第六章 正交多项式和最佳一致逼近
- 格式:ppt
- 大小:717.00 KB
- 文档页数:54
数学软件实验任务书实验1 Chebyshev 多项式最佳一致逼近1 实验原理设()f x 是定义在区间[,]a b 上的函数,寻求另一个构造简单,计算量小的函数()x ϕ来近似的代替()f x 的问题就是函数逼近问题。
通常我们会取一些线性无关的函数系来达到函数逼近的目的:对于给定的函数{()}j x ϕ,寻求函数0()()nj j j x c x ϕϕ==∑ 使()()0max lim n a x bf x x ϕ→∞<<-=的函数称为一致逼近。
使()()()0lim b pa n f x x W x dx ϕ→∞-=⎰ 的函数称为关于权()W x 的p L 逼近。
比较常用的p=2,称为平方逼近。
设()f x 是定义在区间[,]a b 上的函数,则任给定ε,存在一多项式P ε使不等式()f x P εε-<对所有[,]x a b ∈一致成立()()max n a x b f x P x ≤≤-则()n P x 称为()f x 的n 次最佳一致逼近多项式。
求最佳一次逼近多项式的一种方法是可以采用Chebyshev 节点插值,Chebyshev 节点为 1(21)[()cos _],0,1,2,,22(1)j j x b a b a j n n +=-++=+L 2 实验数据求函数()x f x xe =在区间[6,6]上的3,5和12次近似最佳逼近多项式(Chebyshev 插值多项式)3 实验程序function g=cheby(f,n,a,b)for j=0:ntemp1=(j*2+1)*pi/2/(n+1);temp2=(b-a)*cos(temp1)+b+a;temp3(j+1)=temp2/2;endx=temp3;y=f(x);g=lag(x,y);function s=lag(x,y,t)syms p;n=length(x);s=0;for(k=1:n)la=y(k);%构造基函数for(j=1:k-1)la=la*(p-x(j))/(x(k)-x(j)); end;for(j=k+1:n)la=la*(p-x(j))/(x(k)-x(j)); end;s=s+la;simplify(s);endif(nargin==2)s=subs(s,'p','x');s=collect(s);s=vpa(s,4);elsem=length(t);for i=1:mtemp(i)=subs(s,'p',t(i));ends=temp;endf=inline('x.*exp(x)','x');z1=cheby(f,3,-6,6)z2=cheby(f,5,-6,6)z3=cheby(f,12,-6,6)%作出逼近函数图形subplot(2,2,1),ezplot('x*exp(x)'),grid subplot(2,2,2),ezplot(z1),grid subplot(2,2,3),ezplot(z2),grid subplot(2,2,4),ezplot(z3),grid%改变背景为白色set(gcf,'color','white')4 实验结果z1 =-133.0+4.822*x^3+27.38*x^2-20.40*xz2 =.2001*x^5+1.359*x^4-2.020*x^3-18.56*x^2+6.126*x+40.2 5z3 =-.2405e-16+.5187e-7*x^12+.6439e-6*x^11+.1420e-5*x^1 0+.6201e-5*x^9+.2287e-3*x^8+.1813e-2*x^7+.8007e-2*x^6+.3709e-1*x^5+.1682*x^4+.520 9*x^3+.9981*x^2+.9729*x实验2 Chebyshev最佳平方逼近1 实验数据的5 次最佳求函数()arccos,(11)=-≤≤关于权函数f x x x平方逼近。
§3最佳一致逼近多项式2-1 最佳一致逼近多项式的存在性切比雪夫从另一观点研究一致逼近问题,他不让多项式次数n 趋于无穷,而是固定n ,记次数小于等于n 的多项式集合为n H ,显然],[b a C H n ⊂。
记{1,,,}n n H span x x =L , n x x ,,,1L 是],[b a 上一组线性无关的函数组,是n H 中的一组基。
n H 中的元素)(x P n 可表示为01()n n n P x a a x a x =+++L ,其中n a a a ,,,10L 为任意实数。
要在n H 中求)(*x P n 逼近],[)(b a C x f ∈,使其误差)()(max min )()(max *x P x f x P x f n bx a H P n b x a n n −=−≤≤∈≤≤ 这就是通常所谓最佳一致逼近或切比雪夫逼近问题。
为了说明这一概念,先给出以下定义。
定义1 ],[)(,)(b a C x f H x P n n ∈∈,称)()(max ),(x P x f P f P f n bx a nn −=−=∆≤≤∞ 为)(x f 与)(x P n 在],[b a 上的偏差。
显然),(,0),(n n P f P f ∆≥∆的全体组成一个集合,记为)},({n P f ∆,它有下界0。
若记集合的下确界为,)()(max inf )},({inf x P x f P f E n b x a H P n H P n n n n n −=∆=≤≤∈∈ 则称之为)(x f 在],[b a 上最小偏差。
定义2 假定],[)(b a C x f ∈,若存在n n H x P ∈)(*,n n E P f =∆),(*, 则称)(*x P n 是)(x f 在],[b a 上的最佳一致逼近多项式或最小偏差逼近多项式,简称最佳逼近多项式。
注意,定义并未说明最佳逼近多项式是否存在,但可证明下面的存在定理。
§2 最佳一致逼近一、最佳一致逼近的概念定义3.10 设函数f (x )是区间[a , b ]上的连续函数,对于任意给定的ε >0,如果存在多项式p (x ),使不等式ε<-<<)()(max x p x f bx a 成立,则称多项式p (x )在区间[a , b ]上一致逼近(或均匀逼近)于函数f (x )。
那么,对于在区间[a , b ]上的连续函数f (x ),是否存在多项式p (x )一致逼近于f (x )呢?这个问题有许多人研究过。
德国数学家维尔斯特拉斯(Weierstrass)在1885年曾给出下述著名定理。
维尔斯特拉斯定理 若f (x )是区间[a , b ]上的连续函数,则对于任意ε >0,总存在多项式p (x ),使对一切a ≤x ≤b 有ε<-)()(x p x f证明从略。
维尔斯特拉斯定理表明,连续函数f (x )可以用多项式p (x )逼近到任意精确程度,但维尔斯特拉斯定理只在理论上肯定了闭区间上的连续函数可以用多项式以任意精确度来逼近,并没有给出确定逼近得最快的多项式的方法。
事实上,如果精确度要求较高,则用来逼近的多项式的次数一般也很高,这就增加了计算工作量。
因而,在实际计算时,我们总量希望在一定的精确度要求下,逼近多项式的次数越低越好。
切比雪夫从这样的观点去研究一致逼近问题,他不让逼近多项式的次数n 趋于无穷大,而是先把n 加以固定。
对于给定的[a , b ]上的连续函数f (x ),他提出在次数不超过n 的多项式的集合p n 中去寻找一个多项式)(*x p n ,使它在[a , b ]上“最佳地逼近”f (x )。
这里最佳逼近的意思是指)(*x p n 对f (x )的偏差。
)()(max *x p x f n bx a -<< 和其它任一p (x ) ∈ p n 对f (x )的偏差)()(max x p x f bx a -<<比较时是最小的,也就是说{})()(max min )()(max )(*x P x f x p x f bx a p x p n b x a n-=-<<∈<<(3.18)这就是通常所谓的最佳一致逼近问题,也称为切比雪夫逼近问题。
§6 近似最佳一致逼近多项式由韦尔斯特拉斯定理知存在最佳一致逼近多项式(伯恩斯坦多项式)一、截断切比雪夫级数利用切比雪夫多项式良好的逼近性质求近似最佳一致逼近多项式。
如果]1,1[)(-∈C x f ,按)}({x T k 展成广义富利叶级数,由正交多项式展开公式()~()()~()k k k k k k f x a g x f x C T x ∞∞==⇒∑∑可得)(x f ~).(2*10x T C k k k ∑=+此式称为函数)(x f 在]1,1[-上的切比雪夫级数。
由*(,)(0, 1,,)(,)k kk k f T C k n T T ==及110,()(),0;2,0.n m T x T x dx n m n m ππ-≠⎧⎪⎪==≠⎨⎪==⎪⎩⎰得到).,1,0(d 1)()(2211*=-=⎰-k x xx T x f C k kπ这里1),arccos cos()(≤=x x k x T k 。
若令πθθ≤≤=0,cos x ,则)(x f ~*1()2k k k C T x =+∑就是)(cos θf 的富利叶级数,其中),,1,0(d cos )(cos 20* ==⎰k k f C kθθθππ根据富利叶级数理论可知,只要)(x f '在]1,1[-上分段连续,则)(x f 的切比雪夫级数一致收敛于)(x f ,从而),(2)(*1*0x T C C x f k k k ∑∞=+= 取它的部分和),(2)(*1**x T C C x C k k nk n ∑=+= 其误差为**11()()().nn n f x C x C T x ++-≈由于1+n T 有2+n 个轮流为‘正、负’的偏差点1cos +=n k x k π)1,,1,0(+=n k ,所以)()(*x C x f n-近似地有2+n 个偏差点,由切比雪夫定理,)(*x C n可作为)(x f 在]1,1[-上的近似最佳一致逼近多项式,实际计算表明它与最佳一致逼近多项式)(*x P n非常接近,而计算较方便。