最佳一致和平方逼近
- 格式:ppt
- 大小:2.47 MB
- 文档页数:40
西京学院数学软件实验任务书实验十八实验报告一、实验名称:Chebyshev 多项式最佳一致逼近,最佳平方逼近. 二、实验目地:进一步熟悉Chebyshev 多项式最佳一致逼近,最佳平方逼近.实验要求:运用Matlab/C/C++/Java/Maple/Mathematica 等其中一种语言完成程序设计.四、实验原理:1.Chebyshev 多项式最佳一致逼近:当一个连续函数定义在区间[1,1]-上时,它可以展开成切比雪夫级数.即:0()()n n n f x f T x ∞==∑其中()n T x 为n 次切比雪夫多项式,具体表达式可通过递推得出:0111()1,(),()2()()n n n T x T x x T x xT x T x +-===-它们之间满足如下正交关系:10 n mn=m 02n=m=0ππ-≠⎧⎪⎪=≠⎨⎪⎪⎩⎰ 在实际应用中,可根据所需地精度来截取有限项数.切比雪夫级数中地系数由下式决定:10112n f f ππ--==⎰⎰2.最佳平方逼近:求定义在区间01[,]t t 上地已知函数最佳平方逼近多项式地算法如下.设已知函数()f x 地最佳平方逼近多项式为01()n n p x a a x a x =+++,由最佳平方逼近地定义有:01(,,,)0(0,1,2,,)n iF a a a i n a ∂==∂其中120101(,,,)(())t n n n t F a a a f x a a x a x dx =----⎰形成多项式()p x 系数地求解方程组Ca D =其中121122211212bbb bn na a a a bb b b n n aaa ab b b b n n n n a a a abbb bn n n naaa a dx xdxx dxx dx xdx x dx x dx x dx C x dx x dx x dx x dx x dx x dx x dx x dx -+---+-⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰1()()()()b a b a b n a b n a f x dx f x xdx D f x x dx f x x dx -⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎰⎰⎰⎰五、实验内容:%Chebyshev 多项式最佳一致逼近function f=Chebyshev(y,k,x0)syms t ;T(1:k+1)=t; T(1)=1; T(2)=t;c(1:k+1)=0.0;c(1)=int(subs(y,findsym(sym(y)),sym('t'))*T(1)/sqrt(1-t^2),t,-1,1)/pi;c(2)=2*int(subs(y,findsym(sym(y)),sym('t'))*T(2)/sqrt(1-t^2),t,-1,1)/pi;f=c(1)+c(2)*t; for i=3:k+1T(i)=2*t*T(i-1)-T(i-2);c(i)=2*int(subs(y,findsym(sym(y)),sym('t'))*T(i)/sqrt(1-t^2),t,-1,1)/pi; f=f+c(i)*T(i); f=vpa(f,6); if (i==k+1) if (nargin==3)f=subs(f,'t',x0);elsef=vpa(f,6);endendEnd%最佳平方逼近function coff=ZJPF(func,n,a,b)C=zeros(n+1,n+1);var=findsym(sym(func));func=func/var;for i=1:n+1C(1:i)=(power(b,i)-power(a,i))/i;func=func*var;d(i,1)=int(sym(func),var,a,b);endfor i=2:n+1C(i,1:n)=C(i-1,2:n+1);f1=power(b,n+1);f2=power(a,n+1);C(i,n+1)=(f1-f2)/(n+i);endcoff=C\d;版权申明本文部分内容,包括文字、图片、以及设计等在网上搜集整理.版权为个人所有This article includes some parts, including text, pictures, and design. Copyright is personal ownership.5PCzV。
§3 最佳平方逼近摘要:介绍内积赋范线性空间中的最佳平方逼近的特征,最佳逼近元存在唯一性及求解;2,L a b ρ⎡⎤⎣⎦中的最佳平方逼近问题的讨论。
一、赋范线性空间定义1 线性空间X 称为赋范线性空间,如果其上赋予一个满足如下3条性质的函数:(1)0,00,;x x x x X ≥=⇔=∈ (2),,;α=∈∈ax a x x X(3),,.x y x y x y X +≤+∈ 则称是线性空间X 的范数。
例1 欧氏空间(欧几里德空间(Euclid ))n:12221,,=⎛⎫=∈⎪⎝⎭∑nnk k x x x范数称为欧氏范数或2-范数。
例2 1-范数赋范线性空间n:11,,==∈∑nnk k x x x称为1-范数。
定义2 赋范线性空间中的最佳逼近:若Y 是赋范线性空间X 的一个线性子空间,x X ∈,则称量(),inf y Yx Y x y∈∆=-为子空间Y 对元素x 的最佳逼近,而使上式成立的元素*y 称为最佳逼近元,且Y 称为逼近子空间。
二、内积空间定义3 假设X 是一线性空间,如果其上赋予一个满足如下4条性质的二元函数(),:()()(1)(,)(,),,;(2)(,)(,),,,;(3)(,)(,)(,),,,;(4),0,;,00,ααα=∀∈=∀∈∈+=+∀∈≥∀∈=⇔=x y y x x y X x y x y x y X x y z x z y z x y z X x x x X x x x则称X 为内积空间。
例3 欧几里得空间n: (),,,=∈Tnx y x y x y内积→范数:2x ,2x 满足范数的3条性质。
内积空间→赋范线性空间定义4 内积空间中的最佳逼近:假设(1,2,,)ϕ=i i n 是内积空间X 中的n 个线性无关的元素,f X ∈,则子集{}12,,,ϕϕϕΦ=n n span对f 的最佳平方逼近定义为()2,min ϕϕ∈Φ∆Φ=-nn f f . (1) 使(1)成立的那个元素称为最佳逼近元素。
第四章 平方逼近教学目的及要求:掌握最小二乘法、初步掌握平方逼近及直交多项式、平方度量意义下函数的逼近问题。
本书第二章是用数量)()(m ax x f x p f p bx a -=-≤≤来度量逼近多项式)(x p 与已知函数)(x f 的近似程度。
若,,0)()(∞→→-n x f x p n 则意味着序列{})(x p n 在区间],[b a 上一致收敛到)(x f 。
一致逼近度量,亦称Tchebyshev 度量是很重要的一类度量标准。
然而由于它的非线性特性,使得最佳一致逼近多项式的构造问题十分困难。
对于许多问题来讲,人们需要求出的是在确定意义下的“整体”近似。
本章讨论一类新的度量----平方度量意义下函数的逼近问题。
先从最小二乘法谈起。
§1. 最小二乘法最小二乘法起源于以测量和观测为基础的天文学。
Gauss 在1794年利用最小二乘法解决了多余观测问题,当时他只有十七岁。
可以用下面的简单例子描述这类问题。
假定通过观测或实验得到如下一组数据(即列表函数):我们的目的是一简单的式子表出这些数据间的关系。
从分析数据看出,这些点差不多分布在一条直线上,因此我们自然想到用线性式b ax y +=表示它们之间的关系。
这就须定出参数a 和b 的值来。
这实际上是多余观测问题,用插值法不能确定出a 和b 的值。
代定参数的确定归结为矛盾方程组的求解问题。
假定有某方法可以定出a 和b ,则按bx a y +=,给出一个x 便可以算出一个y 。
我们记).8,,1( =+=k bxa y kk y 称为k y 的估计值,显然它们不会是完全相同的,它们之间的差(通常称为残差))8,,1( =-=k y y kk k ε无疑是衡量被确定的参数a 和b (也就是近似多项式b ax y +=)好坏的重要标志。
可以规定许多原则来确定参数b a ,。
例如(1) 参数的确定,将使残差绝对值中最大的一个达到最小,即kkT εmax =为最小;(2) 参数的确定,将使残差绝对值之和达到最小,即∑kk ε为最小;(3) 参数的确定,将使残差的平方和达到最小,即∑2k ε为最小。
构造C[0,1]上W=&(1,x,…,x9)到f(x)=e x上的最佳逼近学院:数学与计算机科学学院班级:2011级数学与应用数学姓名:学号:指导教师:日期:2012.06.20构造C[0,1]上W=&(1,x ,…,x 9)到f(x)=e x上的最佳逼近(西北民族大学数学与应用数学专业,兰州 730124)指导教师摘要: 本文通过对最佳逼近的研究,着重分析其构造方法,从而使得对知识的掌握更加连贯及牢固。
通过对它的研究,我们对其有了更深的了解。
关键词:最佳逼近,正射影,傅里叶系数最佳平方逼近一般而言,在[a , b ]上对给定的函数求它的一致逼近函数比较困难,下面我们介绍在[a , b ]上较易计算的另一种逼近方法――最佳平方逼近。
一、预备知识1.函数系的线性关系定义1 若函数)(,),(),(10x x x n ϕϕϕ ,在区间[a , b ]上连续,如果关系式0)()()()(221100=++++x a x a x a x a n n ϕϕϕϕ 当且仅当0210=====n a a a a 时才成立,则称函数)(,),(),(10x x x n ϕϕϕ 在[a , b ]上是线性无关的,否则称线性相关。
如果函数系{ϕk (x )}(k = 0, 1, 2, …)中的任何有限个函数线性无关,则称函数系{ϕk (x )}为线性无关函数系,例如{1, x , …, x n , …}就是在区间[a , b ]上的线性无关函数系。
设)(,),(),(10x x x n ϕϕϕ 是[a , b ]上线性无关的连续函数a 0, a 1, …, a n 是任意实数,则)()()()(1100x a x a x a x S n n ϕϕϕ+++=的全体是C [a , b ]的一个子集,记为},,,{Span 10n ϕϕϕ =Φ并称)(,),(),(10x x x n ϕϕϕ 是生成集合的一个基底。