第七讲 matlab实现非线性拟合
- 格式:ppt
- 大小:122.00 KB
- 文档页数:11
标题:探索MATLAB中各类拟合曲线的代码应用在MATLAB中,拟合曲线是数据分析和模型建立中常用的技术之一。
通过拟合曲线,我们可以了解数据之间的关联性并建立预测模型,为进一步分析和应用数据奠定基础。
本文将深入探讨MATLAB中各类拟合曲线的代码应用,帮助读者更深入地理解该主题。
一、线性拟合曲线1. 使用MATLAB进行线性拟合曲线的代码示例在MATLAB中,使用polyfit函数可以进行线性拟合。
对一组数据点(x, y)进行线性拟合,代码如下:```matlabx = [1, 2, 3, 4, 5];y = [2, 3.5, 5, 7, 8.5];p = polyfit(x, y, 1);```其中,x为自变量,y为因变量,1表示进行一次线性拟合。
通过polyfit函数,可以得到线性拟合的系数p。
2. 线性拟合曲线的应用和特点线性拟合曲线适用于线性关系较为明显的数据,例如物理实验数据中的直线关系。
通过线性拟合,可以获得各项系数,对数据进行预测和建模。
二、多项式拟合曲线1. 使用MATLAB进行多项式拟合曲线的代码示例在MATLAB中,使用polyfit函数同样可以进行多项式拟合。
对一组数据点(x, y)进行二次多项式拟合,代码如下:```matlabx = [1, 2, 3, 4, 5];y = [1, 4, 9, 16, 25];p = polyfit(x, y, 2);```其中,x为自变量,y为因变量,2表示进行二次多项式拟合。
通过polyfit函数,同样可以得到多项式拟合的系数p。
2. 多项式拟合曲线的应用和特点多项式拟合曲线适用于数据中存在曲线关系的情况,通过选择合适的最高次数,可以灵活地拟合各种曲线形状。
三、非线性拟合曲线1. 使用MATLAB进行非线性拟合曲线的代码示例在MATLAB中,使用fit函数可以进行非线性拟合。
对一组数据点(x, y)进行指数函数拟合,代码如下:```matlabx = [1, 2, 3, 4, 5];y = [2.1, 7.4, 16.1, 29.3, 48.2];f = fit(x', y', 'exp1');```其中,x为自变量,y为因变量,'exp1'表示进行指数函数拟合。
Matlab中的曲线拟合方法引言在科学与工程领域,数据拟合是一个重要的技术,可用于分析实验数据、预测未知的对应关系,并量化观察到的现象。
其中,曲线拟合是一种常见的数据拟合方法,而Matlab作为一种功能强大的科学计算软件,提供了多种曲线拟合工具和函数,方便用户进行数据分析和模型建立。
本文将对Matlab中的曲线拟合方法进行详细介绍和讨论。
一、线性拟合线性拟合是最简单且常见的曲线拟合方法,其基本思想是通过一条直线拟合数据点,找到最佳拟合直线的参数。
在Matlab中,可以使用polyfit函数实现线性拟合。
该函数接受两个输入参数,第一个参数为数据点的x坐标,第二个参数为数据点的y坐标。
返回结果为一个一次多项式拟合模型的参数。
例如,我们有一组实验测量数据如下:x = [1, 2, 3, 4, 5];y = [3, 5, 7, 9, 11];通过polyfit函数进行线性拟合:coeff = polyfit(x, y, 1);其中,1表示要拟合的多项式的次数,这里我们选择了一次多项式(直线)。
coeff即为拟合得到的直线的参数,可以通过polyval函数将参数代入直线方程,得到对应x的y值。
y_fit = polyval(coeff, x);接下来,我们可以使用plot函数将原始数据点和拟合曲线都绘制在同一张图上:figure;plot(x, y, 'o', 'MarkerSize', 10); % 绘制原始数据点hold on;plot(x, y_fit); % 绘制拟合曲线xlabel('x');ylabel('y');legend('原始数据点', '拟合曲线');通过观察图像,我们可以初步判断拟合的效果如何。
如果数据点较为分散,直线拟合效果可能较差。
在此情况下,可以考虑使用更高次的多项式进行拟合。
二、多项式拟合多项式拟合是一种常见的曲线拟合方法,其基本思想是通过一个一定次数的多项式函数来拟合数据点。
回归(拟合)自己的总结(20100728)1:学三条命令:polyfit(x,y,n)---拟合成一元幂函数(一元多次) regress(y,x)----可以多元,nlinfit(x,y,’fun ’,beta0) (可用于任何类型的函数,任意多元函数,应用范围最主,最万能的)2:同一个问题,可能这三条命令都可以使用,但结果肯定是不同的,因为拟合的近似结果,没有唯一的标准的答案。
相当于咨询多个专家。
3:回归的操作步骤:(1) 根据图形(实际点),选配一条恰当的函数形式(类型)---需要数学理论与基础和经验。
(并写出该函数表达式的一般形式,含待定系数)(2) 选用某条回归命令求出所有的待定系数所以可以说,回归就是求待定系数的过程(需确定函数的形式)配曲线的一般方法是: (一)先对两个变量x 和y 作n 次试验观察得n i y x ii,...,2,1),,( 画出散点图,散点图(二)根据散点图确定须配曲线的类型. 通常选择的六类曲线如下:(1)双曲线xba y +=1 (2)幂函数曲线y=a bx , 其中x>0,a>0(3)指数曲线y=a bx e 其中参数a>0.(4)倒指数曲线y=a xb e/其中a>0,(5)对数曲线y=a+blogx,x>0(6)S 型曲线x be a y -+=1(三)然后由n 对试验数据确定每一类曲线的未知参数a 和b.一、一元多次拟合polyfit(x,y,n)一元回归polyfit多元回归regress---nlinfit(非线性)二、多元回归分析(其实可以是非线性,它通用性极高)对于多元线性回归模型:e x x y p p ++++=βββ 110设变量12,,,px x x y 的n 组观测值为12(,,,)1,2,,i i ip i x x x y i n= .记 ⎪⎪⎪⎪⎪⎭⎫⎝⎛=np n n p p x x x x x x x x x x 212222111211111,⎪⎪⎪⎪⎪⎭⎫⎝⎛=n y y y y 21,则⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=p ββββ 10 的估计值为排列方式与线性代数中的线性方程组相同()拟合成多元函数---regress 使用格式:左边用b=或[b, bint, r, rint, stats]= 右边用regress(y, x) 或regress(y, x, alpha)---命令中是先y 后x,---须构造好矩阵x(x 中的每列与目标函数的一项对应) ---并且x 要在最前面额外添加全1列/对应于常数项 ---y 必须是列向量---结果是从常数项开始---与polyfit 的不同。
在Matlab中进行数据拟合和曲线拟合的方法在科学研究或工程应用中,数据拟合和曲线拟合是常见的计算任务之一。
Matlab作为一种强大的数值计算软件,提供了丰富的工具和函数,方便我们进行数据拟合和曲线拟合的操作。
本文将介绍在Matlab中进行数据拟合和曲线拟合的几种方法。
一、线性回归线性回归是最简单的数据拟合方法之一,常用于建立变量之间的线性关系模型。
在Matlab中,可以使用polyfit函数进行线性回归拟合。
该函数可以根据输入数据点的横纵坐标,拟合出一条直线,并返回直线的斜率和截距。
例如,以下代码演示了如何使用polyfit函数进行线性回归拟合:```matlabx = [1, 2, 3, 4, 5];y = [2, 3, 4, 5, 6];coefficients = polyfit(x, y, 1);slope = coefficients(1);intercept = coefficients(2);```在上述代码中,数组x和y分别表示数据点的横纵坐标。
polyfit函数的第三个参数1表示拟合的直线为一阶多项式。
函数返回的coefficients是一个包含斜率和截距的数组,可以通过coefficients(1)和coefficients(2)获取。
二、多项式拟合在实际应用中,线性模型并不适用于所有情况。
有时,数据点之间的关系可能更复杂,需要使用更高阶的多项式模型来拟合。
Matlab中的polyfit函数同样支持多项式拟合。
我们可以通过调整多项式的阶数来拟合不同次数的曲线。
以下代码展示了如何使用polyfit函数进行二次多项式拟合:```matlabx = [1, 2, 3, 4, 5];y = [2, 6, 10, 16, 24];coefficients = polyfit(x, y, 2);a = coefficients(1);b = coefficients(2);c = coefficients(3);```在上述代码中,polyfit的第三个参数2表示拟合的多项式为二阶。
MATLAB神经⽹络(2)BP神经⽹络的⾮线性系统建模——⾮线性函数拟合2.1 案例背景在⼯程应⽤中经常会遇到⼀些复杂的⾮线性系统,这些系统状态⽅程复杂,难以⽤数学⽅法准确建模。
在这种情况下,可以建⽴BP神经⽹络表达这些⾮线性系统。
该⽅法把未知系统看成是⼀个⿊箱,⾸先⽤系统输⼊输出数据训练BP神经⽹络,使⽹络能够表达该未知函数,然后⽤训练好的BP神经⽹络预测系统输出。
本章拟合的⾮线性函数为y=x12+x22该函数的图形如下图所⽰。
t=-5:0.1:5;[x1,x2] =meshgrid(t);y=x1.^2+x2.^2;surfc(x1,x2,y);shading interpxlabel('x1');ylabel('x2');zlabel('y');title('⾮线性函数');2.2 模型建⽴神经⽹络结构:2-5-1从⾮线性函数中随机得到2000组输⼊输出数据,从中随机选择1900 组作为训练数据,⽤于⽹络训练,100组作为测试数据,⽤于测试⽹络的拟合性能。
2.3 MATLAB实现2.3.1 BP神经⽹络⼯具箱函数newffBP神经⽹络参数设置函数。
net=newff(P, T, S, TF, BTF, BLF, PF, IPF, OPF, DDF)P:输⼊数据矩阵;T:输出数据矩阵;S:隐含层节点数;TF:结点传递函数。
包括硬限幅传递函数hardlim、对称硬限幅传递函数hardlims、线性传递函数purelin、正切型传递函数tansig、对数型传递函数logsig;x=-5:0.1:5;subplot(2,6,[2,3]);y=hardlim(x);plot(x,y,'LineWidth',1.5);title('hardlim');subplot(2,6,[4,5]);y=hardlims(x);plot(x,y,'LineWidth',1.5);title('hardlims');subplot(2,6,[7,8]);y=purelin(x);plot(x,y,'LineWidth',1.5);title('purelin');subplot(2,6,[9,10]);y=tansig(x);plot(x,y,'LineWidth',1.5);title('tansig');subplot(2,6,[11,12]);y=logsig(x);plot(x,y,'LineWidth',1.5);title('logsig');BTF:训练函数。
关于采用matlab进行指定非线性方程拟合的问题(1)※1。
优化工具箱的利用函数描述LSQLIN 有约束线性最小二乘优化LSQNONNEG 非负约束线性最小二乘优化问题当有约束问题存在的时候,应该采用上面的方法代替Polyfit与反斜线(\)。
具体例子请参阅优化工具箱文档中的相应利用这两个函数的例子。
d. 非线性曲线拟合利用MA TLAB的内建函数函数名描述FMINBND 只解决单变量固定区域的最小值问题FMINSEARCH 多变量无约束非线性最小化问题(Nelder-Mead 方法)。
下面给出一个小例子展示一下如何利用FMINSEARCH1.首先生成数据>> t=0:.1:10;>> t=t(:);>> Data=40*exp(-.5*t)+rand(size(t)); % 将数据加上随机噪声2.写一个m文件,以曲线参数作为输入,以拟合误差作为输出function sse=myfit(params,Input,Actural_Output)A=params(1);lamda=params(2);Fitted_Curve=A.*exp(-lamda*Input);Error_V ector=Fitted_Curve-Actural_Output;%当曲线拟合的时候,一个典型的质量评价标准就是误差平方和sse=sum(Error_V ector.^2);%当然,也可以将sse写作:sse=Error_V ector(:)*Error_V ector(:);3.调用FMINSEARCH>> Strarting=rand(1,2);>> options=optimset('Display','iter');>> Estimates=fiminsearch(@myfit,Strarting,options,t,Data);>> plot(t,Data,'*');>> hold on>> plot(t,Estimates(1)*exp(-Estimates(2)*t),'r');Estimates将是一个包含了对原数据集进行估计的参数值的向量。
在MATLAB 中,有多种方法可以进行数据拟合。
以下是一些常用的拟合方法:1. **线性拟合(Linear Fit)**:这是最简单的拟合方法,用于描述数据中的线性关系。
你可以使用`polyfit` 函数进行线性拟合。
```matlabx = [1, 2, 3, 4, 5];y = [2.2, 2.8, 3.6, 4.5, 5.1];p = polyfit(x,y,1);```这里,`p` 是拟合的系数,然后可以用这些系数来生成拟合线。
2. **多项式拟合(Polynomial Fit)**:你可以使用`polyfit` 函数进行多项式拟合,该函数接受两个参数(x和y),和一个表示多项式阶数的参数。
```matlabx = [1, 2, 3, 4, 5];y = [2.2, 2.8, 3.6, 4.5, 5.1];p = polyfit(x,y,2); % 二阶多项式拟合```3. **非线性拟合(Nonlinear Fit)**:对于非线性关系的数据,你可以使用`fit` 或`lsqcurvefit` 或`fminsearch` 等函数进行非线性拟合。
这通常需要你指定一个模型函数,然后将这个函数应用到数据上。
```matlabx = [1, 2, 3, 4, 5];y = [2.2, 2.8, 3.6, 4.5, 5.1];f = fit(x', y', 'poly1'); % 对数拟合```在这个例子中,'poly1' 是预先定义好的模型,代表一次多项式(也就是线性)。
你也可以定义自己的模型函数。
4. **最小二乘法(Least Squares Method)**:最小二乘法是一种优化算法,常用于求解线性回归问题。
你可以使用`polyfit` 或者`lsqcurvefit` 等函数进行最小二乘法拟合。
在使用这些函数时,需要注意以下几点:* 对于`polyfit`,当你的数据点数量少于你定义的多项式的阶数时,可能会出现过拟合的问题。
回归(拟合)自己的总结(20100728)1:学三条命令:polyfit(x,y,n)---拟合成一元幂函数(一元多次) regress(y,x)----可以多元,nlinfit(x,y,’fun ’,beta0) (可用于任何类型的函数,任意多元函数,应用范围最主,最万能的)2:同一个问题,可能这三条命令都可以使用,但结果肯定是不同的,因为拟合的近似结果,没有唯一的标准的答案。
相当于咨询多个专家。
3:回归的操作步骤:(1) 根据图形(实际点),选配一条恰当的函数形式(类型)---需要数学理论与基础和经验。
(并写出该函数表达式的一般形式,含待定系数)(2) 选用某条回归命令求出所有的待定系数所以可以说,回归就是求待定系数的过程(需确定函数的形式)配曲线的一般方法是: (一)先对两个变量x 和y 作n 次试验观察得n i y x ii,...,2,1),,( 画出散点图,散点图(二)根据散点图确定须配曲线的类型. 通常选择的六类曲线如下:(1)双曲线xb a y +=1 (2)幂函数曲线y=a bx , 其中x>0,a>0(3)指数曲线y=a bx e 其中参数a>0.(4)倒指数曲线y=a xb e/其中a>0,(5)对数曲线y=a+blogx,x>0(6)S 型曲线x be a y -+=1(三)然后由n 对试验数据确定每一类曲线的未知参数a 和b.一、一元多次拟合polyfit(x,y,n)一元回归polyfit多元回归regress---nlinfit(非线性)二、多元回归分析(其实可以是非线性,它通用性极高)对于多元线性回归模型:e x x y p p ++++=βββ 110设变量12,,,p x x x y的n 组观测值为12(,,,)1,2,,i i ip i x x x y i n=.记 ⎪⎪⎪⎪⎪⎭⎫⎝⎛=np n n p p x x x x x x x x x x 212222111211111,⎪⎪⎪⎪⎪⎭⎫⎝⎛=n y y y y 21,则⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=p ββββ 10 的估计值为排列方式与线性代数中的线性方程组相同()拟合成多元函数---regress 使用格式:左边用b=或[b, bint, r, rint, stats]= 右边用regress(y, x) 或regress(y, x, alpha)---命令中是先y 后x,---须构造好矩阵x(x 中的每列与目标函数的一项对应) ---并且x 要在最前面额外添加全1列/对应于常数项 ---y 必须是列向量---结果是从常数项开始---与polyfit 的不同。
MATLAB在⾮线性曲线拟合中的应⽤研究MATLAB 在⾮线性曲线拟合中的应⽤⼩结摘要:归纳总结了⾮线性曲线拟合的⽅法、求解步骤和上机操作过程关键词:曲线拟合⾮线性MAT LAB正⽂:1.曲线拟合的基本原理已知⼀组测定的数据(例如N个点(xi,yi )去求得⾃变量x和因变量y 的⼀个近似解析表达式y=φ(x)。
若记误差δi=φ(xi )-yi ,i=1,2,…N ,则要使误差的平⽅和最⼩,即要求:∑==Ni iQ 12δ为最⼩,这就是常⽤的最⼩⼆乘法原理。
2 .MATLAB 曲线拟合的相关⽅法 2.1.函数形式:(1)多项式拟合函数po ly fit ,调⽤格式为: p =polyfit (x ,y,n )其中x ,y 为参与曲线拟合的实验数据,n为拟合多项式的次数,函数返回值为拟合多项式的系数(按降幂排列)。
n =1时,就为线性拟合。
例1:给出表1数据,试⽤最⼩⼆乘法求⼀次和⼆次拟合多项式。
表1 数据在M AT LAB 命令窗⼝中输⼊: cle ar ; cl os e; x=-1:0.25:1;y=[-0.2209,0.3295,0.8826,1.4392,2.0003,2.5645,3.1334,3.7061,4.2836] p1=p olyfit(x,y ,1) p2=po lyf it(x,y,2) y 1=polyva l(p 1,x); y 2=p oly val(p2,x);pl ot(x,y,'+',x,y1,'r:',x ,y 2,'k-.')运⾏结果:拟合多项式为:y*=2.0516+2.0131和y *=0.0313x2+2.2516x +2.20001 (2)⾮线性数据拟合函数lsq cu rvefit 调⽤格式为: c=ls qcur vefi (t 'f un',x0,xdata,yd ata )其中'fun'为拟合函数的M-函数⽂件名,x0为初始向量,x data ,ydat a为参与曲线拟合的实验数据。