 = x 2 + 2x + 2与y 2 = x 2 - 2x + 2是“关于y 轴对称二次函数”.(1)二次函数y = 2(x + 2)2 + 1的“关于y 轴对称二次函数”解析式为 ▲ ;二次函数y = a (x - h )2 + k 的“关于y 轴对称二次函数”解析式为 ▲ ;(2)如备用图,平面直角坐标系中,记“关于y 轴对称二次函数”的图象与y 轴的交点为A ,它们的两个顶点分别为B ,C ,且BC =6,顺次连接点A ,B ,O ,C 得到一个面积为24的菱形,求“关于y 轴对称二次函数”的函数表达式.(3)在第(2)题的情况下,如果M 是两个抛物线上的一点,以点A ,O ,C ,M 为顶点能否构成梯形. 若能,求出此时M 坐标;若不能,说明理由.第24题图 备用图25. 在Rt △ABC 中,∠BAC =90°,BC =10,tan ∠ABC =43,点O 是AB 边上动点,以O 为圆心,OB 为半径的⊙O 与边BC 的另一交点为D ,过点D 作AB 的垂线,交⊙O 于点E ,联结BE 、AE(1)如图(1),当AE ∥BC 时,求⊙O 的半径长;(2)设BO =x ,AE =y ,求y 关于x 的函数关系式,并写出定义域;(3)若以A 为圆心的⊙A 与⊙O 有公共点D 、E ,当⊙A 恰好也过点C 时,求DE 的长.图(1)备用图备用图第25题图2019年上海市初中数学毕业统一学业考试模拟试题参考答案一、选择题:(每题4分)1. C解析:cos 30°=23,是无理数 2. C解析:二次函数平移左加右减,上加下减,即把y = 2(x - 6)2 + 4向右平移3个单位,向上平移个单位3. D解析:考察平均增长率公式4. A解析:在一组数据中的每项数据后加或减去一个常数,方差和标准差不会改变5. C解析:⊙B 与线段AC 只有一个交点,即⊙B 与AC 相切或AB <r B <BC6. B解析:若方程有两个不相等实数解,则m 2 - 8 > 0,通过数形结合可知m > 22或 m <22- 。
上海市闸北区2019-2020学年中考中招适应性测试卷数学试题(3)一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图,在矩形AOBC中,O为坐标原点,OA、OB分别在x轴、y轴上,点B的坐标为(0,33),∠ABO=30°,将△ABC沿AB所在直线对折后,点C落在点D处,则点D的坐标为()A.(32,33) B.(2,33) C.(33,32) D.(32,3﹣33)2.2018年春运,全国旅客发送量达29.8亿人次,用科学记数法表示29.8亿,正确的是()A.29.8×109B.2.98×109C.2.98×1010D.0.298×10103.计算﹣8+3的结果是()A.﹣11 B.﹣5 C.5 D.114.如图,AB为⊙O的直径,C,D为⊙O上的两点,若AB=14,BC=1.则∠BDC的度数是()A.15°B.30°C.45°D.60°5.某机构调查显示,深圳市20万初中生中,沉迷于手机上网的初中生约有16000人,则这部分沉迷于手机上网的初中生数量,用科学记数法可表示为()A.1.6×104人B.1.6×105人C.0.16×105人D.16×103人6.如图,半径为3的⊙A经过原点O和点C(0,2),B是y轴左侧⊙A优弧上一点,则tan∠OBC为()A.13B.2C.24D.223kA .1B .2C .3D .48.下列计算正确的是( )A .3 +2=5B .12﹣3=3C .3×2=6D .82=4 9.如图,四边形ABCD 为平行四边形,延长AD 到E ,使DE=AD ,连接EB ,EC ,DB .添加一个条件,不能使四边形DBCE 成为矩形的是( )A .AB=BEB .BE ⊥DC C .∠ADB=90°D .CE ⊥DE10.如图,已知数轴上的点A 、B 表示的实数分别为a ,b ,那么下列等式成立的是( )A .a b a b +=-B .a b a b +=--C .a b b a +=-D .a b a b +=+11.世界上最小的开花结果植物是澳大利亚的出水浮萍,这种植物的果实像一个微小的无花果,质量只有0.0000000076克,将数0.0000000076用科学记数法表示为( )A .7.6×10﹣9B .7.6×10﹣8C .7.6×109D .7.6×10812.某校体育节有13名同学参加女子百米赛跑,它们预赛的成绩各不相同,取前6名参加决赛.小颖已经知道了自己的成绩,她想知道自己能否进入决赛,还需要知道这13名同学成绩的( )A .方差B .极差C .中位数D .平均数二、填空题:(本大题共6个小题,每小题4分,共24分.)13.已知16x x +=,则221x x+=______ 14.2018年1月4日在萍乡市第十五届人民代表大会第三次会议报告指出,去年我市城镇居民人均可支值为6,则m 的值为__________.16.若关于x 的方程2x m 2x 22x++=--有增根,则m 的值是 ▲ 17.一个不透明的袋子中装有5个球,其中3个红球、2个黑球,这些球除颜色外无其它差别,现从袋子中随机摸出一个球,则它是黑球的概率是_____.18.如图,在平面直角坐标系中,四边形OABC 的顶点O 是坐标原点,点A 的坐标(6,0),B 的坐标(0,8),点C 的坐标(﹣25,4),点M ,N 分别为四边形OABC 边上的动点,动点M 从点O 开始,以每秒1个单位长度的速度沿O→A→B 路线向终点B 匀速运动,动点N 从O 点开始,以每秒2个单位长度的速度沿O→C→B→A 路线向终点A 匀速运动,点M ,N 同时从O 点出发,当其中一点到达终点后,另一点也随之停止运动,设动点运动的时间为t 秒(t >0),△OMN 的面积为S .则:AB 的长是_____,BC 的长是_____,当t =3时,S 的值是_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,已知O e 是ABC ∆的外接圆,圆心O 在ABC ∆的外部,4AB AC ==,43BC =,求O e 的半径.20.(6分)如图1,二次函数y =ax 2﹣2ax ﹣3a (a <0)的图象与x 轴交于A 、B 两点(点A 在点B 的右侧),与y 轴的正半轴交于点C ,顶点为D .(1)求顶点D 的坐标(用含a 的代数式表示);(2)若以AD 为直径的圆经过点C .①求抛物线的函数关系式;②如图2,点E 是y 轴负半轴上一点,连接BE ,将△OBE 绕平面内某一点旋转180°,得到△PMN (点P 、M 、N 分别和点O 、B 、E 对应),并且点M 、N 都在抛物线上,作MF ⊥x 轴于点F ,若线段MF :BF =1:2,求点M 、N 的坐标;③点Q 在抛物线的对称轴上,以Q 为圆心的圆过A 、B 两点,并且和直线CD 相切,如图3,求点Q 的21.(6分)某商场将每件进价为80元的某种商品按每件100元出售,一天可售出100件.后来经过市场调查,发现这种商品单价每降低1元,其销量可增加10件.(1)若商场经营该商品一天要获利润2160元,则每件商品应降价多少元?(2)设后来该商品每件降价x元,商场一天可获利润y元.求出y与x之间的函数关系式,并求当x取何值时,商场获利润最大?22.(8分)车辆经过润扬大桥收费站时,4个收费通道A.B、C、D中,可随机选择其中的一个通过.一辆车经过此收费站时,选择A通道通过的概率是;求两辆车经过此收费站时,选择不同通道通过的概率.23.(8分)计算:(π﹣1)0+|﹣1|﹣24÷6+(﹣1)﹣1.24.(10分)(1)计算:(﹣2)2﹣8+(2+1)2﹣4cos60°;(2)化简:2321x xx x-+-÷(1﹣1x)25.(10分)若一个三位数的十位数字比个位数字和百位数字都大,则称这个数为“伞数”.现从1,2,3,4这四个数字中任取3个数,组成无重复数字的三位数.(1)请画出树状图并写出所有可能得到的三位数;(2)甲、乙二人玩一个游戏,游戏规则是:若组成的三位数是“伞数”,则甲胜;否则乙胜.你认为这个游戏公平吗?试说明理由.26.(12分)如图所示,在▱ABCD中,E是CD延长线上的一点,BE与AD交于点F,DE=12 CD.(1)求证:△ABF∽△CEB;(2)若△DEF的面积为2,求▱ABCD的面积.27.(12分)先化简,再求值:2441x xx+++÷(31x+﹣x+1),其中x=sin30°+2﹣14.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.A【解析】解:∵四边形AOBC是矩形,∠ABO=10°,点B的坐标为(0,33),∴AC=OB=33,∠CAB=10°,∴BC=AC•tan10°=33×3=1.∵将△ABC沿AB所在直线对折后,点C落在点D处,∴∠BAD=10°,AD=33.过点D作DM⊥x轴于点M,∵∠CAB=∠BAD=10°,∴∠DAM=10°,∴DM=12AD=33,∴AM=33×cos10°=92,∴MO=92﹣1=32,∴点D的坐标为(32,33).故选A.2.B【解析】【分析】根据科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,且为这个数的整数位数减1,由此即可解答.【详解】29.8亿用科学记数法表示为:29.8亿=2980000000=2.98×1.故选B.【点睛】本题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.B绝对值不等的异号加法,取绝对值较大的加数符号,并用较大的绝对值减去较小的绝对值.互为相反数的两个数相加得1.依此即可求解.【详解】解:−8+3=−2.故选B.【点睛】考查了有理数的加法,在进行有理数加法运算时,首先判断两个加数的符号:是同号还是异号,是否有1.从而确定用那一条法则.在应用过程中,要牢记“先符号,后绝对值”.4.B【解析】【分析】只要证明△OCB是等边三角形,可得∠CDB=12∠COB即可解决问题.【详解】如图,连接OC,∵AB=14,BC=1,∴OB=OC=BC=1,∴△OCB是等边三角形,∴∠COB=60°,∴∠CDB=12∠COB=30°,故选B.【点睛】本题考查圆周角定理,等边三角形的判定等知识,解题的关键是学会利用数形结合的首先解决问题,属于中考常考题型.5.A【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,【详解】用科学记数法表示16000,应记作1.6×104,故选A.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.6.C【解析】试题分析:连结CD,可得CD为直径,在Rt△OCD中,CD=6,OC=2,根据勾股定理求得OD=4所以tan∠CDO=,由圆周角定理得,∠OBC=∠CDO,则tan∠OBC=,故答案选C.考点:圆周角定理;锐角三角函数的定义.7.B【解析】【分析】此题可根据反比例函数图象的对称性得到A、B两点关于原点对称,再由S△ABM=1S△AOM并结合反比例函数系数k的几何意义得到k的值.【详解】根据双曲线的对称性可得:OA=OB,则S△ABM=1S△AOM=1,S△AOM=12|k|=1,则k=±1.又由于反比例函数图象位于一三象限,k>0,所以k=1.故选B.【点睛】本题主要考查了反比例函数y=kx中k的几何意义,即过双曲线上任意一点引x轴、y轴垂线,所得矩形面积为|k|,是经常考查的一个知识点.8.B根据同类二次根式才能合并可对A进行判断;根据二次根式的乘法对B进行判断;化为最简二次根式,然后进行合并,即可对C进行判断;根据二次根式的除法对D进行判断.【详解】解:A不能合并,所以A选项不正确;B B选项正确;C,所以C选项不正确;D=2,所以D选项不正确.故选B.【点睛】此题考查二次根式的混合运算,注意先化简,再进一步利用计算公式和计算方法计算.9.B【解析】【分析】先证明四边形DBCE为平行四边形,再根据矩形的判定进行解答.【详解】∵四边形ABCD为平行四边形,∴AD∥BC,AD=BC,又∵AD=DE,∴DE∥BC,且DE=BC,∴四边形BCED为平行四边形,A、∵AB=BE,DE=AD,∴BD⊥AE,∴▱DBCE为矩形,故本选项错误;B、∵对角线互相垂直的平行四边形为菱形,不一定为矩形,故本选项正确;C、∵∠ADB=90°,∴∠EDB=90°,∴▱DBCE为矩形,故本选项错误;D、∵CE⊥DE,∴∠CED=90°,∴▱DBCE为矩形,故本选项错误,故选B.【点睛】本题考查了平行四边形的性质与判定,矩形的判定等,熟练掌握相关的判定定理与性质定理是解题的关键. 10.B【解析】【详解】∵b <0<a ,|b|>|a|,∴a+b <0,∴|a+b|= -a-b .故选B .【点睛】此题主要考查了实数与数轴的特征和应用,以及绝对值的含义和求法,要熟练掌握.11.A【解析】【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10n -,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:将0.0000000076用科学计数法表示为97.610-⨯.故选A.【点睛】本题考查了用科学计数法表示较小的数,一般形式为a×10n -,其中110a ≤<,n 为由原数左边起第一个不为0的数字前面的0的个数所决定.12.C【解析】13个不同的分数按从小到大排序后,中位数及中位数之后的共有7个数,故只要知道自己的分数和中位数就可以知道是否获奖了.故选C .二、填空题:(本大题共6个小题,每小题4分,共24分.)13.34【解析】 ∵16x x +=,∴221x x +=22126236234x x ⎛⎫+-=-=-= ⎪⎝⎭, 故答案为34.14.3.308×1.【解析】【分析】解:33080=3.308×1【点睛】科学记数法的表示形式为10na 的形式, 其中1<|a|<10,n为整数.确定n的值时, 要看把原数变成a时, 小数点移动了多少位, n的绝对值与小数点移动的位数相同. 当原数绝对值大于10时, n是正数; 当原数的绝对值小于1时,n是负数.15.m=8或【解析】【分析】求出抛物线的对称轴分三种情况进行讨论即可.【详解】抛物线的对称轴,抛物线开口向下,当,即时,抛物线在-1≤x≤2时,随的增大而减小,在时取得最大值,即解得符合题意.当即时,抛物线在-1≤x≤2时,在时取得最大值,即无解.当,即时,抛物线在-1≤x≤2时,随的增大而增大,在时取得最大值,即解得符合题意.综上所述,m的值为8或故答案为:8或【点睛】考查二次函数的图象与性质,注意分类讨论,不要漏解.方程两边都乘以最简公分母(x-2),把分式方程化为整式方程,再根据分式方程的增根就是使最简公分母等于1的未知数的值求出x的值,然后代入进行计算即可求出m的值:方程两边都乘以(x-2)得,2-x-m=2(x-2).∵分式方程有增根,∴x-2=1,解得x=2.∴2-2-m=2(2-2),解得m=1.17.2 5【解析】【分析】用黑球的个数除以总球的个数即可得出黑球的概率.【详解】解:∵袋子中共有5个球,有2个黑球,∴从袋子中随机摸出一个球,它是黑球的概率为25;故答案为25.【点睛】本题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=mn.18.10,1, 1【解析】【分析】作CD⊥x轴于D,CE⊥OB于E,由勾股定理得出AB=10,OC1,求出BE=OB﹣OE=4,得出OE=BE,由线段垂直平分线的性质得出BC=OC=1;当t=3时,N到达C点,M到达OA的中点,OM=3,ON=OC=1,由三角形面积公式即可得出△OMN的面积.【详解】解:作CD⊥x轴于D,CE⊥OB于E,如图所示:由题意得:OA=1,OB=8,∵∠AOB=90°,∴AB10;∵点C的坐标(﹣4),∴OC=1,OE=4,∴BE=OB﹣OE=4,∴OE=BE,∴BC =OC =1;当t =3时,N 到达C 点,M 到达OA 的中点,OM =3,ON =OC =1,∴△OMN 的面积S =12×3×4=1; 故答案为:10,1,1.【点睛】本题考查了勾股定理、坐标与图形性质、线段垂直平分线的性质、三角形面积公式等知识;熟练掌握勾股定理是解题的关键.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.4【解析】【分析】已知△ABC 是等腰三角形,根据等腰三角形的性质,作AH BC ⊥于点H ,则直线AH 为BC 的中垂线,直线AH 过O 点,在Rt △OBH 中,用半径表示出OH 的长,即可用勾股定理求得半径的长.【详解】作AH BC ⊥于点H ,则直线AH 为BC 的中垂线,直线AH 过O 点,2OH OA AH r =-=-,3BH =222OH BH OB +=,即()(222223r r -+=,4r =.【点睛】考查垂径定理以及勾股定理,掌握垂径定理是解题的关键.20.(1)(1,﹣4a );(2)①y=﹣x 2+2x+3;②M (52,74)、N (32,154);③点Q 的坐标为(1,﹣6)或(1,﹣4﹣).【解析】分析: (1)将二次函数的解析式进行配方即可得到顶点D的坐标.(2)①以AD为直径的圆经过点C,即点C在以AD为直径的圆的圆周上,依据圆周角定理不难得出△ACD 是个直角三角形,且∠ACD=90°,A点坐标可得,而C、D的坐标可由a表达出来,在得出AC、CD、AD的长度表达式后,依据勾股定理列等式即可求出a的值.②将△OBE绕平面内某一点旋转180°得到△PMN,说明了PM正好和x轴平行,且PM=OB=1,所以求M、N的坐标关键是求出点M的坐标;首先根据①的函数解析式设出M点的坐标,然后根据题干条件:BF=2MF作为等量关系进行解答即可.③设⊙Q与直线CD的切点为G,连接QG,由C、D两点的坐标不难判断出∠CDQ=45°,那么△QGD 为等腰直角三角形,即QD ²=2QG ²=2QB ²,设出点Q的坐标,然后用Q点纵坐标表达出QD、QB的长,根据上面的等式列方程即可求出点Q的坐标.详解:(1)∵y=ax2﹣2ax﹣3a=a(x﹣1)2﹣4a,∴D(1,﹣4a).(2)①∵以AD为直径的圆经过点C,∴△ACD为直角三角形,且∠ACD=90°;由y=ax2﹣2ax﹣3a=a(x﹣3)(x+1)知,A(3,0)、B(﹣1,0)、C(0,﹣3a),则:AC2=9a2+9、CD2=a2+1、AD2=16a2+4由勾股定理得:AC2+CD2=AD2,即:9a2+9+a2+1=16a2+4,化简,得:a2=1,由a<0,得:a=﹣1,②∵a=﹣1,∴抛物线的解析式:y=﹣x2+2x+3,D(1,4).∵将△OBE绕平面内某一点旋转180°得到△PMN,∴PM∥x轴,且PM=OB=1;设M(x,﹣x2+2x+3),则OF=x,MF=﹣x2+2x+3,BF=OF+OB=x+1;∵BF=2MF,∴x+1=2(﹣x2+2x+3),化简,得:2x2﹣3x﹣5=0解得:x1=﹣1(舍去)、x2=5 2 .∴M(52,74)、N(32,154).③设⊙Q与直线CD的切点为G,连接QG,过C作CH⊥QD于H,如下图:∵C (0,3)、D (1,4),∴CH=DH=1,即△CHD 是等腰直角三角形,∴△QGD 也是等腰直角三角形,即:QD 2=2QG 2;设Q (1,b ),则QD=4﹣b ,QG 2=QB 2=b 2+4;得:(4﹣b )2=2(b 2+4),化简,得:b 2+8b ﹣8=0,解得:b=﹣4±6; 即点Q 的坐标为(1,426-+1,426--.点睛: 此题主要考查了二次函数解析式的确定、旋转图形的性质、圆周角定理以及直线和圆的位置关系等重要知识点;后两个小题较难,最后一题中,通过构建等腰直角三角形找出QD 和⊙Q 半径间的数量关系是解题题目的关键.21.(1)商店经营该商品一天要获利润2160元,则每件商品应降价2元或8元;(2)y=﹣10x 2+100x+2000,当x=5时,商场获取最大利润为2250元.【解析】【分析】(1)根据“总利润=每件的利润×每天的销量”列方程求解可得;(2)利用(1)中的相等关系列出函数解析式,配方成顶点式,利用二次函数的性质求解可得.【详解】解:(1)依题意得:(100﹣80﹣x )(100+10x )=2160,即x 2﹣10x+16=0,解得:x 1=2,x 2=8,经检验:x 1=2,x 2=8,答:商店经营该商品一天要获利润2160元,则每件商品应降价2元或8元;(2)依题意得:y=(100﹣80﹣x )(100+10x )=﹣10x 2+100x+2000=﹣10(x ﹣5)2+2250,∵﹣10<0,∴当x=5时,y 取得最大值为2250元.答:y=﹣10x 2+100x+2000,当x=5时,商场获取最大利润为2250元.【点睛】本题考查二次函数的应用和一元二次方程的应用,解题关键是由题意确定题目蕴含的相等关系,并据此列出方程或函数解析式.22.(1)14;(2)34.【解析】试题分析:(1)根据概率公式即可得到结论;(2)画出树状图即可得到结论.试题解析:(1)选择A通道通过的概率=14,故答案为14;(2)设两辆车为甲,乙,如图,两辆车经过此收费站时,会有16种可能的结果,其中选择不同通道通过的有12种结果,∴选择不同通道通过的概率=1216=34.23.2【解析】【分析】先根据0次幂的意义、绝对值的意义、二次根式的除法、负整数指数幂的意义化简,然后进一步计算即可. 【详解】解:原式=2+2﹣+2=2﹣2+2=2.【点睛】本题考查了0次幂的意义、绝对值的意义、二次根式的除法、负整数指数幂的意义,熟练掌握各知识点是解答本题的关键.24.(1)5(2)11 x【解析】【分析】(1)根据实数的运算法则进行计算,要记住特殊锐角三角函数值;(2)根据分式的混合运算法则进行计算.【详解】解:(1)原式=4﹣2+2+2+1﹣4×=7﹣2=5;(2)原式=÷=•=.【点睛】本题考核知识点:实数运算,分式混合运算. 解题关键点:掌握相关运算法则.25.(1)见解析(2)不公平。
2019年上海市中考数学模拟试卷一、选择题:本大题共6小题,每小题4分,共24分1.如果a与3互为倒数,那么a是()A.﹣3 B.3 C.﹣D.2.下列单项式中,与a2b是同类项的是()A.2a2b B.a2b2C.ab2D.3ab3.如果将抛物线y=x2+2向下平移1个单位,那么所得新抛物线的表达式是()A.y=(x﹣1)2+2 B.y=(x+1)2+2 C.y=x2+1 D.y=x2+34.某校调查了20名男生某一周参加篮球运动的次数,调查结果如表所示,那么这20名男生该周参加篮球运动次数的平均数是()次5.已知在△ABC中,AB=AC,AD是角平分线,点D在边BC上,设=,=,那么向量用向量、表示为()A.+B.﹣C.﹣+D.﹣﹣6.如图,在Rt△ABC中,∠C=90°,AC=4,BC=7,点D在边BC上,CD=3,⊙A的半径长为3,⊙D 与⊙A相交,且点B在⊙D外,那么⊙D的半径长r的取值范围是()A.1<r<4 B.2<r<4 C.1<r<8 D.2<r<8二、填空题:本大题共12小题,每小题4分,共48分7.计算:a3÷a=.8.函数y=的定义域是.9.方程=2的解是.10.如果a=,b=﹣3,那么代数式2a+b的值为.11.不等式组的解集是.12.如果关于x的方程x2﹣3x+k=0有两个相等的实数根,那么实数k的值是.13.已知反比例函数y=(k≠0),如果在这个函数图象所在的每一个象限内,y的值随着x的值增大而减小,那么k的取值范围是.14.有一枚材质均匀的正方体骰子,它的六个面上分别有1点、2点、…6点的标记,掷一次骰子,向上的一面出现的点数是3的倍数的概率是.15.在△ABC中,点D、E分别是边AB、AC的中点,那么△ADE的面积与△ABC的面积的比是.16.今年5月份有关部门对计划去上海迪士尼乐园的部分市民的前往方式进行调查,图1和图2是收集数据后绘制的两幅不完整统计图.根据图中提供的信息,那么本次调查的对象中选择公交前往的人数是.17.如图,航拍无人机从A处测得一幢建筑物顶部B的仰角为30°,测得底部C的俯角为60°,此时航拍无人机与该建筑物的水平距离AD为90米,那么该建筑物的高度BC约为米.(精确到1米,参考数据:≈1.73)18.如图,矩形ABCD中,BC=2,将矩形ABCD绕点D顺时针旋转90°,点A、C分别落在点A′、C′处.如果点A′、C′、B在同一条直线上,那么tan∠ABA′的值为.三、解答题:本大题共7小题,共78分19.计算:|﹣1|﹣﹣+.20.解方程:﹣=1.21.如图,在Rt△ABC中,∠ACB=90°,AC=BC=3,点D在边AC上,且AD=2CD,DE⊥AB,垂足为点E,联结CE,求:(1)线段BE的长;(2)∠ECB的余切值.22.某物流公司引进A、B两种机器人用来搬运某种货物,这两种机器人充满电后可以连续搬运5小时,A种机器人于某日0时开始搬运,过了1小时,B种机器人也开始搬运,如图,线段OG表示A种机器人的搬运量y A(千克)与时间x(时)的函数图象,根据图象提供的信息,解答下列问题:(1)求y B关于x的函数解析式;(2)如果A、B两种机器人连续搬运5个小时,那么B种机器人比A种机器人多搬运了多少千克?23.已知:如图,⊙O是△ABC的外接圆,=,点D在边BC上,AE∥BC,AE=BD.(1)求证:AD=CE;(2)如果点G在线段DC上(不与点D重合),且AG=AD,求证:四边形AGCE是平行四边形.24.如图,抛物线y=ax2+bx﹣5(a≠0)经过点A(4,﹣5),与x轴的负半轴交于点B,与y轴交于点C,且OC=5OB,抛物线的顶点为点D.(1)求这条抛物线的表达式;(2)联结AB、BC、CD、DA,求四边形ABCD的面积;(3)如果点E在y轴的正半轴上,且∠BEO=∠ABC,求点E的坐标.25.如图所示,梯形ABCD中,AB∥DC,∠B=90°,AD=15,AB=16,BC=12,点E是边AB上的动点,点F是射线CD上一点,射线ED和射线AF交于点G,且∠AGE=∠DAB.(1)求线段CD的长;(2)如果△AEC是以EG为腰的等腰三角形,求线段AE的长;(3)如果点F在边CD上(不与点C、D重合),设AE=x,DF=y,求y关于x的函数解析式,并写出x 的取值范围.2019年上海市中考数学模拟试卷参考答案与试题解析一、选择题:本大题共6小题,每小题4分,共24分1.如果a与3互为倒数,那么a是()A.﹣3 B.3 C.﹣D.【考点】倒数.【分析】根据乘积为1的两个数互为倒数,可得答案.【解答】解:由a与3互为倒数,得a是,故选:D.【点评】本题考查了倒数,分子分母交换位置是求一个数的倒数的关键.2.下列单项式中,与a2b是同类项的是()A.2a2b B.a2b2C.ab2D.3ab【考点】同类项.【分析】根据同类项的概念:所含字母相同,并且相同字母的指数也相同,结合选项解答即可.【解答】解:A、2a2b与a2b所含字母相同,且相同字母的指数也相同,是同类项,故本选项正确;B、a2b2与a2b所含字母相同,但相同字母b的指数不相同,不是同类项,故本选项错误;C、ab2与a2b所含字母相同,但相同字母a的指数不相同,不是同类项,本选项错误;D、3ab与a2b所含字母相同,但相同字母a的指数不相同,不是同类项,本选项错误.故选A.【点评】本题考查了同类项的知识,解答本题的关键是掌握同类项中相同字母的指数相同的概念.3.如果将抛物线y=x2+2向下平移1个单位,那么所得新抛物线的表达式是()A.y=(x﹣1)2+2 B.y=(x+1)2+2 C.y=x2+1 D.y=x2+3【考点】二次函数图象与几何变换.【分析】根据向下平移,纵坐标相减,即可得到答案.【解答】解:∵抛物线y=x2+2向下平移1个单位,∴抛物线的解析式为y=x2+2﹣1,即y=x2+1.故选C.【点评】本题考查了二次函数的图象与几何变换,向下平移|a|个单位长度纵坐标要减|a|.4.某校调查了20名男生某一周参加篮球运动的次数,调查结果如表所示,那么这20名男生该周参加篮球运动次数的平均数是()次【考点】加权平均数.【分析】加权平均数:若n个数x1,x2,x3,…,x n的权分别是w1,w2,w3,…,w n,则x1w1+x2w2+…+xnwnw1+w2+…+wn叫做这n个数的加权平均数,依此列式计算即可求解.【解答】解:(2×2+3×2+4×10+5×6)÷20=(4+6+40+30)÷2080÷20=4(次).答:这20名男生该周参加篮球运动次数的平均数是4次.【点评】本题考查的是加权平均数的求法.本题易出现的错误是求2,3,4,5这四个数的平均数,对平均数的理解不正确.5.已知在△ABC中,AB=AC,AD是角平分线,点D在边BC上,设=,=,那么向量用向量、表示为()A.+B.﹣C.﹣+D.﹣﹣【考点】*平面向量.【分析】由△ABC中,AD是角平分线,结合等腰三角形的性质得出BD=DC,可求得的值,然后利用三角形法则,求得答案.【解答】解:如图所示:∵在△ABC中,AB=AC,AD是角平分线,∴BD=DC,∵=,∴=,∵=,∴=+=+.故选:A.【点评】此题考查了平面向量的知识,注意掌握三角形法则的应用是解题关键.6.如图,在Rt△ABC中,∠C=90°,AC=4,BC=7,点D在边BC上,CD=3,⊙A的半径长为3,⊙D 与⊙A相交,且点B在⊙D外,那么⊙D的半径长r的取值范围是()A.1<r<4 B.2<r<4 C.1<r<8 D.2<r<8【考点】圆与圆的位置关系;点与圆的位置关系.【分析】连接AD,根据勾股定理得到AD=5,根据圆与圆的位置关系得到r>5﹣3=2,由点B在⊙D外,于是得到r<4,即可得到结论.【解答】解:连接AD,∵AC=4,CD=3,∠C=90°,∴AD=5,∵⊙A的半径长为3,⊙D与⊙A相交,∴r>5﹣3=2,∵BC=7,∴BD=4,∵点B在⊙D外,∴r<4,∴⊙D的半径长r的取值范围是2<r<4,故选B.【点评】本题考查了圆与圆的位置关系,点与圆的位置关系,设点到圆心的距离为d,则当d=r时,点在圆上;当d>r时,点在圆外;当d<r时,点在圆内.二、填空题:本大题共12小题,每小题4分,共48分7.计算:a3÷a=a2.【考点】同底数幂的除法.【专题】计算题.【分析】根据同底数幂相除,底数不变指数相减进行计算即可求解.【解答】解:a3÷a=a3﹣1=a2.故答案为:a2.【点评】本题考查了同底数幂的除法的运算性质,熟记运算性质是解题的关键.8.函数y=的定义域是x≠2.【考点】函数自变量的取值范围.【分析】直接利用分式有意义的条件得出答案.【解答】解:函数y=的定义域是:x≠2.故答案为:x≠2.【点评】此题主要考查了函数自变量的取值范围,正确把握相关性质是解题关键.9.方程=2的解是x=5.【考点】无理方程.【分析】利用两边平方的方法解出方程,检验即可.【解答】解:方程两边平方得,x﹣1=4,解得,x=5,把x=5代入方程,左边=2,右边=2,左边=右边,则x=5是原方程的解,故答案为:x=5.【点评】本题考查的是无理方程的解法,正确利用两边平方的方法解出方程,并正确进行验根是解题的关键.10.如果a=,b=﹣3,那么代数式2a+b的值为﹣2.【考点】代数式求值.【专题】计算题;实数.【分析】把a与b的值代入原式计算即可得到结果.【解答】解:当a=,b=﹣3时,2a+b=1﹣3=﹣2,故答案为:﹣2【点评】此题考查了代数式求值,熟练掌握运算法则是解本题的关键.11.不等式组的解集是x<1.【考点】解一元一次不等式组.【分析】首先解每个不等式,两个不等式的解集的公共部分就是不等式组的解集.【解答】解:,解①得x<,解②得x<1,则不等式组的解集是x<1.故答案是:x<1.【点评】本题考查了一元一次不等式组的解法:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.12.如果关于x的方程x2﹣3x+k=0有两个相等的实数根,那么实数k的值是.【考点】根的判别式;解一元一次方程.【分析】根据方程有两个相等的实数根结合根的判别式,即可得出关于k的一元一次方程,解方程即可得出结论.【解答】解:∵关于x的方程x2﹣3x+k=0有两个相等的实数根,∴△=(﹣3)2﹣4×1×k=9﹣4k=0,解得:k=.故答案为:.【点评】本题考查了根的判别式以及解一元一次方程,解题的关键是找出9﹣4k=0.本题属于基础题,难度不大,解决该题型题目时,根据方程解的情况结合根的判别式得出方程(不等式或不等式组)是关键.13.已知反比例函数y=(k≠0),如果在这个函数图象所在的每一个象限内,y的值随着x的值增大而减小,那么k的取值范围是k>0.【考点】反比例函数的性质.【分析】直接利用当k>0,双曲线的两支分别位于第一、第三象限,在每一象限内y随x的增大而减小;当k<0,双曲线的两支分别位于第二、第四象限,在每一象限内y随x的增大而增大,进而得出答案.【解答】解:∵反比例函数y=(k≠0),如果在这个函数图象所在的每一个象限内,y的值随着x的值增大而减小,∴k的取值范围是:k>0.故答案为:k>0.【点评】此题主要考查了反比例函数的性质,正确记忆增减性是解题关键.14.有一枚材质均匀的正方体骰子,它的六个面上分别有1点、2点、…6点的标记,掷一次骰子,向上的一面出现的点数是3的倍数的概率是.【考点】概率公式.【专题】计算题.【分析】共有6种等可能的结果数,其中点数是3的倍数有3和6,从而利用概率公式可求出向上的一面出现的点数是3的倍数的概率.【解答】解:掷一次骰子,向上的一面出现的点数是3的倍数的概率==.故答案为.【点评】本题考查了概率公式:随机事件A的概率P(A)=事件A可能出现的结果数除以所有可能出现的结果数.15.在△ABC中,点D、E分别是边AB、AC的中点,那么△ADE的面积与△ABC的面积的比是.【考点】三角形中位线定理.【分析】构建三角形中位线定理得DE∥BC,推出△ADE∽△ABC,所以=()2,由此即可证明.【解答】解:如图,∵AD=DB,AE=EC,∴DE∥BC.DE=BC,∴△ADE∽△ABC,∴=()2=,故答案为.【点评】本题考查三角形中位线定理,相似三角形的判定和性质,解题的关键是记住相似三角形的面积比等于相似比的平方,属于中考常考题型.16.今年5月份有关部门对计划去上海迪士尼乐园的部分市民的前往方式进行调查,图1和图2是收集数据后绘制的两幅不完整统计图.根据图中提供的信息,那么本次调查的对象中选择公交前往的人数是6000.【考点】条形统计图;扇形统计图.【分析】根据自驾车人数除以百分比,可得答案.【解答】解:由题意,得4800÷40%=12000,公交12000×50%=6000,故答案为:6000.【点评】本题考查了条形统计图,读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.17.如图,航拍无人机从A处测得一幢建筑物顶部B的仰角为30°,测得底部C的俯角为60°,此时航拍无人机与该建筑物的水平距离AD为90米,那么该建筑物的高度BC约为208米.(精确到1米,参考数据:≈1.73)【考点】解直角三角形的应用-仰角俯角问题.【分析】分别利用锐角三角函数关系得出BD,DC的长,进而求出该建筑物的高度.【解答】解:由题意可得:tan30°===,解得:BD=30,tan60°===,解得:DC=90,故该建筑物的高度为:BC=BD+DC=120≈208(m),故答案为:208.【点评】此题主要考查了解直角三角形的应用,熟练应用锐角三角函数关系是解题关键.18.如图,矩形ABCD中,BC=2,将矩形ABCD绕点D顺时针旋转90°,点A、C分别落在点A′、C′处.如果点A′、C′、B在同一条直线上,那么tan∠ABA′的值为.【考点】旋转的性质;矩形的性质;锐角三角函数的定义.【分析】设AB=x,根据平行线的性质列出比例式求出x的值,根据正切的定义求出tan∠BA′C,根据∠ABA′=∠BA′C解答即可.【解答】解:设AB=x,则CD=x,A′C=x+2,∵AD∥BC,∴=,即=,解得,x1=﹣1,x2=﹣﹣1(舍去),∵AB∥CD,∴∠ABA′=∠BA′C,tan∠BA′C===,∴tan∠ABA′=,故答案为:.【点评】本题考查的是旋转的性质、矩形的性质以及锐角三角函数的定义,掌握旋转前、后的图形全等以及锐角三角函数的定义是解题的关键.三、解答题:本大题共7小题,共78分19.计算:|﹣1|﹣﹣+.【考点】实数的运算;负整数指数幂.【分析】利用绝对值的求法、分数指数幂、负整数指数幂分别化简后再加减即可求解.【解答】解:原式=﹣1﹣2﹣2+9=6﹣【点评】本题考查了实数的运算及负整数指数幂的知识,解题的关键是了解相关的运算性质及运算法则,难度不大.20.解方程:﹣=1.【考点】解分式方程.【分析】根据解分式方程的步骤:去分母、去括号、移项、合并同类项、系数化为1进行计算即可.【解答】解:去分母得,x+2﹣4=x2﹣4,移项、合并同类项得,x2﹣x﹣2=0,解得x1=2,x2=﹣1,经检验x=2是增根,舍去;x=﹣1是原方程的根,所以原方程的根是x=﹣1.【点评】本题考查了解分式方程,熟记解分式方程的步骤:去分母、去括号、移项、合并同类项、系数化为1是解题的关键,注意验根.21.如图,在Rt△ABC中,∠ACB=90°,AC=BC=3,点D在边AC上,且AD=2CD,DE⊥AB,垂足为点E,联结CE,求:(1)线段BE的长;(2)∠ECB的余切值.【考点】解直角三角形;勾股定理.【分析】(1)由等腰直角三角形的性质得出∠A=∠B=45°,由勾股定理求出AB=3,求出∠ADE=∠A=45°,由三角函数得出AE=,即可得出BE的长;(2)过点E作EH⊥BC,垂足为点H,由三角函数求出EH=BH=BE•cos45°=2,得出CH=1,在Rt△CHE中,由三角函数求出cot∠ECB==即可.【解答】解:(1)∵AD=2CD,AC=3,∴AD=2,∵在Rt△ABC中,∠ACB=90°,AC=BC=3,∴∠A=∠B=45°,AB===3,∵DE⊥AB,∴∠AED=90°,∠ADE=∠A=45°,∴AE=AD•cos45°=2×=,∴BE=AB﹣AE=3﹣=2,即线段BE的长为2;(2)过点E作EH⊥BC,垂足为点H,如图所示:∵在Rt△BEH中,∠EHB=90°,∠B=45°,∴EH=BH=BE•cos45°=2×=2,∵BC=3,∴CH=1,在Rt△CHE中,cot∠ECB==,即∠ECB的余切值为.【点评】本题考查了解直角三角形、勾股定理、等腰直角三角形的性质、三角函数;熟练掌握等腰直角三角形的性质,通过作辅助线求出CH是解决问题(2)的关键.22.某物流公司引进A、B两种机器人用来搬运某种货物,这两种机器人充满电后可以连续搬运5小时,A种机器人于某日0时开始搬运,过了1小时,B种机器人也开始搬运,如图,线段OG表示A种机器人的搬运量y A(千克)与时间x(时)的函数图象,根据图象提供的信息,解答下列问题:(1)求y B关于x的函数解析式;(2)如果A、B两种机器人连续搬运5个小时,那么B种机器人比A种机器人多搬运了多少千克?【考点】一次函数的应用.【分析】(1)设设y B关于x的函数解析式为y B=kx+b(k≠0),将点(1,0)、(3,180)代入一次函数函数的解析式得到关于k,b的方程组,从而可求得函数的解析式;(2)设y A关于x的解析式为y A=k1x.将(3,180)代入可求得y A关于x的解析式,然后将x=6,x=5代入一次函数和正比例函数的解析式求得y A,y B的值,最后求得y A与y B的差即可.【解答】解:(1)设y B关于x的函数解析式为y B=kx+b(k≠0).将点(1,0)、(3,180)代入得:,解得:k=90,b=﹣90.所以y B关于x的函数解析式为y B=90x﹣90(1≤x≤6).(2)设y A关于x的解析式为y A=k1x.根据题意得:3k1=180.解得:k1=60.所以y A=60x.当x=5时,y A=60×5=300(千克);x=6时,y B=90×6﹣90=450(千克).450﹣300=150(千克).答:若果A、B两种机器人各连续搬运5小时,B种机器人比A种机器人多搬运了150千克.【点评】本题主要考查的是一次函数的应用,依据待定系数法求得一次函数的解析式是解题的关键.23.已知:如图,⊙O是△ABC的外接圆,=,点D在边BC上,AE∥BC,AE=BD.(1)求证:AD=CE;(2)如果点G在线段DC上(不与点D重合),且AG=AD,求证:四边形AGCE是平行四边形.【考点】三角形的外接圆与外心;全等三角形的判定与性质;平行四边形的判定;圆心角、弧、弦的关系.【分析】(1)根据等弧所对的圆周角相等,得出∠B=∠ACB,再根据全等三角形的判定得△ABD≌△CAE,即可得出AD=CE;(2)连接AO并延长,交边BC于点H,由等腰三角形的性质和外心的性质得出AH⊥BC,再由垂径定理得BH=CH,得出CG与AE平行且相等.【解答】证明:(1)在⊙O中,∵=,∴AB=AC,∴∠B=∠ACB,∵AE∥BC,∴∠EAC=∠ACB,∴∠B=∠EAC,在△ABD和△CAE中,,∴△ABD≌△CAE(SAS),∴AD=CE;(2)连接AO并延长,交边BC于点H,∵=,OA为半径,∴AH⊥BC,∴BH=CH,∵AD=AG,∴DH=HG,∴BH﹣DH=CH﹣GH,即BD=CG,∵BD=AE,∴CG=AE,∵CG∥AE,∴四边形AGCE是平行四边形.【点评】本题考查了三角形的外接圆与外心以及全等三角形的判定和性质,平行四边形的判定,圆心角、弧、弦之间的关系,把这几个知识点综合运用是解题的关键.24.如图,抛物线y=ax2+bx﹣5(a≠0)经过点A(4,﹣5),与x轴的负半轴交于点B,与y轴交于点C,且OC=5OB,抛物线的顶点为点D.(1)求这条抛物线的表达式;(2)联结AB、BC、CD、DA,求四边形ABCD的面积;(3)如果点E在y轴的正半轴上,且∠BEO=∠ABC,求点E的坐标.【考点】二次函数综合题.【分析】(1)先得出C点坐标,再由OC=5BO,得出B点坐标,将A、B两点坐标代入解析式求出a,b;(2)分别算出△ABC和△ACD的面积,相加即得四边形ABCD的面积;(3)由∠BEO=∠ABC可知,tan∠BEO=tan∠ABC,过C作AB边上的高CH,利用等面积法求出CH,从而算出tan∠ABC,而BO是已知的,从而利用tan∠BEO=tan∠ABC可求出EO长度,也就求出了E点坐标.【解答】解:(1)∵抛物线y=ax2+bx﹣5与y轴交于点C,∴C(0,﹣5),∴OC=5.∵OC=5OB,∴OB=1,又点B在x轴的负半轴上,∴B(﹣1,0).∵抛物线经过点A(4,﹣5)和点B(﹣1,0),∴,解得,∴这条抛物线的表达式为y=x2﹣4x﹣5.(2)由y=x2﹣4x﹣5,得顶点D的坐标为(2,﹣9).连接AC,∵点A的坐标是(4,﹣5),点C的坐标是(0,﹣5),又S△ABC=×4×5=10,S△ACD=×4×4=8,=S△ABC+S△ACD=18.∴S四边形ABCD(3)过点C作CH⊥AB,垂足为点H.∵S△ABC=×AB×CH=10,AB=5,∴CH=2,在RT△BCH中,∠BHC=90°,BC=,BH==3,∴tan∠CBH==.∵在RT△BOE中,∠BOE=90°,tan∠BEO=,∵∠BEO=∠ABC,∴,得EO=,∴点E的坐标为(0,).【点评】本题为二次函数综合题,主要考查了待定系数法求二次函数解析式、三角形面积求法、等积变换、勾股定理、正切函数等知识点,难度适中.第(3)问,将角度相等转化为对应的正切函数值相等是解答关键.25.如图所示,梯形ABCD中,AB∥DC,∠B=90°,AD=15,AB=16,BC=12,点E是边AB上的动点,点F是射线CD上一点,射线ED和射线AF交于点G,且∠AGE=∠DAB.(1)求线段CD的长;(2)如果△AEC是以EG为腰的等腰三角形,求线段AE的长;(3)如果点F在边CD上(不与点C、D重合),设AE=x,DF=y,求y关于x的函数解析式,并写出x 的取值范围.【考点】四边形综合题.【专题】综合题.【分析】(1)作DH⊥AB于H,如图1,易得四边形BCDH为矩形,则DH=BC=12,CD=BH,再利用勾股定理计算出AH,从而得到BH和CD的长;(2)分类讨论:当EA=EG时,则∠AGE=∠GAE,则判断G点与D点重合,即ED=EA,作EM⊥AD于M,如图1,则AM=AD=,通过证明Rt△AME∽Rt△AHD,利用相似比可计算出此时的AE长;当GA=GE时,则∠AGE=∠AEG,可证明AE=AD=15,(3)作DH⊥AB于H,如图2,则AH=9,HE=AE﹣AH=x﹣9,先利用勾股定理表示出DE=,再证明△EAG∽△EDA,则利用相似比可表示出EG=,则可表示出DG,然后证明△DGF∽△EGA,于是利用相似比可表示出x和y的关系.【解答】解:(1)作DH⊥AB于H,如图1,易得四边形BCDH为矩形,∴DH=BC=12,CD=BH,在Rt△ADH中,AH===9,∴BH=AB﹣AH=16﹣9=7,∴CD=7;(2)当EA=EG时,则∠AGE=∠GAE,∵∠AGE=∠DAB,∴∠GAE=∠DAB,∴G点与D点重合,即ED=EA,作EM⊥AD于M,如图1,则AM=AD=,∵∠MAE=∠HAD,∴Rt△AME∽Rt△AHD,∴AE:AD=AM:AH,即AE:15=:9,解得AE=;当GA=GE时,则∠AGE=∠AEG,∵∠AGE=∠DAB,而∠AGE=∠ADG+∠DAG,∠DAB=∠GAE+∠DAG,∴∠GAE=∠ADG,∴∠AEG=∠ADG,∴AE=AD=15,综上所述,△AEC是以EG为腰的等腰三角形时,线段AE的长为或15;(3)作DH⊥AB于H,如图2,则AH=9,HE=AE﹣AH=x﹣9,在Rt△ADE中,DE==,∵∠AGE=∠DAB,∠AEG=∠DEA,∴△EAG∽△EDA,∴EG:AE=AE:ED,即EG:x=x:,∴EG=,∴DG=DE﹣EG=﹣,∵DF∥AE,∴△DGF∽△EGA,∴DF:AE=DG:EG,即y:x=(﹣):,∴y=(9<x<).百度文库【点评】本题考查了四边形的综合题:熟练掌握梯形的性质等等腰三角形的性质;常把直角梯形化为一个直角三角形和一个矩形解决问题;会利用勾股定理和相似比计算线段的长;会运用分类讨论的思想解决数学问题.百度文库。
上海市崇明县2019-2020学年中考中招适应性测试卷数学试题(3)一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.抛物线y=mx2﹣8x﹣8和x轴有交点,则m的取值范围是()A.m>﹣2 B.m≥﹣2 C.m≥﹣2且m≠0D.m>﹣2且m≠02.如图,△ABC是⊙O的内接三角形,AD⊥BC于D点,且AC=5,CD=3,BD=4,则⊙O的直径等于()A.5B.C.D.73.一个不透明的袋子里装着质地、大小都相同的3个红球和2个绿球,随机从中摸出一球,不再放回袋中,充分搅匀后再随机摸出一球.两次都摸到红球的概率是()A.310B.925C.920D.354.如图,正方形ABCD中,AB=6,G是BC的中点.将△ABG沿AG对折至△AFG,延长GF交DC 于点E,则DE的长是( )A.1 B.1.5 C.2 D.2.55.如图,Rt△ABC中,∠C=90°,AC=4,BC=43,两等圆⊙A,⊙B外切,那么图中两个扇形(即阴影部分)的面积之和为()A.2πB.4πC.6πD.8π6.如图,二次函数y=ax2+bx+c的图象与y轴正半轴相交,其顶点坐标为(,1),下列结论:①ac<1;②a+b=1;③4ac﹣b2=4a;④a+b+c<1.其中正确结论的个数是()A.1 B.2 C.3 D.47.如图,直线a、b及木条c在同一平面上,将木条c绕点O旋转到与直线a平行时,其最小旋转角为().A.100︒B.90︒C.80︒D.70︒8.下列叙述,错误的是( )A.对角线互相垂直且相等的平行四边形是正方形B.对角线互相垂直平分的四边形是菱形C.对角线互相平分的四边形是平行四边形D.对角线相等的四边形是矩形9.已知反比例函数y=8kx-的图象位于第一、第三象限,则k的取值范围是()A.k>8 B.k≥8C.k≤8D.k<810.已知关于x的不等式ax<b的解为x>-2,则下列关于x的不等式中,解为x<2的是()A.ax+2<-b+2 B.–ax-1<b-1 C.ax>b D.1 xa b <-11.如图所示图形中,不是正方体的展开图的是()A.B.C.D.12.据悉,超级磁力风力发电机可以大幅度提升风力发电效率,但其造价高昂,每座磁力风力发电机,其建造花费估计要5300万美元,“5300万”用科学记数法可表示为()A.5.3×103B.5.3×104C.5.3×107D.5.3×108二、填空题:(本大题共6个小题,每小题4分,共24分.)13.计算:2sin245°﹣tan45°=______.14.如图,每个小正方形边长为1,则△ABC边AC上的高BD的长为_____.15.在今年的春节黄金周中,全国零售和餐饮企业实现销售额约9260亿元,比去年春节黄金周增长10.2%,将9260亿用科学记数法表示为_____________.16.如图,⊙O的外切正六边形ABCDEF的边长为2,则图中阴影部分的面积为_____.17.江苏省的面积约为101 600km1,这个数据用科学记数法可表示为_______km1.18.圆锥底面圆的半径为3,高为4,它的侧面积等于_____(结果保留π).三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)剪纸是中国传统的民间艺术,它画面精美,风格独特,深受大家喜爱,现有三张不透明的卡片,其中两张卡片的正面图案为“金鱼”,另外一张卡片的正面图案为“蝴蝶”,卡片除正面剪纸图案不同外,其余均相同.将这三张卡片背面向上洗匀从中随机抽取一张,记录图案后放回,重新洗匀后再从中随机抽取一张.请用画树状图(或列表)的方法,求抽出的两张卡片上的图案都是“金鱼”的概率.(图案为“金鱼”的两张卡片分别记为A1、A2,图案为“蝴蝶”的卡片记为B)20.(6分)在“弘扬传统文化,打造书香校园”活动中,学校计划开展四项活动:“A-国学诵读”、“B-演讲”、“C-课本剧”、“D-书法”,要求每位同学必须且只能参加其中一项活动,学校为了了解学生的意思,随机调查了部分学生,结果统计如下:(1)根据题中信息补全条形统计图.(2)所抽取的学生参加其中一项活动的众数是.(3)学校现有800名学生,请根据图中信息,估算全校学生希望参加活动A有多少人?21.(6分)为落实党中央“长江大保护”新发展理念,我市持续推进长江岸线保护,还洞庭湖和长江水清岸绿的自然生态原貌.某工程队负责对一面积为33000平方米的非法砂石码头进行拆除,回填土方和复绿施工,为了缩短工期,该工程队增加了人力和设备,实际工作效率比原计划每天提高了20%,结果提前11天完成任务,求实际平均每天施工多少平方米?22.(8分)解不等式组21324 x xx x≥⎧⎨≥⎩-①-(-)②请结合题意填空,完成本题的解答(1)解不等式①,得_______.(2)解不等式②,得_______.(3)把不等式①和②的解集在数轴上表示出来:(4)原不等式组的解集为_______________.23.(8分)如图①,在四边形ABCD中,AC⊥BD于点E,AB=AC=BD,点M为BC中点,N为线段AM上的点,且MB=MN.(1)求证:BN平分∠ABE;(2)若BD=1,连结DN,当四边形DNBC为平行四边形时,求线段BC的长;(3)如图②,若点F为AB的中点,连结FN、FM,求证:△MFN∽△BDC.24.(10分)某中学开展了“手机伴我健康行”主题活动,他们随机抽取部分学生进行“使用手机目的”和“每周使用手机的时间”的问卷调查,并绘制成如图①,②所示的统计图,已知“查资料”的人数是40人.请你根据图中信息解答下列问题:(1)在扇形统计图中,“玩游戏”对应的圆心角度数是_____°;(2)补全条形统计图;(3)该校共有学生1200人,试估计每周使用手机时间在2小时以上(不含2小时)的人数.25.(10分)某高中进行“选科走班”教学改革,语文、数学、英语三门为必修学科,另外还需从物理、化学、生物、政治、历史、地理(分别记为A、B、C、D、E、F)六门选修学科中任选三门,现对该校某班选科情况进行调查,对调查结果进行了分析统计,并制作了两幅不完整的统计图.请根据以上信息,完成下列问题:该班共有学生人;请将条形统计图补充完整;该班某同学物理成绩特别优异,已经从选修学科中选定物理,还需从余下选修学科中任意选择两门,请用列表或画树状图的方法,求出该同学恰好选中化学、历史两科的概率.26.(12分)计算:2193-⎛⎫--⎪⎝⎭=_____.27.(12分)有一个二次函数满足以下条件:①函数图象与x轴的交点坐标分别为A(1,0),B(x1,y1)(点B在点A的右侧);②对称轴是x=3;③该函数有最小值是﹣1.(1)请根据以上信息求出二次函数表达式;(1)将该函数图象x>x1的部分图象向下翻折与原图象未翻折的部分组成图象“G”,平行于x轴的直线与图象“G”相交于点C(x3,y3)、D(x4,y4)、E(x5,y5)(x3<x4<x5),结合画出的函数图象求x3+x4+x5的取值范围.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.C 【解析】 【分析】根据二次函数的定义及抛物线与x 轴有交点,即可得出关于m 的一元一次不等式组,解之即可得出m 的取值范围. 【详解】解:∵抛物线288y mx x =--和x 轴有交点,20(8)4(8)0m m ≠⎧∴⎨--⋅-⎩… , 解得:m 2≥﹣且m 0≠. 故选C . 【点睛】本题考查了抛物线与x 轴的交点、二次函数的定义以及解一元一次不等式组,牢记“当240b ac ∆=-≥时,抛物线与x 轴有交点是解题的关键. 2.A 【解析】 【分析】连接AO 并延长到E ,连接BE .设AE =2R ,则∠ABE =90°,∠AEB =∠ACB ,∠ADC =90°,利用勾股定理求得AD=,, 再证明Rt△ABE∽Rt△ADC,得到,即2R==.【详解】解:如图,连接AO并延长到E,连接BE.设AE=2R,则∠ABE=90°,∠AEB=∠ACB;∵AD⊥BC于D点,AC=5,DC=3,∴∠ADC=90°,∴AD=,∴在Rt△ABE与Rt△ADC中,∠ABE=∠ADC=90°,∠AEB=∠ACB,∴Rt△ABE∽Rt△ADC,∴,即2R==;∴⊙O的直径等于.故答案选:A.【点睛】本题主要考查了圆周角定理、勾股定理,解题的关键是掌握辅助线的作法.3.A【解析】【分析】列表或画树状图得出所有等可能的结果,找出两次都为红球的情况数,即可求出所求的概率:【详解】列表如下:红红红绿绿红﹣﹣﹣(红,红)(红,红)(绿,红)(绿,绿)红(红,红)﹣﹣﹣(红,红)(绿,红)(绿,红)红(红,红)(红,红)﹣﹣﹣(绿,红)(绿,红)绿(红,绿)(红,绿)(红,绿)﹣﹣﹣(绿,绿)绿(红,绿)(红,绿)(红,绿)(绿,绿)﹣﹣﹣∵所有等可能的情况数为20种,其中两次都为红球的情况有6种,∴63P2010==两次红,故选A.4.C【解析】【分析】连接AE,根据翻折变换的性质和正方形的性质可证Rt△AFE≌Rt△ADE,在直角△ECG中,根据勾股定理求出DE的长.【详解】连接AE,∵AB=AD=AF,∠D=∠AFE=90°,由折叠的性质得:Rt△ABG≌Rt△AFG,在△AFE和△ADE中,∵AE=AE,AD=AF,∠D=∠AFE,∴Rt△AFE≌Rt△ADE,∴EF=DE,设DE=FE=x,则CG=3,EC=6−x.在直角△ECG中,根据勾股定理,得:(6−x)2+9=(x+3)2,解得x=2.则DE=2.【点睛】熟练掌握翻折变换、正方形的性质、全等三角形的判定与性质是本题的解题关键.5.B【解析】【分析】先依据勾股定理求得AB的长,从而可求得两圆的半径为4,然后由∠A+∠B=90°可知阴影部分的面积等于一个圆的面积的14.【详解】在△ABC中,依据勾股定理可知AB=22AC BC+=8,∵两等圆⊙A,⊙B外切,∴两圆的半径均为4,∵∠A+∠B=90°,∴阴影部分的面积=2904360π⨯=4π.故选:B.【点睛】本题主要考查的是相切两圆的性质、勾股定理的应用、扇形面积的计算,求得两个扇形的半径和圆心角之和是解题的关键.6.C【解析】①根据图象知道:a<1,c>1,∴ac<1,故①正确;②∵顶点坐标为(1/2 ,1),∴x="-b/2a" ="1/2" ,∴a+b=1,故②正确;③根据图象知道:x=1时,y=a++b+c>1,故③错误;④∵顶点坐标为(1/2 ,1),∴=1,∴4ac-b2=4a,故④正确.其中正确的是①②④.故选C7.B【解析】【分析】如图所示,过O点作a的平行线d,根据平行线的性质得到∠2=∠3,进而求出将木条c绕点O旋转到与直线a平行时的最小旋转角.【详解】如图所示,过O点作a的平行线d,∵a∥d,由两直线平行同位角相等得到∠2=∠3=50°,木条c绕O 点与直线d重合时,与直线a平行,旋转角∠1+∠2=90°.故选B【点睛】本题主要考查图形的旋转与平行线,解题的关键是熟练掌握平行线的性质.8.D【解析】【分析】根据正方形的判定、平行四边形的判定、菱形的判定和矩形的判定定理对选项逐一进行分析,即可判断出答案.【详解】A. 对角线互相垂直且相等的平行四边形是正方形,正确,不符合题意;B. 对角线互相垂直平分的四边形是菱形,正确,不符合题意;C. 对角线互相平分的四边形是平行四边形,正确,不符合题意;D. 对角线相等的平行四边形是矩形,故D选项错误,符合题意,故选D.【点睛】本题考查了正方形的判定、平行四边形的判定、菱形的判定和矩形的判定等,熟练掌握相关判定定理是解答此类问题的关键.9.A【解析】【分析】本题考查反比例函数的图象和性质,由k-8>0即可解得答案.【详解】∵反比例函数y=8kx的图象位于第一、第三象限,∴k-8>0,解得k>8,故选A . 【点睛】本题考查了反比例函数的图象和性质:①、当k >0时,图象分别位于第一、三象限;当k <0时,图象分别位于第二、四象限.②、当k >0时,在同一个象限内,y 随x 的增大而减小;当k <0时,在同一个象限,y 随x 的增大而增大. 10.B 【解析】∵关于x 的不等式ax <b 的解为x >-2, ∴a<0,且2ba=-,即2b a =-, ∴(1)解不等式ax+2<-b+2可得:ax<-b ,2bx a>-=,即x>2; (2)解不等式–ax-1<b-1可得:-ax<b ,2bx a<-=,即x<2; (3)解不等式ax>b 可得:2bx a<=-,即x<-2; (4)解不等式1x a b <-可得:12a x b >-=,即12x >;∴解集为x<2的是B 选项中的不等式. 故选B. 11.C 【解析】 【分析】由平面图形的折叠及正方形的展开图结合本题选项,一一求证解题. 【详解】解:A 、B 、D 都是正方体的展开图,故选项错误;C 、带“田”字格,由正方体的展开图的特征可知,不是正方体的展开图. 故选C . 【点睛】此题考查正方形的展开图,难度不大,但是需要空间想象力才能更好的解题 12.C 【解析】 【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.解:5300万=53000000=75.310⨯.故选C.【点睛】在把一个绝对值较大的数用科学记数法表示为10na⨯的形式时,我们要注意两点:①a必须满足:110a≤<;②n比原来的数的整数位数少1(也可以通过小数点移位来确定n).二、填空题:(本大题共6个小题,每小题4分,共24分.)13.0【解析】原式=2121=212⨯-⨯-⎝⎭=0,故答案为0.14.8 5【解析】试题分析:根据网格,利用勾股定理求出AC的长,AB的长,以及AB边上的高,利用三角形面积公式求出三角形ABC面积,而三角形ABC面积可以由AC与BD乘积的一半来求,利用面积法即可求出BD 的长:根据勾股定理得:5AC==,由网格得:S△ABC=12×2×4=4,且S△ABC=12AC•BD=12×5BD,∴12×5BD=4,解得:BD=85.考点:1.网格型问题;2.勾股定理;3.三角形的面积.15.9.26×1011【解析】试题解析: 9260亿=9.26×1011故答案为: 9.26×1011点睛: 科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于1时,n是正数;当原数的绝对值小于1时,n是负数.162π【解析】【分析】由于六边形ABCDEF是正六边形,所以∠AOB=60°,故△OAB是等边三角形,OA=OB=AB=2,设点G 为AB与⊙O的切点,连接OG,则OG⊥AB,OG=OA•sin60°,再根据S阴影=S△OAB-S扇形OMN,进而可得【详解】∵六边形ABCDEF 是正六边形, ∴∠AOB=60°,∴△OAB 是等边三角形,OA=OB=AB=2,设点G 为AB 与⊙O 的切点,连接OG ,则OG ⊥AB ,∴sin602OG OA =⋅︒==∴S阴影=S △OAB -S 扇形OMN =260π1π 223602.⨯⨯⨯=2π【点睛】考查不规则图形面积的计算,掌握扇形的面积公式是解题的关键. 17.1.016×105 【解析】 【分析】科学记数法就是将一个数字表示成(a×10的n 次幂的形式),其中1≤|a|<10,n 表示整数.n 为整数位数减1,即从左边第一位开始,在首位非零的后面加上小数点,再乘以10的n 次幂, 【详解】解:101 600=1.016×105 故答案为:1.016×105 【点睛】本题考查科学计数法,掌握概念正确表示是本题的解题关键. 18.15π 【解析】 【分析】根据圆的面积公式、扇形的面积公式计算即可. 【详解】圆锥的母线长, 圆锥底面圆的面积=9π圆锥底面圆的周长=2×π×3=6π,即扇形的弧长为6π, ∴圆锥的侧面展开图的面积=12×6π×5=15π, 【点睛】本题考查的是扇形的面积,熟练掌握扇形和圆的面积公式是解题的关键.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.4 9【解析】【分析】列表得出所有等可能结果,然后根据概率公式列式计算即可得解【详解】列表如下:A1A2 BA1(A1,A1)(A2,A1)(B,A1)A2(A1,A2)(A2,A2)(B,A2)B (A1,B)(A2,B)(B,B)由表可知,共有9种等可能结果,其中抽出的两张卡片上的图案都是“金鱼”的4种结果,所以抽出的两张卡片上的图案都是“金鱼”的概率为49.【点睛】本题考查了列表法和树状图法,用到的知识点为:概率=所求情况数与总情况数之比.20.(1)见解析(2)A-国学诵读(3)360人【解析】【分析】(1)根据统计图中C的人数和所占百分比可求出被调查的总人数,进而求出活动B和D人数,故可补全条形统计图;(2)由条形统计图知众数为“A-国学诵读”(3)先求出参加活动A的占比,再乘以全校人数即可.【详解】(1)由题意可得,被调查的总人数为12÷20%=60,希望参加活动B的人数为60×15%=9,希望参加活动D的人数为60-27-9-12=12,故补全条形统计图如下:(2)由条形统计图知众数为“A-国学诵读”;(3)由题意得全校学生希望参加活动A的人数为800×2760=360(人)【点睛】此题主要考查统计图的应用,解题的关键是根据题意求出调查的总人数再进行求解.21.1平方米【解析】【分析】设原计划平均每天施工x平方米,则实际平均每天施工1.2x平方米,根据时间=工作总量÷工作效率结合提前11天完成任务,即可得出关于x的分式方程,解之即可得出结论.【详解】解:设原计划平均每天施工x平方米,则实际平均每天施工1.2x平方米,根据题意得:﹣=11,解得:x=500,经检验,x=500是原方程的解,∴1.2x=1.答:实际平均每天施工1平方米.【点睛】考查了分式方程的应用,解题的关键是找准等量关系,正确列出分式方程.22.(1)x≥-1;(2)x≤1;(3)见解析;(4)-1≤x≤1.【解析】【分析】分别解两个不等式,然后根据公共部分确定不等式组的解集,再利用数轴表示解集.【详解】解:(1)x≥-1;(2)x≤1;(3);(4)原不等式组的解集为-1≤x≤1.【点睛】本题考查了解一元一次不等式组:一般先求出其中各不等式的解集,再求出这些解集的公共部分,利用数轴可以直观地表示不等式组的解集.解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.23.(1)证明见解析;(210;(3)证明见解析.【解析】分析:(1)由AB=AC知∠ABC=∠ACB,由等腰三角形三线合一知AM⊥BC,从而根据∠EBC+∠NBE=∠MAB+∠ABN=∠MNB=45°可得证;(2)设BM=CM=MN=a,知DN=BC=2a,证△ABN≌△DBN得AN=DN=2a,Rt△ABM中利用勾股定理可得a的值,从而得出答案;(3)F是AB的中点知MF=AF=BF及∠FMN=∠MAB=∠CBD,再由12MF MNAB BC==即可得证.详解:(1)∵AB=AC,∴∠ABC=∠ACB,∵M为BC的中点,∴AM⊥BC,在Rt△ABM中,∠MAB+∠ABC=90°,在Rt△CBE中,∠EBC+∠ACB=90°,∴∠MAB=∠EBC,又∵MB=MN,∴△MBN为等腰直角三角形,∴∠MNB=∠MBN=45°,∴∠EBC+∠NBE=45°,∠MAB+∠ABN=∠MNB=45°,∴∠NBE=∠ABN,即BN平分∠ABE;(2)设BM=CM=MN=a,∵四边形DNBC是平行四边形,∴DN=BC=2a,在△ABN和△DBN中,∵AB DBNBE ABN BN BN⎧⎪∠∠⎨⎪⎩===,∴△ABN≌△DBN(SAS),∴AN=DN=2a,在Rt△ABM中,由AM2+MB2=AB2可得(2a+a)2+a2=1,解得:,∴BC=2a=5;(3)∵F是AB的中点,∴在Rt△MAB中,MF=AF=BF,∴∠MAB=∠FMN,又∵∠MAB=∠CBD,∴∠FMN=∠CBD,∵12 MF MNAB BC==,∴12 MF MNBD BC==,∴△MFN∽△BDC.点睛:本题主要考查相似形的综合问题,解题的关键是掌握等腰三角形三线合一的性质、直角三角形和平行四边形的性质及全等三角形与相似三角形的判定与性质等知识点.24.(1)126;(2)作图见解析(3)768【解析】试题分析:(1)根据扇形统计图求出所占的百分比,然后乘以360°即可;(2)利用“查资料”人人数是40人,查资料”人占总人数40%,求出总人数100,再求出32人;(3)用部分估计整体.试题解析:(1)126°(2)40÷40%-2-16-18-32=32人(3)1200×=768人考点:统计图25.(1)50人;(2)补图见解析;(3)1 10.【解析】分析:(1)根据化学学科人数及其所占百分比可得总人数;(2)根据各学科人数之和等于总人数求得历史的人数即可;(3)列表得出所有等可能结果,从中找到恰好选中化学、历史两科的结果数,再利用概率公式计算可得.详解:(1)该班学生总数为10÷20%=50人;(2)历史学科的人数为50﹣(5+10+15+6+6)=8人,补全图形如下:(3)列表如下:由表可知,共有20种等可能结果,其中该同学恰好选中化学、历史两科的有2种结果, 所以该同学恰好选中化学、历史两科的概率为21=2010. 点睛:本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n ,再从中选出符合事件A 或B 的结果数目m ,然后利用概率公式求事件A 或B 的概率. 26.1 【解析】 【分析】首先计算负整数指数幂和开平方,再计算减法即可. 【详解】解:原式=9﹣3=1. 【点睛】此题主要考查了实数运算,关键是掌握负整数指数幂:p 1apa-=a 0p ≠(,为正整数).27.(1)y=12(x ﹣3)1﹣1;(1)11<x 3+x 4+x 5<. 【解析】 【分析】(1)利用二次函数解析式的顶点式求得结果即可;(1)由已知条件可知直线与图象“G”要有3个交点.分类讨论:分别求得平行于x 轴的直线与图象“G”有1个交点、1个交点时x 3+x 4+x 5的取值范围,易得直线与图象“G”要有3个交点时x 3+x 4+x 5的取值范围. 【详解】(1)有上述信息可知该函数图象的顶点坐标为:(3,﹣1) 设二次函数表达式为:y=a (x ﹣3)1﹣1.∵该图象过A(1,0)∴0=a(1﹣3)1﹣1,解得a=12.∴表达式为y=12(x﹣3)1﹣1(1)如图所示:由已知条件可知直线与图形“G”要有三个交点1当直线与x轴重合时,有1个交点,由二次函数的轴对称性可求x3+x4=6,∴x3+x4+x5>11,当直线过y=12(x﹣3)1﹣1的图象顶点时,有1个交点,由翻折可以得到翻折后的函数图象为y=﹣12(x﹣3)1+1,∴令12(x﹣3)1+1=﹣1时,解得2或x=3﹣2∴x3+x4+x5<2综上所述11<x3+x4+x5<2【点睛】考查了二次函数综合题,涉及到待定系数法求二次函数解析式,抛物线的对称性质,二次函数图象的几何变换,直线与抛物线的交点等知识点,综合性较强,需要注意“数形结合”数学思想的应用.。
上海市中学生业余数学学校
预备年级招生试题
本卷满分100分(7′×4+8′×4+10′×4=100′)
1. 两个自然数的积是3322,那么这两个自然数的和最小是 .
2. 两个完全相同的等腰直角三角形,左图中正方形的面积是2004平方厘米,那么右图中
正方形的面积是 平方厘米.
2004
3. 有六个正方体分成两组,甲组三个正方体棱长分别为3、7、8;乙组三个正方体棱长
分别为4、5、9,试用“<”或“>”或“=”号连接下面式子:
(1) 甲组三个正方体的表面积的和 乙组三个正方体的表面积的和; (2) 甲组三个正方体的体积的和 乙组三个正方体的体积的和. 4. 如图,外侧大正方形的边长是10厘米,图中阴影部
分的面积是27.5平方厘米,那么圆内的大正方形面积是小正方形面积的 倍.
5. 对于自然数n ,符号n!表示n!=1×2×3×…×n ,
例如:3!=1×2×3=6,5!=1×2×3×4×5=120,如果20!=2432902008y7664x000,那么x-y= . 6. 大小纸盒共30只,如果每个大盒放8个甜橙,每个
小盒放6个甜橙,那么还剩34个,如果每个大盒放10个甜橙,每个小盒放7个甜橙,这样会多出2个小盒子,那么甜橙共有 个. 7. 数1337,1006和1981有某些共同点,即每一个都
是以1带头的四位数,且每个数恰好有两个数字
相同,那么这样的四位数共有 个.
8. 有一个三位数能被9整除,去掉末位数字后所得
到的两位数恰是7的倍数,这样的三位数中最大的是 .
9. 如图,三个大小相同的正方形重叠地放在一个大
的正方形ABCD 内,已知能看见的部分Ⅰ、Ⅱ、Ⅲ的面积分别是64平方厘米、38平方厘米、34平方厘米.那么正方形ABCD 的边长是 厘米.
Ⅲ
Ⅱ
Ⅰ
B
D C
A
10.两个整数相加的和是两个数字相同的二位数aa ,并且它们的积是三个数字相同的三位数bbb ,写出所有满足条件的两个整数是 .
11.如图,三角形ABC 被分成三角形BEF 和四边形AEFC 两部分,那么三角形BEF 面积和四边形AEFC 面积的比是 .
5
4
63B
E C
F A
12.把1、2、3、…、10这十个数字分别填入下列十个空格内,每格一个数字,分别记为
1210,,,a a a ,并且相邻三个数字的和不超过16,那么
12345678910a a a a a a a a a a --+--+--+= .
答案:
1.173
2.2254.5
3.(1) = (2) < 4.5
5.-1
6.250
7.432
8.981
9.12.5
10. 37和18、74和3
11. 4:23
12.13。