数值分析之最小二乘法与最佳一致逼近
- 格式:ppt
- 大小:716.50 KB
- 文档页数:57
最佳平方逼近与最小二乘拟合——两者的区别与联系 函数逼近是用一个多项式无限接近原函数,而拟合是将函数中的元素联系起来。
也就是说,最佳平方逼近是针对函数,最小二乘法是针对离散的点,二者在形式上基本一致。
另外,最小二乘拟合也称为离散型最佳平方逼近,两者的解法有很多相似之处。
一、 函数的最佳平方逼近 (一)最佳平方逼近函数的概念对[]b a C x f ,)(∈及[]b a C ,中的一个子集{}n span ϕϕϕφ,,,10⋯=,若存在φ∈)(*x S,使[]dx x S x f x S f Sf baS S ⎰-=-=-∈∈22222*)()()(infinf ρϕϕ,则称)(*x S 是)(x f 在子集[]b a C ,⊆φ中的最佳平方逼近函数。
(二)最佳平方逼近函数的解法为了求)(*x S ,由[]dxx S x f x S f Sf baS S ⎰-=-=-∈∈22222*)()()(infinf ρϕϕ可知,一般的最佳平方逼近问题等价于求多元函数dxx f x a x a a a I banj j j n 2010)()()(),,,(⎰∑⎥⎦⎤⎢⎣⎡-=⋯=ϕρ的最小值问题。
由于),,,(10n a a a I ⋯是关于n a a a ,,,10⋯的二次函数,利用多元函数极值的必要条件),,1,0(0n k a Ik⋯==∂∂,即),,,,1(2nn x x x G G =n),,1,0(0)()()()(20⋯==⎥⎦⎤⎢⎣⎡-=∂∂⎰∑=k dx x x f x a x a Ik b a n j j j kϕϕρ,于是有()()),,1,0(,,0n k f a k j nj j k ⋯==∑=ϕϕϕ。
()()),,1,0(,,0n k f a k j nj j k⋯==∑=ϕϕϕ是关于n 10,,,a a a ⋯的线性方程组,称其为法方程。
由于n ϕϕϕ,,,10⋯线性无关,故系数行列式()0,,,10≠⋯n G ϕϕϕ,于是方程组()()),,1,0(,,0n k f a k j nj j k⋯==∑=ϕϕϕ有唯一解),,1,0(*n k a a k k ⋯==,从而得到)()()(*0*0*x a x a x S n n ϕϕ+⋯+=。
25数值分析—最佳逼近━基于MATLAB的实现与分析§1 引 言所谓函数最佳逼近就是从指定的一类简单的函数中寻找一个和给定的函数“最贴近”的函数,从几何(空间)的角度看,函数最佳逼近就是从指定的一类简单的函数(点的集合)中寻找一个与给定的函数(定点)距离最短的函数(点)。
由于在函数空间中可以定义不同的距离,不同意义下的距离度量定义了不同的逼近准则。
令P 表示指定的一类简单的函数集合 1、函数最佳一致逼近: 基于的距离度量如下()[]()()d f P f x P x x a b ,,=-∈max (1)逼近准则:()[]()()x P x f P f d b a x P P -=∈P ∈P∈,max min ,min (2)2、函数最均方逼近:基于的距离度量如下()()()[][]d f P f x P x dx ab,=-⎰212(3)逼近准则()=P∈P f d P ,min minP ∈P()()[][]f x P x dx ab-⎰212(4)如果给定的是函数在若干点处的函数值:()()x f x i i ,,i =0,1,, n ,那么还有称为:3、最小二乘逼近: 基于的距离度量如下()()()[]d f P f x P x i i i n ,=-⎡⎣⎢⎤⎦⎥=∑012(5)逼近准则26()=P ∈P f d P ,min min P ∈P ()()[]f x P x i i i n-⎡⎣⎢⎤⎦⎥=∑012(6)4、插值逼近,其逼近准则为:()()i i x f x P =, ()n i x P ,,,, 10=P ∈ (7)对于函数最佳逼近问题而言,用于逼近的简单的函数集合一般选取次数不超过n 次的多项式函数全体()()()(){}P n k k x P x P x k n ==≤deg (8)即用多项式函数逼近给定的函数,其原因在于只需对自变量做加法、减法和乘法运算就能得到函数值是多项式函数显著的特点之一,因此,从计算的角度来说多项式函数是最简单的。
第三章 函数逼近及最小二乘法 §1 内积空间及函数的范数定义1 设)(x ρ是定义在(a,b)上的非负函数,且满足:1)dx x x nba )(ρ⎰存在 (n=0,1,2,…)2)对非负的连续函数g(x),若0)()(=⎰dx x x g ba ρ则在(a,b)上有g(x)=0,则称)(x ρ为(a,b)上的权函数。
定义2 设f(x),g(x)为[a,b]上的连续函数,)(x ρ为(a,b)上的权函数,称),(g f =dx x x g x f ba)()()(ρ⎰为函数f(x)与g(x)在[a,b]的内积。
特别当)(x ρ=1时,上式变为 ),(g f =dx x g x f ba⎰)()(设],[b a C 表示在区间[a,b]上连续函数的全体,那么定义了内积之后,],[b a C 就变成了一个内积空间。
显然有),(f f =dx x x f ba)()(2ρ⎰为一个非负值,因此我们有定义3 对],[)(b a C x f ∈,称),()(2f f x f = 为)(x f 的欧氏范数(又称2-范数)。
其实,我们还经常用到函数的其他范数。
比如,)(max)(xfxfbxa≤≤∞=dxxxfxf ba)()()(1ρ⎰=n维向量空间中两个向量正交的定义也可以推广到连续内积空间],[baC中.定义4 若],[)(),(baCxgxf∈,满足),(gf = dxxxgxf ba)()()(ρ⎰=0则称函数f(x)与g(x)在[a,b]上带权)(xρ正交.若函数族),(,),(),(1xxxnϕϕϕ满足⎰⎩⎨⎧=>≠==bakkjkj kjAkjdxxxx)()()(),(ϕϕρϕϕ则称函数族{})(xkϕ是[a,b]上带权)(xρ的正交函数族.特别地,若1=kA,就称之为标准正交函数族.由高等数学的知识,我们知道, Foureir级数展开中函数族1,cosx,sinx,cos2x,sin2x,……即为],[ππ-上带权)(xρ=1的正交函数族.如同线性代数中的向量组线性无关概念一样,在此也有函数组的线性无关概念.定义5设函数组)(,),(),(11xxxn-ϕϕϕ 在[a,b]上连续,若)()()(1111=+++--xaxaxannϕϕϕ当且仅当011====-naaa 时成立,则称函数族)(,),(),(11xxxn-ϕϕϕ 在[a,b]上是线性无关的.否则称为线性相关函数组。