业余数学学校历年高中招生试题汇编
- 格式:pdf
- 大小:2.01 MB
- 文档页数:38
2002年上海市中学生业余数学学校预备年级招生试题1、 用0、1、2三个数字组成一个能被12整除的最小四位数是2、 规定运算“△”为:a △b=2a+3b(例如5△6=2×5+3×6=28),若(a △2)△(3△4)=2002,则a=3、 一个两位数ab ,若a+a ×b 是一个奇数,则称这个两位数为“好数”,两位“好数”共有 个4、 如图所示,在矩形ABCD 中,三角形ABE 、三角形ADF 和四边形AECF 的面积都相等,且BE=8则EC=5、 一个大长方形被分成三个小长方形S 1、S 2、S 3和一个正方形S ,已知S 1与S 2的面积和为13,S 2与S 3的面积和为33,每个小长方形的长和宽都是正整数,且正方形的面积比小长方形S 1、S 2、S 3的面积都大,则正方形的面积为6、 如图,A 、B 、C 、D 、E 、F 、G 、H 是边长为3的正方形四条边的三等分点,试在图中画一个以这八个点的四个点构成的四边形,使得该四边形的面积等于277、 如图,大圆的半径是小圆的半径的2倍,则阴影部分的面积与大圆的面积之比是阴影部分的周长与大圆周长之比是A B CE FC DE F B A8、 一副扑克牌共有黑桃、红心、方块、草花四种花色,每种花色有A 、2,3, ,10,J ,Q ,K 各13张牌,其中J ,Q ,K 分别作11、12、13计,A 可作1也可作14计。
若在一副扑克牌中任取5张牌,使这5张牌同花色且点数顺次相连,则不同的抽法共有 种。
9、 小胡和小涂计算甲、乙两个两位数的乘积,小胡看错了甲数的个位数字,计算结果为1274,小涂看错了甲数的十位数字,计算结果为819,则甲数是10、 把一个长方形菜地分成三块,如图所示,已知第二块比第一块宽10米,第二块的面积为1000平方米;第三块比第一块窄4米,第三块的面积为650平方米,那么第一块的面积是 平方米。
上海市中学生业余数学学校预备年级招生试题本卷满分100分(7′×4+8′×4+10′×4=100′)1. 两个自然数的积是3322,那么这两个自然数的和最小是 .2. 两个完全相同的等腰直角三角形,左图中正方形的面积是2004平方厘米,那么右图中正方形的面积是 平方厘米.20043. 有六个正方体分成两组,甲组三个正方体棱长分别为3、7、8;乙组三个正方体棱长分别为4、5、9,试用“<”或“>”或“=”号连接下面式子:(1) 甲组三个正方体的表面积的和 乙组三个正方体的表面积的和; (2) 甲组三个正方体的体积的和 乙组三个正方体的体积的和. 4. 如图,外侧大正方形的边长是10厘米,图中阴影部分的面积是27.5平方厘米,那么圆内的大正方形面积是小正方形面积的 倍.5. 对于自然数n ,符号n!表示n!=1×2×3×…×n ,例如:3!=1×2×3=6,5!=1×2×3×4×5=120,如果20!=2432902008y7664x000,那么x-y= . 6. 大小纸盒共30只,如果每个大盒放8个甜橙,每个小盒放6个甜橙,那么还剩34个,如果每个大盒放10个甜橙,每个小盒放7个甜橙,这样会多出2个小盒子,那么甜橙共有 个. 7. 数1337,1006和1981有某些共同点,即每一个都是以1带头的四位数,且每个数恰好有两个数字相同,那么这样的四位数共有 个.8. 有一个三位数能被9整除,去掉末位数字后所得到的两位数恰是7的倍数,这样的三位数中最大的是 .9. 如图,三个大小相同的正方形重叠地放在一个大的正方形ABCD 内,已知能看见的部分Ⅰ、Ⅱ、Ⅲ的面积分别是64平方厘米、38平方厘米、34平方厘米.那么正方形ABCD 的边长是 厘米.ⅢⅡⅠBD CA10.两个整数相加的和是两个数字相同的二位数aa ,并且它们的积是三个数字相同的三位数bbb ,写出所有满足条件的两个整数是 .11.如图,三角形ABC 被分成三角形BEF 和四边形AEFC 两部分,那么三角形BEF 面积和四边形AEFC 面积的比是 .5463BE CF A12.把1、2、3、…、10这十个数字分别填入下列十个空格内,每格一个数字,分别记为1210,,,a a a ,并且相邻三个数字的和不超过16,那么12345678910a a a a a a a a a a --+--+--+= .答案:1.1732.2254.53.(1) = (2) < 4.55.-16.2507.4328.9819.12.510. 37和18、74和311. 4:2312.13。
业余数学高考试题及答案一、选择题(每题5分,共20分)1. 下列哪个数是最小的正整数?A. 0B. 1C. 2D. 3答案:B2. 一个圆的半径是5厘米,那么它的周长是多少?A. 31.4厘米B. 62.8厘米C. 314厘米D. 628厘米答案:B3. 一个数的平方根是4,那么这个数是?A. 16B. 8C. 4D. 2答案:A4. 以下哪个选项是等差数列?A. 2, 4, 6, 8B. 2, 4, 6, 10C. 2, 3, 5, 7D. 2, 5, 8, 11答案:A二、填空题(每题5分,共20分)1. 一个数的立方是-27,那么这个数是______。
答案:-32. 一个等腰三角形的两边长分别为5厘米和10厘米,那么第三边的长度是______厘米。
答案:103. 一个数的绝对值是5,那么这个数可以是______或______。
答案:5,-54. 如果一个数的对数是2,那么这个数是______。
答案:100三、解答题(每题10分,共20分)1. 已知一个直角三角形的两条直角边长分别为3厘米和4厘米,求斜边的长度。
答案:根据勾股定理,斜边长度为5厘米。
2. 已知一个函数f(x) = 2x + 3,求f(-1)的值。
答案:将-1代入函数f(x)中,得到f(-1) = 2*(-1) + 3 = 1。
四、证明题(每题10分,共20分)1. 证明:对于任意实数a和b,(a+b)^2 = a^2 + b^2 + 2ab。
答案:证明如下:(a+b)^2 = (a+b)(a+b) = a^2 + ab + ba + b^2 = a^2 + b^2 + 2ab。
2. 证明:对于任意实数a和b,(a-b)^2 = a^2 - 2ab + b^2。
答案:证明如下:(a-b)^2 = (a-b)(a-b) = a^2 - ab - ba + b^2 = a^2 - 2ab + b^2。
五、应用题(每题20分,共20分)1. 一个工厂生产两种产品,产品A的成本是10元,售价是15元;产品B的成本是20元,售价是30元。
高中阶段教育学校招生考试数学试卷第Ⅰ卷(选择题 36分)一、选择题:本大题共12小题,每小题3分,共36分。
在每小题给出的四个选项中,只有一个选项符合题目要求。
1、|3.14-π|的值为A 、0B 、3.14-πC 、π-3.14D 、0.142、如图,直线12l l 与相交于点O ,OM ⊥1l ,若44α=,则β=A 、56°B 、46°C 、45°D 、44°3是同类二次根式,则的α值可以是A 、5B 、6C 、7D 、84、如图,小明在打网球时,使球恰好能打过网,而且落点恰好在离网6米的位置上,则球拍击球的高度h 为A 、815B 、 1C 、 43D 、855、下列计算正确的是A 、336a a a +=B 、22(3)9x x -=-C 、3515a a a =D 、33(2)8x x -=- 6、下列说法正确的是:A 、买一张彩票就中大奖是不可能事件B 、天气预报称:“明天下雨的概率是90%”,则明天一定会下雨C 、要了解夏季冷饮市场上冰淇淋的质量情况,可以采取抽样调查的方式进行D 、掷两枚普通的正方体骰子,点数之积是奇数与点数之积是偶数出现的机会相同7、如图AD ⊥CD ,AB =13,BC =12,CD =3,AD =4,则sinB=A 、513 B 、1213 C、35 D、458、函数12y x =-的自变量x 的取值范围为A 、x ≥-2B 、x >-2且x ≠2C 、x ≥0且≠2D 、x ≥-2且≠29、5月12日,一场突如其来的强烈地震给我省汶川等地带来了巨大的灾难,“一方有难,八方支援”,某校九年级二班45名同学在学校举行的“爱心涌动校园”募捐活动中捐款情况如下表所示:则对全班捐款的45个数据,下列说法错误..的是 A 、中位数是30元 B 、众数是20元 C 、平均数是24元 D 、极差是40元10、如图(4),在直角坐标系中,四边形OABC 为正方形,顶点A 、C 在坐标轴上,以边AB 为弦的⊙M 与x 轴相切,若点A 的坐标为(0,8),则圆心M 的坐标为A 、(4,5)B 、(-5,4)C 、(-4,6)D 、(-4,5)11. 如图,在直角梯形ABCD 中AD ∥BC ,点E 是边CD 的中点,若AB =AD+BC , BE =52,则梯形ABCD 的面积为 A 、254 B 、252 C 、258D 、 25 12、已知二次函数2y ax bx c =++的图象如图所示,令|42||||2||2|M a b c a b c a b a b =-++++-++-,则A EDC BA .M>0 B. M<0 C. M=0 D. M 的符号不能确定第Ⅱ卷(非选择题 共114分)一. 填空题: 本大题共6小题,每小题3分,共计18分,把答案填在题中的横线上13、如图,A 、B 两点在数轴上,点A 对应的数为2,若线段AB 的长为3,则点B 对应的数为 。
2010年上海市中学生业余数学学校预备年级招生考试2010年上海市中学生业余数学学校预备年级招生考试【第1题】若分数15的分子、分母各加X ,分数变成23,则X 的值是_______。
【分析与解】(方法一)()()125331257X X X X X +=++=+=即X 的值是7。
(方法二)约分之前,分母比分子大514-=;分数15的分子、分母各加X ,分数的分子为()43228÷-⨯=,分母为()432312÷-⨯=;即18512X X +=+; 故X 的值是7。
【第2题】数30可以写成三个不同正整数的平方和:22230125=++试将数42,46也写成三个不同正整数的平方和: 42_____________=;46_____________=。
【分析与解】211=,224=,239=,2416=,2525=,2636=; 先考虑最大的整数的平方;经尝试,22242145=++,22246136=++。
2010年上海市中学生业余数学学校预备年级招生考试【第3题】如图,'x ,'y ,'z 和x ,y ,z 分别是三角形的三个外角和三个内角,若':':'4:5:6x y z =,则::_______x y z =。
z' y'x'yx z【分析与解】因为':':'4:5:6x y z =;所以设'4x k = ,'5y k = ,'6z k = (0k ≠);则()180'1804x x k =-=-,()180'1805y y k =-=-,()180'1806z z k =-=-; 三角形内角和等于180 ;()()()180418051806180k k k -+-+-=; 三角形外角和等于360 ;456360k k k ++=; 24k =;84x = ,60y = ,36z = ; ::84:60:367:5:3x y z == 。
高中阶段学校招生考试数学试卷说 明:本试卷分为第Ι卷(选择题)和第Ⅱ卷(非选择题)两部分,共6页,满分120分,考试时间100分钟.注意事项:1.试卷的选择题和非选择题都在答题卡上作答,不能答在试卷上.2.要作图(含辅助线)或画表,先用铅笔进行画线、绘图,再用黑色字迹的钢笔或签字 笔描黑.3.其余注意事项,见答题卡.第Ι卷 (选择题 共30分)一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的).1. 如图,数轴上A 点表示的数减去B 点表示的数,结果是( ).A .8B .-8C .2D .-22. 下列运算正确的是( ).A . 0(3)1-=-B . 236-=-C .9)3(2-=-D . 932-=-3. 化简()m n m n --+的结果是( ).A .0B .2mC .2n -D .22m n -4. 下面的图形中,既是轴对称图形又是中心对称图形的是( ).B C D5. 下列说法中,不正确...的是( ). A .为了解一种灯泡的使用寿命,宜采用普查的方法B .众数在一组数据中若存在,可以不唯一C .方差反映了一组数据与其平均数的偏离程度D .对于简单随机样本,可以用样本的方差去估计总体的方差0 1 B 第1题图6. “明天下雨的概率为80%”这句话指的是( ).A . 明天一定下雨B . 明天80%的地区下雨,20%的地区不下雨C . 明天下雨的可能性是80%D . 明天80%的时间下雨,20%的时间不下雨7. 如图,P 为平行四边形ABCD 的对称中心,以P 为圆心作圆,过P 的任意直线与圆相交于点M 、N . 则线段BM 、DN 的大小关系是( ).A . DN BM >B . DN BM <C . DN BM =D . 无法确定 8. 在盒子里放有三张分别写有整式1a +、2a +、2的卡片,从中随机抽取两张卡片,把两张卡片上的整式分别作为分子和分母,则能组成分式的概率是( ).A . 13B . 23C . 16D . 349. 如图,是某工件的三视图,其中圆的半径为10cm ,等腰三角形的高为30cm ,则此工件的侧面积是( )2cm .A .π150B .π300 C. D.10.实际测量一座山的高度时,可在若干个观测点中测量每两个相邻可视观测点的相对高度,然后用这些相对高度计算出山的高度.下表是某次测量数据的部分记录(用A - C 表示根据这次测量的数据,可得观测点A 相对观测点B 的高度是( ) 米.A .210B .130C .390D .-210第Ⅱ卷 (非选择题 共90分)二、填空题(本大题共5小题,每小题3分,共15分.把答案填在答题卡中). 11.计算:=--)2)(2(b a b a .12.如图,已知P 是正方形ABCD 对角线BD 上一点,且BP = BC ,则∠ACP 度数是 .13.若20082007=a ,20092008=b ,则a 、b 的大小关系是a b .第9题图正 视 图 左 视 图俯 视 图第7题图第12题图BCDAP14.在研究抛掷分别标有1、2、3、4、5、6的质地均匀的正六面体骰子时,提出了一个问题:连续抛掷三次骰子,正面朝上的点数是三个连续整数的概率有多大? 假设下表是几位同学抛掷骰子的实验数据: 同学编号抛掷情况12 3 4 5 6 7 8 抛掷次数100 150 200 250 300 350 400 450 正面朝上的点数是三个连续整数的次数101220222533 3641请你根据这些数据估计上面问题的答案大约是 . 15.如图,若正方形OABC 的顶点B 和正方形ADEF 的顶点E 都在函数 1y x=(0x >)的图象上,则点E 的坐标是( , ).三、解答题(在答题卡上作答,写出必要的解题步骤.16~20题每小题6分,21~23题每小题8分,24题10分,25题11分,共75分). 16.解方程组:⎩⎨⎧=+=+.173,7y x y x17.先化简)221(-+p ÷422--p pp ,再求值(其中P 是满足-3 <P < 3的整数).18.如图,是一个实际问题抽象的几何模型,已知A 、B 之间的距离为300m ,求点M 到直线AB 的距离(精确到整数). (参考数据:7.13≈,4.12≈)A住宅小区 M4530B第18题图19.某地为了解当地推进“阳光体育”运动情况,就“中小学生每天在校体育活动时间”的问题随机调查了300名中小学生.根据调查结果绘制成的统计图的一部分如图(其中分组情况见下表):请根据上述信息解答下列问题: (1) B 组的人数是 人;(2) 本次调查数据(指体育活动时间)的中位数落在组内;(3) 若某地约有64000名中小学生,请你估计其中达到国家规定体育活动时间(不低于1小时)的人数约有多少?20.对于任意的正整数n ,所有形如n n n 2323++的数的最大公约数是什么?21. 如图,在直角△ABC 内,以A 为一个顶点作正方形ADEF ,使得点E 落在BC 边上.(1) 用尺规作图,作出D 、E 、F 中的任意一点 (保留作图痕迹,不写作法和证明. 另外两点不需要用尺规作图确定,作草图即可); (2) 若AB = 6,AC = 2,求正方形ADEF 的边长.22.某地为四川省汶川大地震灾区进行募捐,共收到粮食100吨,副食品54吨. 现计划租用甲、乙两种货车共8辆将这批货物全部运往汶川,已知一辆甲种货车同时可装粮食20吨、副食品6吨,一辆乙种货车同时可装粮食8吨、副食品8吨.组别 范围(小时) A5.0<t B15.0<≤t C 5.11<≤t D 5.1≥t 人数组别第19题图B C 第21题图(1) 将这些货物一次性运到目的地,有几种租用货车的方案?(2) 若甲种货车每辆付运输费1300元,乙种货车每辆付运输费1000元,要使运输总费用最少,应选择哪种方案?23. 如图,△ACD 、△ABE 、△BCF 均为直线BC 同侧的等边三角形.(1) 当AB ≠AC 时,证明四边形ADFE 为平行四边形;(2) 当AB = AC 时,顺次连结A 、D 、F 、E 四点所构成的图形有哪几类?直接写出构成图形的类型和相应的条件.24. 如图,某隧道横截面的上下轮廓线分别由抛物线对称的一部分和矩形的一部分构成,最大高度为6米,底部宽度为12米. 现以O 点为原点,OM 所在直线为x 轴建立直角坐标系.(1) 直接写出点M 及抛物线顶点P 的坐标; (2) 求出这条抛物线的函数解析式;(3) 若要搭建一个矩形“支撑架”AD - DC - CB ,使C 、D 点在抛物线上,A 、B 点在地面OM 上,则这个“支撑架”总长的最大值是多少?25.我们所学的几何知识可以理解为对“构图”的研究:根据给定的(或构造的)几何图形...............提出相关的概念和问题(或者根据问题构造图形),并加以研究............................. 例如:在平面上根据两条直线的各种构图,可以提出“两条直线平行”、“两条直线相交”的概念;若增加第三条直线,则可以提出并研究“两条直线平行的判定和性质”等问题(包括研究的思想和方法).请你用上面的思想和方法对下面关于圆的问题进行研究:第24题图 第23题图EFDABC(1) 如图1,在圆O所在平面上,放置一条..直线m(m和圆O分别交于点A、B),根据这个图形可以提出的概念或问题有哪些(直接写出两个即可)?(2) 如图2,在圆O所在平面上,请你放置与圆O都相交且不同时经过圆心.......的两条..直线m和n(m与圆O分别交于点A、B,n与圆O分别交于点C、D).请你根据所构造的图形提出一个结论,并证明之.(3) 如图3,其中AB是圆O的直径,AC是弦,D是的中点,弦DE⊥AB于点F. 请找出点C和点E重合的条件,并说明理由.ABC第25题图1 第25题图2A第25题图3高中阶段学校招生考试 数学试卷参考答案与评分标准一、选择题. 题号 1 2 3 4 5 6 7 8 9 10 答案B DC B A C C BD A二、填空题. 题号1112131415答案 22252b ab a +- ︒5.22 < (或“小于”) 09.0~095.0之间的任意一个数值 (215+,215-) (第14题填理论值1/9给满分;第15题填对一个只给1分,若近似计算不扣分) 三、解答题.16.⎩⎨⎧=+=+)2(.173)1(,7y x y x(2)-(1),得102=x ,即5=x . …………………………………………………………………………3分 把5=x 代入(1),得2=y . ………………………………………………………………………………5分∴ 原方程组的解为:⎩⎨⎧==.2,5y x …………………………………………………………………………6分(用代入消元法,同理给分)17.=--÷-+4)221(22p p p p =--+⨯-+-)1()2)(2(222p p p p p p 12-+p p . ………………………4分 (其中通分1分,除法变乘法1分,分子分母分解因式1分,化简1分)在-3 < p < 3中的整数p 是-2,-1,0,1,2, ……………………………………………………5分 根据题意,这里p 仅能取-1,此时原式 = 21-.…………………………………………………6分 (若取p = -2,0,1,2,代入求值,本步骤不得分;直接代-1计算正确给1分)18.过点M 作AB 的垂线MN ,垂足为N .…………………………………………………………………1分∵M 位于B 的北偏东45°方向上,∴∠MBN = 45°,BN = MN . ………………………2分 又M 位于A 的北偏西30°方向上,∴∠MAN =60°,AN =tan 603MN =.……3分∵AB = 300,∴AN +NB = 300 . ………………4分 ∴3003=+MN MN . ……………………………5分MN 191≈.………………………………………………6分(由于计算方式及取近似值时机不同有多个值,均不扣分)19.(1) B 组的人数是 30 人; ………………………………………………………………………………2分(2) 本次调查数据的中位数落在 C 组内;…………………………………………………………4分A住宅小区 M45° 30°B北 第18题图N(3) 5120030024064000=⨯(人). ………………………………………………………………………6分 (每小题2分,不用补全图形)20.第一类解法(直接推理):)2)(1(2323++=++n n n n n n ..…………………………………………………………………………1分因为n 、1+n 、2+n 是连续的三个正整数,………………………………………………………2分所以其中必有一个是2的倍数、一个是3的倍数. ………………………………………………3分 所以)2)(1(2323++=++n n n n n n 一定是6的倍数. ………………………………………4分 又n n n 2323++的最小值是6,……………………………………………………………………………5分 (如果不说明6是最小值,则需要说明n 、1+n 、2+n 中除了一个是2的倍数、一个是3的倍数,第三个不可能有公因数. 否则从此步以下不给分)所以最大公约数为6. ………………………………………………………………………………………………6分 第二类解法(归纳):情形1 当1=n 时,62323=++n n n ,所以最大公约数为6. ………………………2分 (若回答最大公约数为2或3,只给1分)情形2 当1=n 、2(或其它任意两个正整数)时,62323=++n n n 、24,所以最大公约数为6. ………………………………………………………………………………………………3分 (若回答最大公约数为2或3,给2分)情形3 当1=n 、2、3时,62323=++n n n 、24、120,所以最大公约数为6. ………………………………………………………………………………………………4分 (若回答最大公约数为2或3,给3分)注:若归纳之后再用推理方法说明,则与第一类解法比较给分.21.⑴ 作图:作∠BAC 的平分线交线段BC 于E ; …………………………………………………4分(痕迹清晰、准确,本步骤给满分4分,否则酌情扣1至4分;另外两点及边作的是否准确,不扣分)⑵ 如图,∵ 四边形ADEF 是正方形,∴ EF ∥AB ,AD = DE = EF = F A . ……5分∴ △CFE ∽△CAB .∴CACFBA EF =.…………………………………6分 ∵ AC = 2 ,AB = 6,设AD = DE = EF = F A = x , ∴662xx -=. ………………………………………………………………………………………………………7分 ∴ x =23.即正方形ADEF 的边长为23. ………………………………………………………………8分(本题可以先作图后计算,也可以先计算后作图;未求出AD 或AF 的值用作中垂线的方法找到D 点或F 点,给2分)22.(1) 设租用甲种货车x 辆,则乙种货车为8x -辆. ……………………………………1分依题意,得:208(8)100,68(8)54.x x x x +-≥⎧⎨+-≥⎩(每列出一个给一分) ………………………………3分解不等式组,得53≤≤x : ………………………………………………………………………………5分 这样的方案有三种:甲种货车分别租5,4,3辆,乙种货车分别租3,4,5辆. ………6分ABC 第21题图DE F【另解:设安排甲种货车x 辆,则有54100)8)(88()620(+≥-+++x x . ……………3分解得513≥x ,又8≤x ,可取整数8,7,6,5,4,3=x . ………………………………………5分 租用货车的方案有六种:即甲种货车分别租用8,7,6,5,4,3辆. ………………………6分 (2) 总运费8000300)8(10001300+=-+=x x x s . ………………………………………7分 因为s 随着x 增大而增大,所以当3=x 时,总运费s 最少,为8900元. ………8分((1)若用另解,在总得分中扣1分;(2)若用类似列下表的方式解答,可参考给分) 甲车数量 3 4 5 6 7 8 总运费89009200…………23.(1) ∵△ABE 、△BCF 为等边三角形,∴AB = BE = AE ,BC = CF = FB ,∠ABE = ∠CBF = 60°.∴∠FBE = ∠CBA . ………………………1分∴△FBE ≌△CBA .∴EF = AC . ………………………………………2分 又∵△ADC 为等边三角形, ∴CD = AD = AC . ∴EF = AD..……………………………………………………………………………………………………………3分 同理可得AE = DF . ……………………………………………………………………………………………5分 ∴四边形AEFD 是平行四边形. ……………………………………………………………………………6分 (其它证法,参照给分)(2) 构成的图形有两类,一类是菱形,一类是线段. 当图形为菱形时,∠ BAC ≠60°(或A 与F 不重合、△ABC 不为正三角形)………7分 (若写出图形为平行四边形时,不给分) 当图形为线段时,∠BAC = 60°(或A 与F 重合、△ABC 为正三角形). …………8分24.(1) M (12,0),P (6,6). ………………………………………………………………………………………2分(2) 设此函数关系式为:6)6(2+-=x a y . ………………………………………………………3分∵函数6)6(2+-=x a y 经过点(0,3),∴6)60(32+-=a ,即121-=a . ………………4分∴此函数解析式为:31216)6(12122++-=+--=x x x y .………5分 (3) 设A (m ,0),则 B (12-m ,0),C )3121,12(2++--m m m ,D )3121,(2++-m m m . …………7分 ∴“支撑架”总长AD+DC+CB = )3121()212()3121(22++-+-+++-m m m m m= 18612+-m . …………………………………………………………………………………………………9分∵ 此二次函数的图象开口向下.∴ 当m = 0时,AD+DC+CB 有最大值为18. …………………………………………………10分25.解:(1) 弦(图中线段AB )、弧(图中的ACB 弧)、弓形、求弓形的面积(因为是封闭第23题图EFD AB C第24题图图形)等.(写对一个给1分,写对两个给2分)(2) 情形1 如图21,AB 为弦,CD 为垂直于弦AB 的直径. …………………………3分 结论:(垂径定理的结论之一). …………………………………………………………………………4分 证明:略(对照课本的证明过程给分). ……………………………………………………………7分 情形2 如图22,AB 为弦,CD 为弦,且AB 与CD 在圆内相交于点P . 结论:PD PC PB PA ⋅=⋅. 证明:略. 情形3 (图略)AB 为弦,CD 为弦,且m 与n 在圆外相交于点P . 结论:PD PC PB PA ⋅=⋅. 证明:略. 情形4 如图23,AB 为弦,CD 为弦,且AB ∥CD .= .证明:略.(上面四种情形中做一个即可,图1分,结论1分,证明3分;其它正确的情形参照给分;若提出的是错误的结论,则需证明结论是错误的)(3) 若点C 和点E 重合,则由圆的对称性,知点C 和点D 关于直径AB 对称. …………………………………………8分 设x BAC =∠,则x BAD =∠,x ABC -︒=∠90.…………………………………………9分 又D 是 的中点,所以ABC ACD CAD CAD ∠-︒=+∠=∠1802,即)90(18022xx -︒-︒=⋅.………………………………………………………………………………10分解得︒=∠=30BAC x .………………………………………………………………………………………11分 (若求得AC AB 23=或FB AF ⋅=3等也可,评分可参照上面的标准;也可以先直觉猜测点B 、C 是圆的十二等分点,然后说明)m第25题图21ABC AD BC A 第25题图3第25题图22第25题图23m。
广东省湛江市课改实验区高中阶段学校招生考试数 学 试 卷说明:全卷共8页,考试时间90分,满分150分.一、选择题(每小题3分,共36分,每小题给出4个答案,其中只有一个正确,把所选答案的编号写在题目后面的括号内) 1.2-的相反数是( )A .2-B .2C .12 D .12- 2.今年我市参加中考的人数约是105000,数据105000用科学记数法表示为( )A .410.510⨯B .310510⨯C .51.0510⨯D .60.10510⨯3.在下列长度的四根木棒中,能与3cm ,7cm 两根木棒围成一个三角形的是( ) A .7cm B .4cm C .3cm D .10cm 4.下列运算正确的是( ) A .246x x x +=B .326()x x -= C .235a b ab +=D .632x x x ÷=5.点(12)P -,关于x 轴对称的点的坐标是( ) A .(12)-,B .(21)-,C .(12)--,D .(12),6.下图中所示的几何体的主视图是( )7.下列事件是必然事件的是( )A .今年10月1日湛江的天气一定是晴天B .奥运会刘翔一定能夺得110米跨栏冠军C .当室外温度低于10-℃时,将一碗清水放在室外会结冰D .打开电视,正在播广告8.图1是P Q ,两国财政经费支出情况的扇形统计图.根据统计图,下面对两国全年教育经费支出判断正确的是( ) A .P 国比Q 国多 B .Q 国比P 国多 C .P 国与Q 国一样多D .无法确定哪国多9.数据12,10,13,8,17,10,21的中位数是( )A .B .C .D .教育教育其他 其他P 国Q 国图1A .8B .10C .13D .1210.在一个不透明的口袋中,有大小、形状完全相同,颜色不同的球15个,从中摸出红球的概率为13,则袋中红球的个数为( ) A .10 B .15 C .5 D .311.小颖从家出发,直走了20分钟,到一个离家1000米的图书室,看了40分钟的书后,用15分钟返回到家,下图中表示小颖离家时间与距离之间的关系的是( )12.如图2,O 的半径为5,弦AB 的长为8,点M 在线段AB (包括端点A B ,)上移动,则OM 的取值范围是( ) A .35OM ≤≤ B .35OM <≤ C .45OM ≤≤ D .45OM <≤二、填空题(每小题3分,共24分,请把答案填在横线上) 13.分解因式:24x x -= .14.请写出一个图象位于第二、四象限的反比例函数: . 15.数据100,99,99,100,102,100的方差2S = .16.如图3,已知直线AB CD ∥,60ABE =∠,20CDE =∠,则BED =∠ 度.17.图4是平面镜里看到背向墙壁的电子钟示数,这时的实际时间应该是 .18.下面是一个简单的数值运算程序,当输入x 的值为2时,输出的数值是 .19.如果一个扇形的圆心角为135,半径为8,那么该扇形的弧长是 . 20.观察下列顺序排列的等式:1234111111113243546a a a a =-=-=-=-,,,,….试猜想第n 个等式(n 为正整数):n a = .A O BM 图21000y (米) x (分)20 60 80D . O 1000 y (米) x (分) 20 60 75 A . O 1000 y (米) x (分) 20 75 B . O 1000 y (米) x (分) 60 75 C . O A B C D E图3 图4 输入输出三、解答题(每小题6分,共30分)21.计算:|3|4(12)tan 45-++--.22.先化简,再求值:22213x x x x x-++-,其中2x =.23.如图5,请你画出方格纸中的图形关于点O 的中心对称图形,并写出整个图形的对称轴的条数.24.近年来,我市开展以“四通五改六进村”为载体,以生态文明为主要特色的新农村建设活动取得了明显成效.下面是市委领导和市民的一段对话,请你根据对话内容,替市领导回答市民提出的问题(结果精确到0.1%).领导市民O 图5 全市一共有13233个自然村,2005年已建成生态文明村2315个,计划到2007年全市生态文明村数要达到自然村总数的24.4%领导,按这个计划,从2005年到2007年,平均每年生态文明村增长率约是多少?25.如图6,点E F G H ,,,分别为四边形ABCD 的边AB BC CD DA ,,,的中点,试判断四边形EFGH 的形状,并证明你的结论.四、解答题(每小题9分,共36分)26.小刘同学为了测量雷州市三元塔的高度,如图7,她先在A 处测得塔顶C 的仰角为32,再向塔的方向直行35米到达B 处,又测得塔顶C 的仰角为60,请你帮助小刘计算出三元塔的高度(小刘的身高忽略不计,结果精确到1米).27.为了让学生了解安全知识,增强安全意识,我市某中学举行了一次“安全知识竞赛”.为了了解这次竞赛成绩情况,从中抽取了部分学生的成绩(得分取整数,满分为100分)为样本,绘制成绩统计图,如图8所示,请结合统计图回答下列问题: (1)本次测试的样本容量是多少?(2)分数在80.5~90.5这一组的频率是多少?(3)若这次测试成绩80分以上(含80分)为优秀,则优秀人数不少于多少人?ABC GD HFE 图6图7 米 图8 60.5 70.5 80.5 90.5 100.5 分数 101523 52人数28.某工厂现有甲种原料280kg ,乙种原料190kg ,计划用这两种原料生产A B ,两种产品50件,已知生产一件A 产品需甲种原料7kg 、乙种原料3kg ,可获利400元;生产一件B 产品需甲种原料3kg ,乙种原料 5kg ,可获利350元. (1)请问工厂有哪几种生产方案?(2)选择哪种方案可获利最大,最大利润是多少? 29.如图9,AB 是O 的直径,AE 平分BAF ∠,交O 于点E ,过点E 作直线ED AF ⊥,交AF 的延长线于点D ,交AB 的延长线于点C . (1)求证:CD 是O 的切线; (2)若2CB =,4CE =,求AE 的长.五、解答题(每小题12分,共24分)30.如图10,在Rt ABC △中,90C =∠,12BC AC ==,,把边长分别为123n x x x x ,,,,的n 个正方形依次放入ABC △中,请回答下列问题:(1)按要求填表n123n x(2)第n 个正方形的边长n x = ;(3)若m n p q ,,,是正整数,且m n p q x x x x =,试判断m n p q ,,,的关系.AO B DE 图9CF图1031.已知抛物线22y ax bx =++与x 轴相交于点1(0)A x ,,2(0)B x ,12()x x <,且12x x ,是方程2230x x --=的两个实数根,点C 为抛物线与y 轴的交点. (1)求a b ,的值;(2)分别求出直线AC 和BC 的解析式;(3)若动直线(02)y m m =<<与线段AC BC ,分别相交于D E ,两点,则在x 轴上是否存在点P ,使得DEP △为等腰直角三角形?若存在,求出点P 的坐标;若不存在,说明理由.1 2 3 4 321O xy2006年广东省湛江市课改实验区高中阶段学校招生考试数学试题参考答案及评分标准题号 1 2 3 4 5 6 7 8 9 10 11 12 答案BCABDDCDDCAA二、填空题(每小题3分,共24分)13.(4)x x - 14.2y x =-等 15.1 16.80 17.20:51 18.1 19.6π 20.112n n -+三、解答题(每小题6分,共30分)21.解:原式3211=++- ············································································ 4分 5=. ······················································································ 6分22.解:原式2(1)3(1)x x x x -=+- ··········································································· 2分13x x x -=+ ··············································································· 3分 2x x+= ···················································································· 4分当2x =时,原式222+=········································································· 5分 12=+ ··········································································· 6分 23.解:如图1, ························································································· 4分 共有4条对称轴.························································································· 6分24.解:设平均每年生态文明村增长率是x ,根据题意,得 ·································· 1分22315(1)1323324.4%x +=⨯ ······································································· 3分 解得:120.181 2.181x x -,≈≈(不合题意,舍去) ········································· 5分答:平均每年生态文明村增长率约是18.1%. ····················································· 6分 25.解:四边形EFGH 是平行四边形 ······························································ 1分图1证明:连结AC ,如图2.E F ,分别是AB BC ,的中点,EF ∴是ABC △的中位线,……………………2分EF AC ∴∥,且12EF AC =.………………3分同理:GH AC ∥,且12GH AC =,…………4分EF GH ∴∥.……………………………………5分 ∴四边形EFGH 是平行四边形. ···································································· 6分26.解:在Rt AOC △中,tan 32OCOA =. ··························································································· 2分在Rt BOC △中,tan 60OCOB =. ··························································································· 4分 AB OA OB =-, 35tan 32tan 60OC OC∴-=, ············································································ 6分 353411tan 32tan 60OC ∴=-≈(米) ···························································· 8分 答:三元塔的高度约是34米. ········································································ 9分 27.解:(1)52231510100+++=, ∴本次测试的样本容量是100. ······································································· 3分 (2)520.52100=. ∴分数在80.5~90.5这一组的频率是0.52. ························································ 6分(3)235275+=,∴优秀人数不少于75人. ·············································································· 9分 28.解:(1)设生产A 产品x 件,生产B 产品(50)x -件,则 ······························· 1分73(50)28035(50)190x x x x +-⎧⎨+-⎩≤≤ ·················································································· 2分 解得:3032.5x ≤≤. ················································································ 3分 x 为正整数,∴x 可取30,31,32. 当30x =时,5020x -=, 当31x =时,5019x -=, 当32x =时,5018x -=, ··········································································· 4分 所以工厂可有三种生产方案,分别为:方案一:生产A 产品30件,生产B 产品20件; 方案二:生产A 产品31件,生产B 产品19件; 方案三:生产A 产品32件,生产B 产品18件; ················································ 5分ABC GD HFE 图2(2)方案一的利润为:304002035019000⨯+⨯=元; 方案二的利润为:314001935019050⨯+⨯=元; 方案三的利润为:324001835019100⨯+⨯=元. ············································· 8分 因此选择方案三可获利最多,最大利润为19100元. ··········································· 9分 29.(1)证明:连结OE ,如图3. AE 平分BAF ∠,BAE DAE ∴=∠∠.……………………1分OE OA =,BAE OEA ∴=∠∠,……………………2分 OEA DAE ∴=∠∠,OE AD ∴∥.……………………………3分 AD CD ⊥, OE CD ∴⊥,CD ∴是O 的切线. ··················································································· 4分 (2)设r 是O 的半径,在Rt CEO △中,222CO OE CE =+ ······························································· 5分 即222(2)4r r +=+.解得3r =. ································································································ 6分 OE AD ∥, CEO CDA ∴△∽△,CO OE CEAC AD CD ∴==. ··················································································· 7分 即53484AD ED==+. 解得241255AD ED ==,. ··········································································· 8分 22AE AD ED ∴=+222412125555⎛⎫⎛⎫+=⎪ ⎪⎝⎭⎝⎭. ·········································································· 9分 30.(1)2483927,, ························································································ 6分(2)23n⎛⎫⎪⎝⎭. ······························································································ 8分(3)m n p q x x x x =22223333mnpq⎛⎫⎛⎫⎛⎫⎛⎫∴= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭········································································· 10分 AOB D E图3 C F2233m np q++⎛⎫⎛⎫∴= ⎪ ⎪⎝⎭⎝⎭. ·················································································· 11分m n p q ∴+=+. ······················································································· 12分 31.解:(1)由2230x x --=,得1213x x =-=,. (10)(30)A B ∴-,,,, ···················································································· 1分 把A B ,两点的坐标分别代入22y ax bx =++联立求解,得2433a b =-=-,. ····················································································· 2分 (2)由(1)可得224233y x x =-++,当0x =时,2y =,(02)C ∴,.设AC y kx b =+:,把A C ,两点坐标分别代入y kx b =+,联立求得22k b ==,.∴直线AC 的解析式为22y x =+. ··········································· 3分 同理可求得直线BC 的解析式是223y x =-+. ················································· 4分 (3)假设存在满足条件的点P ,并设直线y m =与y 轴的交点为(0)F m ,.①当DE 为腰时,分别过点D E ,作1DP x ⊥轴于1P ,作2EPx ⊥轴于2P ,如图4,则1PDE △和2P ED △都是等腰直角三角形, 12DE DP FO EP m ====, 214AB x x =-=.DE AB ∥,CDE CAB ∴△∽△, DE CF AB OC ∴=,即242m m-=. 解得43m =. ······························································································ 6分∴点D 的纵坐标是43,点D 在直线AC 上,4223x ∴+=,解得13x =-,1433D ⎛⎫∴- ⎪⎝⎭,. ∴1103P ⎛⎫- ⎪⎝⎭,,同理可求2(10)P ,. ·································································· 8分 ②当DE 为底边时,O xyDE F图4第11页 共11页过DE 的中点G 作3GP x ⊥轴于点3P ,如图5, 则3DG EG GP m ===, 由CDE CAB △∽△,得DE CF AB OC =,即2242m m-=, 解得1m =.…………………………………………9分同1方法.求得131122D E ⎛⎫⎛⎫- ⎪ ⎪⎝⎭⎝⎭,,,, 31DG EG GP ∴===312OP FG FE EG ∴==-=,3102P ⎛⎫∴ ⎪⎝⎭,. ··················································· 11分结合图形可知,2223324P D P E ED ===,,22233ED P D P E ∴=+,3DEP ∴△是Rt △,3102P ⎛⎫∴ ⎪⎝⎭,也满足条件.综上所述,满足条件的点P 共有3个,即123110(10)022P P P ⎛⎫⎛⎫- ⎪ ⎪⎝⎭⎝⎭,,,,,. ············ 12分 说明:以上各题如有其他解(证)法,请酌情给分.O xyDE F图5G。
2017年上海市中学生业余数学学校预备年级招生考试试题(10月21日上午8:30~9:30)本卷满分100分(10’×10=100’)1.计算:(1)2017×20162016-2016×20172017=________.(2)1331215++++++=________.51326425865382.有一个四位正整数,在它的某位数字前加上一个小数点,再与这个四位数相加,得到数2037.17,则这个四位数是________.3.已知一列数:2017,2016,1,2015,20XX,1,20XX,20XX,1,…,3,2,1,则这一列数中,从左向右数,第2017个数是________.4.五年级某班有26名男生.在一次考试中,该班有30人得分超过85分,则这次考试中,该班女生中得分超过85分的人数比男生中得分没有超过85分的人数多________人.5.某人工作一月(按30天计算)的酬金是1800元加一台自动洗衣机.实际上,他做了12天,得到60元和一台自动洗衣机,则这台自动洗衣机的价值为________元.6.如图,在四边形ABCD中,已知AB=BC=a cm,AD=DC=b cm(a,b为整数),∠DAB=∠BCD=90°,且四边形ABCD的面积为385cm2,则四边形ABCD周长的最小值是________cm.7.有三堆棋子,每堆棋子一样多,且都由黑白两色棋子组成.已知第一堆的黑棋和第二堆的白棋数目相等,第三堆的黑.若把三堆棋占三堆全部黑棋的25棋子并成一堆,则在这一堆棋子中,白棋占全部棋子的________(填一个分数).8.如图,由12条线段搭成一个空间框架.框架中两条没有公共端点的线段是不相交的,例如AC与BD是一对不相交的线段(这里AC,BD没有次序之分),则这个框架的12条线段中,不相交的线段有________对.9.在如图的10个小方格里分别填上1,2,3,4,5,11,12,13,14,15十个数,使三个2×2的正方形中的四个数的和都相等,则这个和的最大值是________. 10.有64个1×1×1的小正方体,其中34个是白色的,30个是黑色的.现将它们拼成一个4×4×4的大正方体,则大正方体表面黑色部分面积的最小是________.2017年上海市中学生业余数学学校高一年级招生考试试题(10月21日上午10:00~11:30)________区__________________学校,姓名___________准考证号________________得分评分 复核本卷满分100分(10’×10=100’) 1.如图,直线122y x =--与G 轴、y 轴分别交于 A 点、B 点,把△AOB (O 为坐标原点)沿直线AB翻折,点O 落在点C 处,则点C 的坐标是________.2.如图,直线AB 、AC 切圆O 于B 、C 两点,点P 在圆O 上,且到AB 、AC 的距离PM 、PN 分别为1、2,则点P 到直线BC 的距离PQ 的长为________.3.已知23()2|1|1,02f x x x x =---≤≤,则()f x 的值域是________. 4.已知a 、b 、G 、y 都是实数,且aG +by =4,aG 2+by 2=2,aG 3+by 3=1,则aG 4+by 4的值是________.5.如图,正方形DEFG 内接于△ABC ,正方形HIJ K内接于△AGF ,若BC=a ,KJ=m ,则正方形DEFG的面积为________.6.如图,在△ABC 中,∠ACB=90°,CA=CB=2,O 为AC 的中点,以AC 为直径作⊙O ,OB 交⊙O 于点D ,AD 的延长线交CB 于点E ,则CE 的长为________.7.一个五位数乘以某一整数k (28k ≤≤),得到该五位数的反序数(把一个n 位正整数的各位数码顺序颠倒过来得到的新的n 位整数称为原数的反序数. 例如12345的反序数为54321),则原来的五位数是________________.8.已知a 、b 为实数,且224a ab b ++=,则22a ab b -+的取值范围为 ________________.9.从集合{|,11000}x x N x ∈≤≤中取出k 个数,使得取出的k 个数中,任意三 个数之和总能被18整除,则k 的最大值为________.10.已知凸五边形ABCDE 的面积为1,且△ABC,△BCD,△CDE,△DEA,△EAB 的 面积都相等,则△ABC 的面积为________.2017年上海市中学生业余数学学校招生试题答案预备年级1.(1)0;(2)242.20173.6734.45.11006.927.948.36 9.3310.22高一年级 1.)516,58(-- 2.2 3.[-2,1]4.21 5.am6.15- 7.219788.[34,12] 9.5610.1055-。
2004年上海市中学生业余数学学校高一年级招生试题(考试时间:2014年10月12日)1、如图,在直角坐标平面中,30AOX ∠=︒,AB AO ⊥,2AO =,BO =,则点B 的坐标为 ▲ . 2、记N i k *∈,且12n k k k >>>L ,若122014222n k k k =+++L ,试求12n k k k +++L 的值为 ▲ . 3、如图,在矩形ABCD 中,5AB =,12BC =,将矩形沿对角线AC 翻折,记D 的对应点为点E ,联结AE 交BC 于点F ,则△ECF 的面积为 ▲ .4、若方程220x ax ++=,20x ax a +-=,2(1)0x a x a +--=中至少有一个方程有实数根,则a 的取值范围是 ▲ .5、若111111(20)a b c d e a b c d e =++++<<<<<,满足 ,,,,N a b c d e *∈,试写出满足条件的其中一个算式 ▲ .6、如图,四边形ABCD 是正方形,E 是边BC 上的一点,且40DME S =△,20AB =,则BE 的长为 ▲ .7、若方程20x mx n --=的正根小于5,且,N m n *∈,则满足条件的方程共有 ▲ 个8、令函数110()10100x f x x +=-,记()()((()))n n ff x f f f f x =L 14243个,则 (2)(3)(1000)11112222f f f f ⎛⎫⎛⎫⎛⎫⎛⎫++++ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭L 的值为 ▲ . 9、若正整数n 满足如下条件:①不等式220130x x n -+>对于N x *∈恒成立;②存在N x *∈,使得220140x x n -+≤成立。
则满足条件的n 的个数是 ▲ .10、已知x 是无理数,且满足2x x +、322x x +都是整数,则x 的值为 ▲ .AB CD E F A B CDE M。
上海市中学生业余数学学校十八套高中招生试题汇编
(1987-2004)
01.1987年高一年级招生试题---------------------------03 02.1988年高一年级招生试题---------------------------05 03.1989年高一年级招生试题---------------------------07 04.1990年高一年级招生试题---------------------------09 05.1991年高一年级招生试题---------------------------11 06.1992年高一年级招生试题---------------------------13 07.1993年高一年级招生试题---------------------------15 08.1994年高一年级招生试题---------------------------17 09.1995年高一年级招生试题---------------------------19 10.1996年高一年级招生试题---------------------------21 11.1997年高一年级招生试题---------------------------23 12.1998年高一年级招生试题---------------------------25 13.1999年高一年级招生试题---------------------------27 14.2000年高一年级招生试题---------------------------29 15.2001年高一年级招生试题---------------------------31 16.2002年高一年级招生试题---------------------------33 17.2003年高一年级招生试题---------------------------35 18.2004年高一年级招生试题---------------------------37。