MATLAB教学视频:详解数据拟合的MATLAB实现(非线性拟合)
- 格式:pdf
- 大小:586.25 KB
- 文档页数:17
数据拟合matlab【最新版】目录1.数据拟合的意义和方法2.MATLAB 在数据拟合中的应用3.多项式拟合和非线性模型拟合的实例4.MATLAB 曲线拟合工具箱的使用5.在 MATLAB 中进行数据拟合的注意事项正文一、数据拟合的意义和方法数据拟合是一种通过已知数据点来推测出一条函数曲线,从而描述数据点之间的关系的方法。
在实际应用中,数据拟合可以帮助我们挖掘数据背后的规律,为后续的预测和决策提供支持。
常见的数据拟合方法包括多项式拟合、指数拟合、线性拟合等。
二、MATLAB 在数据拟合中的应用MATLAB 是一种强大的数学软件,它提供了丰富的函数和工具箱,可以方便地进行数据拟合。
在 MATLAB 中,可以使用曲线拟合工具箱(cftool)进行多项式拟合、非线性模型拟合等。
三、多项式拟合和非线性模型拟合的实例1.多项式拟合:假设我们有一组数据点,我们可以通过多项式拟合来找到一个函数,使得这个函数能够尽可能地表示这些数据点。
例如,我们可以用 polyfit 函数来进行多项式拟合。
2.非线性模型拟合:在一些情况下,线性模型可能无法很好地描述数据点之间的关系,这时我们可以考虑使用非线性模型拟合。
在 MATLAB 中,可以使用 nlinfit 函数进行非线性最小二乘拟合。
四、MATLAB 曲线拟合工具箱的使用MATLAB 的曲线拟合工具箱(cftool)提供了一种图形化界面,用户可以在其中创建数据集、选择拟合函数、调整拟合参数等。
以下是使用cftool 进行数据拟合的基本步骤:1.创建数据集:在 MATLAB 命令窗口中输入命令“cftool(a,b)”,其中 a,b 为 x、y 坐标的向量。
2.打开曲线拟合工具箱:在 MATLAB 命令窗口中输入“cftool”命令,打开曲线拟合工具箱。
3.选择拟合函数:在工具箱的 GUI 中选择拟合函数,如“polyfit”或“nlinfit”。
4.调整拟合参数:根据需要调整拟合参数,如多项式的阶数、非线性模型的初始参数等。
使用MATLAB进行数据拟合的步骤与技巧概述:数据拟合是一种重要的数学方法,用于确定给定数据集的数学模型,并使用所选模型来预测未知数据点的值。
MATLAB是一种广泛用于科学和工程领域的高级计算机语言和数值计算环境。
它提供了强大的工具和函数,可用于数据处理和拟合。
本文将介绍使用MATLAB进行数据拟合的基本步骤,并分享一些技巧和注意事项。
数据拟合步骤:1. 数据导入和可视化:首先,将数据导入MATLAB环境中。
可以从文件、数据库或其他源获取数据,并使用MATLAB的数据导入工具将其加载到工作空间中。
然后,使用plot函数将数据绘制为散点图,以获得对数据的初步了解。
2. 选择拟合模型:根据数据的特点和目标,选择适当的拟合模型。
主要有线性拟合、多项式拟合和非线性拟合等。
线性拟合适用于大多数简单数据集,多项式拟合可用于具有曲线特征的数据集,非线性拟合则可以更精确地拟合复杂数据。
3. 创建拟合函数:在MATLAB中,可以使用fittype函数创建自定义的拟合函数。
该函数定义了拟合模型的形式,并且需要选择适当的方程类型和参数。
可以根据所选模型的特性和拟合需求,添加必要的参数和约束。
4. 拟合数据:使用cfit函数对数据进行拟合。
cfit函数接受拟合函数、数据和初始参数值作为输入,并根据最小二乘拟合准则计算出最优拟合参数。
可以通过调用fit函数,使用最小二乘法或其他拟合算法,拟合数据。
拟合结果将生成一个代表最佳拟合曲线的对象。
5. 可视化拟合结果:为了更好地评估拟合结果,使用plot函数在原始数据图上叠加绘制拟合曲线。
比较拟合曲线与实际数据的吻合程度,考虑调整模型或拟合算法以获得更好的拟合效果。
6. 评估拟合效果:使用MATLAB提供的工具和函数评估拟合结果的质量。
例如,可以使用拟合对象的自由度调整的R方值(Adjusted R-squared)来度量模型拟合优度。
除了R方值,还可以计算均方根误差(RMSE)等指标来评估拟合效果。
MATLAB神经⽹络(2)BP神经⽹络的⾮线性系统建模——⾮线性函数拟合2.1 案例背景在⼯程应⽤中经常会遇到⼀些复杂的⾮线性系统,这些系统状态⽅程复杂,难以⽤数学⽅法准确建模。
在这种情况下,可以建⽴BP神经⽹络表达这些⾮线性系统。
该⽅法把未知系统看成是⼀个⿊箱,⾸先⽤系统输⼊输出数据训练BP神经⽹络,使⽹络能够表达该未知函数,然后⽤训练好的BP神经⽹络预测系统输出。
本章拟合的⾮线性函数为y=x12+x22该函数的图形如下图所⽰。
t=-5:0.1:5;[x1,x2] =meshgrid(t);y=x1.^2+x2.^2;surfc(x1,x2,y);shading interpxlabel('x1');ylabel('x2');zlabel('y');title('⾮线性函数');2.2 模型建⽴神经⽹络结构:2-5-1从⾮线性函数中随机得到2000组输⼊输出数据,从中随机选择1900 组作为训练数据,⽤于⽹络训练,100组作为测试数据,⽤于测试⽹络的拟合性能。
2.3 MATLAB实现2.3.1 BP神经⽹络⼯具箱函数newffBP神经⽹络参数设置函数。
net=newff(P, T, S, TF, BTF, BLF, PF, IPF, OPF, DDF)P:输⼊数据矩阵;T:输出数据矩阵;S:隐含层节点数;TF:结点传递函数。
包括硬限幅传递函数hardlim、对称硬限幅传递函数hardlims、线性传递函数purelin、正切型传递函数tansig、对数型传递函数logsig;x=-5:0.1:5;subplot(2,6,[2,3]);y=hardlim(x);plot(x,y,'LineWidth',1.5);title('hardlim');subplot(2,6,[4,5]);y=hardlims(x);plot(x,y,'LineWidth',1.5);title('hardlims');subplot(2,6,[7,8]);y=purelin(x);plot(x,y,'LineWidth',1.5);title('purelin');subplot(2,6,[9,10]);y=tansig(x);plot(x,y,'LineWidth',1.5);title('tansig');subplot(2,6,[11,12]);y=logsig(x);plot(x,y,'LineWidth',1.5);title('logsig');BTF:训练函数。
matlab拟合工具箱拟合方法Matlab拟合工具箱是Matlab软件中的一个功能强大的工具箱,它提供了多种拟合方法,用于拟合数据集并找到最佳的拟合曲线。
本文将介绍Matlab拟合工具箱的几种常用的拟合方法。
一、线性拟合(Linear Fit)线性拟合是最简单和最常用的拟合方法之一。
线性拟合假设拟合曲线为一条直线,通过最小二乘法求解最佳拟合直线的斜率和截距。
线性拟合可以用于解决一些简单的线性关系问题,例如求解两个变量之间的线性关系、求解直线运动的速度等。
二、多项式拟合(Polynomial Fit)多项式拟合是一种常见的拟合方法,它假设拟合曲线为一个多项式函数。
多项式拟合可以适用于一些非线性的数据集,通过增加多项式的阶数,可以更好地拟合数据。
在Matlab拟合工具箱中,可以通过设置多项式的阶数来进行多项式拟合。
三、指数拟合(Exponential Fit)指数拟合是一种常用的非线性拟合方法,它假设拟合曲线为一个指数函数。
指数拟合可以用于拟合一些呈指数增长或指数衰减的数据集。
在Matlab拟合工具箱中,可以使用指数拟合函数来拟合数据集,并得到最佳的拟合曲线参数。
四、对数拟合(Logarithmic Fit)对数拟合是一种常见的非线性拟合方法,它假设拟合曲线为一个对数函数。
对数拟合可以用于拟合一些呈对数增长或对数衰减的数据集。
在Matlab拟合工具箱中,可以使用对数拟合函数来拟合数据集,并得到最佳的拟合曲线参数。
五、幂函数拟合(Power Fit)幂函数拟合是一种常用的非线性拟合方法,它假设拟合曲线为一个幂函数。
幂函数拟合可以用于拟合一些呈幂函数增长或幂函数衰减的数据集。
在Matlab拟合工具箱中,可以使用幂函数拟合函数来拟合数据集,并得到最佳的拟合曲线参数。
六、指数幂函数拟合(Exponential Power Fit)指数幂函数拟合是一种常见的非线性拟合方法,它假设拟合曲线为一个指数幂函数。
指数幂函数拟合可以用于拟合一些呈指数幂函数增长或指数幂函数衰减的数据集。
关于采用matlab进行指定非线性方程拟合的问题(1)※1。
优化工具箱的利用函数描述LSQLIN 有约束线性最小二乘优化LSQNONNEG 非负约束线性最小二乘优化问题当有约束问题存在的时候,应该采用上面的方法代替Polyfit与反斜线(\)。
具体例子请参阅优化工具箱文档中的相应利用这两个函数的例子。
d. 非线性曲线拟合利用MATLAB的内建函数函数名描述FMINBND 只解决单变量固定区域的最小值问题FMINSEARCH 多变量无约束非线性最小化问题(Nelder-Mead 方法)。
下面给出一个小例子展示一下如何利用FMINSEARCH1.首先生成数据>> t=0:.1:10;>> t=t(:);>> Data=40*exp(-.5*t)+rand(size(t)); % 将数据加上随机噪声2.写一个m文件,以曲线参数作为输入,以拟合误差作为输出function sse=myfit(params,Input,Actural_Output)A=params(1);lamda=params(2);Fitted_Curve=A.*exp(-lamda*Input);Error_Vector=Fitted_Curve-Actural_Output;%当曲线拟合的时候,一个典型的质量评价标准就是误差平方和sse=sum(Error_Vector.^2);%当然,也可以将sse写作:sse=Error_Vector(:)*Error_Vector(:);3.调用FMINSEARCH>> Strarting=rand(1,2);>> options=optimset('Display','iter');>> Estimates=fiminsearch(@myfit,Strarting,options,t,Data);>> plot(t,Data,'*');>> hold on>> plot(t,Estimates(1)*exp(-Estimates(2)*t),'r');Estimates将是一个包含了对原数据集进行估计的参数值的向量。
matlab拟合函数教程,MATLAB曲线拟合⼯具cftool使⽤实例教程Matlab有⼀个功能强⼤的曲线拟合⼯具箱 cftool ,使⽤⽅便,能实现多种类型的线性、⾮线性曲线拟合。
下⾯结合我使⽤的 MatlabR2007b 来简单介绍如何使⽤这个⼯具箱。
假设我们要拟合的函数形式是 y=A*x*x + B*x, 且A>0,B>0 。
1、在命令⾏输⼊数据>> x=[110.3323 148.7328 178.064 202.8258033 224.7105 244.5711 262.908 280.0447 296.204 311.5475];>> y=[5 10 15 20 25 30 35 40 45 50];2、启动曲线拟合⼯具箱>> cftool3、进⼊曲线拟合⼯具箱界⾯“Curve Fitting tool”(1)点击“Data”按钮,弹出“Data”窗⼝;(2)利⽤X data和Y data的下拉菜单读⼊数据x,y,可修改数据集名“Data set name”,然后点击“Create data set”按钮,退出“Data”窗⼝,返回⼯具箱界⾯,这时会⾃动画出数据集的曲线图;(3)点击“Fitting”按钮,弹出“Fitting”窗⼝;(4)点击“New fit”按钮,可修改拟合项⽬名称“Fit name”,通过“Data set”下拉菜单选择数据集,然后通过下拉菜单“Type of fit”选择拟合曲线的类型,⼯具箱提供的拟合类型有:Custom Equations:⽤户⾃定义的函数类型Exponential:指数逼近,有2种类型, a*exp(b*x) 、 a*exp(b*x) + c*exp(d*x)Fourier:傅⽴叶逼近,有7种类型,基础型是 a0 + a1*cos(x*w) + b1*sin(x*w)Gaussian:⾼斯逼近,有8种类型,基础型是 a1*exp(-((x-b1)/c1)^2)Interpolant:插值逼近,有4种类型,linear、nearest neighbor、cubic spline、shape-preservingPolynomial:多形式逼近,有9种类型,linear ~、quadratic ~、cubic ~、4-9th degree ~Power:幂逼近,有2种类型,a*x^b 、a*x^b + cRational:有理数逼近,分⼦、分母共有的类型是linear ~、quadratic ~、cubic ~、4-5th degree ~;此外,分⼦还包括constant型Smoothing Spline:平滑逼近(翻译的不⼤恰当,不好意思)Sum of Sin Functions:正弦曲线逼近,有8种类型,基础型是 a1*sin(b1*x + c1)Weibull:只有⼀种,a*b*x^(b-1)*exp(-a*x^b)选择好所需的拟合曲线类型及其⼦类型,并进⾏相关设置:——如果是⾮⾃定义的类型,根据实际需要点击“Fit options”按钮,设置拟合算法、修改待估计参数的上下限等参数;——如果选Custom Equations,点击“New”按钮,弹出⾃定义函数等式窗⼝,有“Linear Equations线性等式”和“General Equations构造等式”两种标签。
Matlab中的数据拟合方法探究引言:数据拟合是数据分析中的重要任务之一,它通过数学模型来描述和预测观测数据的变化规律。
Matlab作为一种功能强大的科学计算软件,提供了丰富的工具和函数来进行数据拟合。
本文将探究Matlab中常用的数据拟合方法,包括最小二乘法拟合、多项式拟合、曲线拟合以及局部加权回归拟合等。
一、最小二乘法拟合最小二乘法拟合是一种常用的线性拟合方法,它通过最小化观测值与拟合曲线之间的误差平方和来确定模型参数。
在Matlab中,可以使用linefit函数来进行最小二乘法拟合。
该函数可以根据观测数据点的坐标,拟合出一条直线,并返回拟合直线的斜率和截距。
二、多项式拟合多项式拟合是一种非线性拟合方法,它通过多项式函数来逼近观测数据。
在Matlab中,可以使用polyfit函数进行多项式拟合。
该函数可以拟合出一个多项式模型,并返回各个系数的值。
用户可以根据实际需求选择多项式的次数,以达到最佳拟合效果。
三、曲线拟合曲线拟合是一种更加灵活的非线性拟合方法,它通过拟合多条曲线来逼近观测数据。
在Matlab中,可以使用curvefit函数进行曲线拟合。
该函数可以根据用户提供的初始参数值,拟合出一个曲线模型,并返回各个参数的最优估计值。
曲线拟合可以适用于各种非线性的数据。
四、局部加权回归拟合局部加权回归拟合是一种非参数的非线性拟合方法,它通过引入权重函数,对不同数据点赋予不同的权重,来逼近观测数据的变化趋势。
在Matlab中,可以使用loess函数进行局部加权回归拟合。
该函数可以根据用户提供的带宽参数和权重函数,拟合出一条光滑的曲线,并返回各个数据点的拟合值。
五、综合应用与讨论在实际数据分析中,我们往往需要综合应用不同的拟合方法,以获得更加准确的结果。
例如,我们可以先使用最小二乘法拟合得到一个初步的线性模型,然后再通过多项式拟合或曲线拟合来进一步修正模型。
在这个过程中,我们还可以使用交叉验证等方法来评估模型的拟合效果。
数据拟合 matlab在数据分析和处理的领域中,Matlab是一个非常常用的工具。
Matlab提供了丰富的函数和工具箱,可以用于数据的处理、分析和拟合。
本文将介绍如何使用Matlab进行数据拟合,以及一些常见的数据拟合方法。
数据拟合是指根据已知的数据点,通过某种数学模型来预测未知数据点的值。
在Matlab中,可以使用`fit`函数来进行数据拟合。
`fit`函数可以根据给定的数据点和拟合模型,得到拟合曲线或曲面。
常用的拟合模型包括线性拟合、多项式拟合、指数拟合等。
对于线性拟合,可以使用`polyfit`函数来实现。
`polyfit`函数可以拟合出一个多项式,使得该多项式与数据点的残差平方和最小。
通过调节多项式的阶数,可以得到不同复杂度的拟合曲线。
除了线性拟合,还可以使用`lsqcurvefit`函数进行非线性拟合。
`lsqcurvefit`函数可以拟合出一个非线性方程,使得该方程与数据点的残差平方和最小。
通过选择合适的非线性方程,可以拟合出更复杂的曲线形状。
Matlab还提供了`cftool`工具,可以通过图形界面来进行数据拟合。
`cftool`可以自动选择合适的拟合模型,并显示拟合结果和拟合曲线。
这对于不熟悉Matlab语法的用户来说非常方便。
在实际应用中,数据拟合常常用于分析实验数据、建立数学模型、预测未来趋势等。
通过数据拟合,可以更好地理解数据之间的关系,找出隐藏在数据背后的规律。
总的来说,Matlab是一个强大的工具,可以用于各种数据处理和分析任务,包括数据拟合。
通过合理选择拟合模型和参数,可以得到准确的拟合结果,从而更好地理解和应用数据。
希望本文对读者在数据拟合方面有所帮助。
matlab最小二乘法的非线性参数拟合首先说一下匿名函数:在创建匿名函数时,Matlab记录了关于函数的信息,当使用句柄调用该函数的时候,Matlab不再进行搜索,而是立即执行该函数,极大提高了效率。
所以首选匿名函数。
具体拟合时可以使用的方法如下:1 曲线拟合工具箱提供了很多拟合函数,使用简单非线性拟合nlinfit函数clear all;x1=[0.4292 0.4269 0.381 0.4015 0.4117 0.3017]';x2=[0.00014 0.00059 0.0126 0.0061 0.00425 0.0443]';x=[x1 x2];y=[0.517 0.509 0.44 0.466 0.479 0.309]';f=@(p,x)2.350176*p(1)*(1-1/p(2))*(1-(1-x(:,1).^(1/p(2))).^p(2)).^2.*(x(:,1).^(-1/p(2))-1).^(-p(2)).*x(:,1).^(-1/p(2)-0.5).*x(:,2);p0=[8 0.5]';opt=optimset('TolFun',1e-3,'TolX',1e-3);%[p R]=nlinfit(x,y,f,p0,opt)2 最小二乘法在曲线拟合中比较普遍。
拟合的模型主要有1.直线型2.多项式型3.分数函数型4.指数函数型5.对数线性型6.高斯函数型一般对于LS问题,通常利用反斜杠运算“\”、fminsearch或优化工具箱提供的极小化函数求解。
在Matlab中,曲线拟合工具箱也提供了曲线拟合的图形界面操作。
在命令提示符后键入:cftool,即可根据数据,选择适当的拟合模型。
“\”命令1.假设要拟合的多项式是:y=a+b*x+c*x^2.首先建立设计矩阵X:X=[ones(size(x)) x x^2];执行:para=X\ypara中包含了三个参数:para(1)=a;para(2)=b;para(3)=c;这种方法对于系数是线性的模型也适应。