计算方法 最佳一致逼近多项式-切比雪夫多项式ppt课件
- 格式:ppt
- 大小:1.48 MB
- 文档页数:48
Chebyshev 最佳一致逼近 Chebyshev 定理设()[,]f x C a b ∈,则n 次多项式*()n p x 为()f x 的n 次最佳一致逼近多项式的充要条件是在区间[,]a b 上至少有n+2个点1212...n n a x x x x b++≤<<<<≤使得*()()n f x p x -在这些点上以正负相间的符号依次取得*(,)|()()|max n n a x b E f x f x p x ≤≤=-,即有*()()(1k k n k n f x p x E f δ-=-=+其中δ为-1或1 Chebyshev 多项式称cos(arccos ),11,0,1,2......,n T n x x n =-≤≤=为n 次Chebyshev 多项式,即在区间[1,1]n -+上存在个点21cos ,0,1,2......,2(1)k k x k n +==+轮流使得()+1-1n T x 取得最大值和最小值,可以证明最佳一致逼近多项式的存在性和唯一性。
function g=Chebyshev(f,n,a,b)for j=0:ntemp1=(j*2+1)*pi/(2*(n+1));temp2=(b-a)*cos(temp1)+b+a;temp3(j+1)=temp2/2;endx=temp3;y=f(x);g=Lagrange(x,y,n);function s=Lagrange(x,y,t)syms p ;n=length(x);s=0;for(k=1:n)l=y(k);for(j=1:k-1)l=l*(p-x(j))/(x(k)-x(j));end;for(j=k+1:n)l=l*(p-x(j))/(x(k)-x(j));end;s=s+l;simplify(s);end例。
求函数()xf x xe在区间[6,-6]上的3,5,12次近似最佳逼近多项式,并给出函数图象,比较各阶逼近效果。
切比雪夫多项式概述:切比雪夫多项式是与棣美弗定理有关,以递归方式定义的一系列正交多项式序列。
通常,第一类切比雪夫多项式以符号Tn表示,第二类切比雪夫多项式用Un表示。
切比雪夫多项式Tn 或Un 代表n 阶多项式。
切比雪夫多项式在逼近理论中有重要的应用。
这是因为第一类切比雪夫多项式的根(被称为切比雪夫节点)可以用于多项式插值。
相应的插值多项式能最大限度地降低龙格现象,并且提供多项式在连续函数的最佳一致逼近。
基本性质:对每个非负整数n,Tn(x) 和Un(x) 都为n次多项式。
并且当n为偶(奇)数时,它们是关于x 的偶(奇)函数,在写成关于x的多项式时只有偶(奇)次项。
按切比雪夫多项式的展开式:一个N 次多项式按切比雪夫多项式的展开式为如下,多项式按切比雪夫多项式的展开可以用Clenshaw 递推公式计算。
第一类切比雪夫多项式由以下递推关系确定。
也可以用母函数表示。
第二类切比雪夫多项式由以下递推关系给出。
此时母函数为Clenshaw递推公式在数值分析中,Clenshaw递推公式(由Charles William Clenshaw发现)是一个求切比雪夫多项式的值的递归方法。
切比雪夫多项式N次切比雪夫多项式,是下面形式的多项式p(x)其中T n是n阶切比雪夫多项式Clenshaw递推公式Clenshaw递推公式可以用来计算切比雪夫多项式的值。
给定我们定义于是(注)上面的公式在N=0,1的情况下无意义。
此时我们可以用下面的公式:(downward, omit if N=0)这里或者其中是第二类切比雪夫多项式棣莫弗(de Moivre)原理设两个复数(用三角形式表示)Z1=r1(cosθ1+isinθ1),Z2=r2(cosθ2+i sinθ2),则:Z1Z2=r1r2[cos(θ1+θ2)+isin(θ1+θ2)].解析证:先讲一下复数的三角形式的概念。
在复平面C上,用向量Z(a,b)来表示Z=a+bi.于是,该向量可以分成两个在实轴,虚轴上的分向量.如果向量Z与实轴的夹角为θ,这两个分向量的模分别等于rcosθ,risinθ(r=√a^2+b^2).所以,复数Z可以表示为Z=r(cosθ+isinθ).这里θ称为复数Z的辐角.因为Z1=r1(cosθ1+isinθ1),Z2=r2(cosθ2+isinθ2),所以Z1Z2=r1r2(cosθ1+isinθ1)(cosθ2+isinθ2)=r1r2(cosθ1cosθ2+icosθ1sinθ2+isinθ1cosθ2-sinθ1sinθ2)=r1r2[(cosθ1cosθ2-sinθ1sinθ2)+i(cosθ1sinθ2+sinθ1cosθ2)]=r1r2[cos(θ1+θ2)+isin(θ1+θ2)].其实该定理可以推广为一般形式:推广设n个复数Z1=r1(co sθ1+isinθ1),Z2=r2(cosθ2+isinθ2),……,Zn=rn(cosθn+isinθn),则:Z1Z2……Zn=r1r2……rn[cos(θ1+θ2+……+θn)+isin(θ1+θ2+……+θn)].解析证:用数学归纳法即可,归纳基础就是两个复数相乘的棣莫弗定理。
§3最佳一致逼近多项式2-1 最佳一致逼近多项式的存在性切比雪夫从另一观点研究一致逼近问题,他不让多项式次数n 趋于无穷,而是固定n ,记次数小于等于n 的多项式集合为n H ,显然],[b a C H n ⊂。
记{1,,,}n n H span x x =L , n x x ,,,1L 是],[b a 上一组线性无关的函数组,是n H 中的一组基。
n H 中的元素)(x P n 可表示为01()n n n P x a a x a x =+++L ,其中n a a a ,,,10L 为任意实数。
要在n H 中求)(*x P n 逼近],[)(b a C x f ∈,使其误差)()(max min )()(max *x P x f x P x f n bx a H P n b x a n n −=−≤≤∈≤≤ 这就是通常所谓最佳一致逼近或切比雪夫逼近问题。
为了说明这一概念,先给出以下定义。
定义1 ],[)(,)(b a C x f H x P n n ∈∈,称)()(max ),(x P x f P f P f n bx a nn −=−=∆≤≤∞ 为)(x f 与)(x P n 在],[b a 上的偏差。
显然),(,0),(n n P f P f ∆≥∆的全体组成一个集合,记为)},({n P f ∆,它有下界0。
若记集合的下确界为,)()(max inf )},({inf x P x f P f E n b x a H P n H P n n n n n −=∆=≤≤∈∈ 则称之为)(x f 在],[b a 上最小偏差。
定义2 假定],[)(b a C x f ∈,若存在n n H x P ∈)(*,n n E P f =∆),(*, 则称)(*x P n 是)(x f 在],[b a 上的最佳一致逼近多项式或最小偏差逼近多项式,简称最佳逼近多项式。
注意,定义并未说明最佳逼近多项式是否存在,但可证明下面的存在定理。
tz切比雪夫多项式-详细-Chebyshev polynomialsyv 切比雪夫多项式是与棣美弗定理有关,以递归方式定义的一系列正交多项式序列。
通常,第一类切比雪夫多项式以符号Tn表示,第二类切比雪夫多项式用Un 表示。
切比雪夫多项式 Tn 或 Un 代表 n 阶多项式。
切比雪夫多项式在逼近理论中有重要的应用。
这是因为第一类切比雪夫多项式的根(被称为切比雪夫节点)可以用于多项式插值。
相应的插值多项式能最大限度地降低龙格现象,并且提供多项式在连续函数的最佳一致逼近。
在微分方程的研究中,数学家提出切比雪夫微分方程和相应地,第一类和第二类切比雪夫多项式分别为这两个方程的解。
这些方程是斯图姆-刘维尔微分方程的特殊情形.定义:第一类切比雪夫多项式由以下递推关系确定也可以用母函数表示第二类切比雪夫多项式由以下递推关系给出此时母函数为从三角函数定义:第一类切比雪夫多项式由以下三角恒等式确定其中 n = 0, 1, 2, 3, .... . 是关于的 n次多项式,这个事实可以这么看:是:的实部(参见棣美弗公式),而从左边二项展开式可以看出实部中出现含的项中,都是偶数次的,从而可以表示成的幂。
用显式来表示尽管能经常碰到上面的表达式但如果借助于复函数cos(z), cosh(z)以及他们的反函数,则有类似,第二类切比雪夫多项式满足以佩尔方程定义:切比雪夫多项式可被定义为佩尔方程在多项式环R[x] 上的解(e.g., 见 Demeyer (2007), p.70). 因此它们的表达式可通过解佩尔方程而得出:归递公式两类切比雪夫多项式可由以下双重递归关系式中直接得出: T0(x) = 1 U ?1(x) = 1 Tn + 1(x) = xTn(x) ? (1 ? x2)Un ? 1(x) Un(x) = xUn ? 1(x) + Tn(x)证明的方式是在下列三角关系式中用x 代替xTn(x) ? (1 ? x2)Un(x) 正交性Tn 和Un 都是区间[?1,1] 上的正交多项式系.第一类切比雪夫多项式带权即:可先令x= cos(θ) 利用Tn (cos(θ))=cos(nθ)便可证明.类似地,第二类切比雪夫多项式带权即:其正交化后形成的随机变量是 Wigner 半圆分布).基本性质对每个非负整数n, Tn(x) 和 Un(x) 都为 n次多项式。