材料科学基础,第2章,材料中的晶体结构
- 格式:ppt
- 大小:14.84 MB
- 文档页数:178
第 2 章结晶结构一、名词解释1.晶体:晶体是内部质点在三维空间内周期性重复排列,具有格子构造的固体2.空间点阵与晶胞:空间点阵是几何点在三维空间内周期性的重复排列晶胞:反应晶体周期性和对称性的最小单元3.配位数与配位多面体:化合物中中心原子周围的配位原子个数成配位关系的原子或离子连线所构成的几何多面体4.离子极化:在离子化合物中,正、负离子的电子云分布在对方离子的电场作用下,发生变形的现象5.同质多晶与类质同晶:同一物质在不同的热力学条件下具有不同的晶体结构化学成分相类似物质的在相同的热力学条件下具有相同的晶体结构6.正尖晶石与反尖晶石:正尖晶石是指2价阳离子全部填充于四面体空隙中,3价阳离子全部填充于八面体空隙中。
反尖晶石是指2价阳离子全部填充于八面体空隙中,3价阳离子一半填充于八面体空隙中,一半填充于四面体空隙。
二、填空与选择1.晶体的基本性质有五种:对称性,异相性,均一性,自限性和稳定性(最小内能性)。
2.空间点阵是由 C 在空间作有规律的重复排列。
( A 原子 B离子 C几何点 D分子)3.在等大球体的最紧密堆积中有面心立方密堆积和六方密堆积二种排列方式,前者的堆积方式是以(111)面进行堆积,后者的堆积方式是以(001)面进行堆积。
4.如晶体按立方紧密堆积,单位晶胞中原子的个数为 4 ,八面体空隙数为 4 ,四面体空隙数为 8 ;如按六方紧密堆积,单位晶胞中原子的个数为 6 ,八面体空隙数为6 ,四面体空隙数为 12 ;如按体心立方近似密堆积,单位晶胞中原子的个数为 2 ,八面体空隙数为 12 ,四面体空隙数为 6 。
5.等径球体最紧密堆积的空隙有两种:四面体空隙和八面体空隙。
一个球的周围有 8个四面体空隙、 6 个八面体空隙;n个等径球体做最紧密堆积时可形成 2n 个四面体空隙、 n 个八面体空隙。
不等径球体进行堆积时,大球做最紧密堆积或近似密堆积,小球填充于空隙中。
6.在离子晶体中,配置于正离子周围的负离子数(即负离子配位数),决定于正、负离子半径比(r +/r -)。
第二章固体材料的结构固体材料的各种性质主要取决于它的晶体结构。
原子之间的作用结合键与晶体结构密切相关。
通过研究固体材料的结构可以最直接、最有效地确定结合键的类型和特征。
固体材料主要包括:金属、合金、非金属、离子晶体、陶瓷研究方法:X光、电子、中子衍射——最重要、应用最多§2-1 结合键结合键——原子结合成分子或固体的结合键决定了物质的物理、化学、力学性质。
一切原子之间的结合力都起源于原子核与电子间的静电交互作用(库仑力)。
不同的结合键代表了实现结构)的不同方式。
一、离子键典型的金属与典型的非金属元素就是通过离子键而化合的。
从而形成离子化合物或离子晶体由共价键方向性特点决定了的SiO2四面体晶体结构极性共价键非极性共价键五、氢键含有氢的分子都是通过极性共价键结合,极性分子之间结合成晶体时,通过氢键结合。
例如:H 2O ,HF ,NH 3等固态冰液态水§2-2 金属原子间的结合能一、原子作用模型固态金属相邻二个原子之间存在两种相互作用:a) 相互吸引——自由电子吸引金属正离子,长程力;b) 相互排斥——金属正离子之间的相互排斥,短程力。
平衡时这二个力相互抵消,原子受力为0,原子处于能量最低状态。
此时原子间的距离为r0。
§2-3 合金相结构基本概念♦合金——由两种或两种以上的金属或金属非金属元素通过化学键结合而组成的具有金属特性的材料。
♦组元、元——组成合金的元素。
♦相——具有相同的成分或连续变化、结构和性能的区域。
♦组织——合金发生转变(反应)的结果,可以包含若干个不同的相,一般只有一到二个相。
♦合金成分表示法:(1) 重量(质量)百分数A-B二元合金为例m B——元素B的重量(质量m A——元素A的重量(质量合金中的相分为:固溶体,化合物两大类。
固溶体金属晶体(溶剂)中溶入了其它元素(溶质)后,就称为固溶体。
一、固溶体的分类:♦按溶质原子在溶剂中的位置分为:置换固溶体,间隙固溶体♦按溶解度分为:有限固溶体,无限固溶体♦按溶质原子在溶剂中的分布规律分为:有序固溶体,无序固溶体置换固溶体:溶质原子置换了溶剂点阵中部分溶剂原子。
材料科学基础第2章材料中的晶体结构晶体是由原子、离子或分子按照一定的规则排列而成的固体。
晶体结构是指晶体中原子,离子或分子的排列方式。
晶体结构的特点是重复性和周期性。
晶体结构可以通过晶体的晶胞来描述,晶胞是晶体中最小重复单元,是由若干个原子,离子或分子组成的。
晶体结构的分类可以根据晶体的对称性进行。
常见的晶体结构类型有立方晶系、四方晶系、正交晶系、单斜晶系、三斜晶系、六角晶系和三角晶系。
立方晶系是最常见的晶体结构类型,它具有最高的对称性。
立方晶系包括体心立方晶体、面心立方晶体和简单立方晶体。
体心立方晶体每个晶胞中有一个原子位于立方体的中心,面心立方晶体每个晶胞中有一个原子位于每个立方体的面心,简单立方晶体每个晶胞中只有一个原子。
四方晶系的晶体中,晶胞的底面为矩形,其中一个边与底面垂直。
正交晶系的晶胞基本上和四方晶系相似,但它的底面为正方形。
单斜晶系的晶胞有一个倾斜的边,它是在不同轴上分别有两面成直角。
三斜晶系的晶体是最复杂的结构类型,它的晶胞没有任何对称性。
六角晶系的晶体结构可以看作是体心立方晶体和单斜晶体的组合,晶胞为底面呈六角形的棱柱。
三角晶系的晶体结构最特殊,晶胞为三角形。
晶体结构的研究对于材料科学非常重要。
通过了解晶体结构,我们可以预测和解释材料的物理性质,如硬度、热膨胀系数和电导率等。
晶体结构还对材料的合成和制备起到了指导作用。
例如,通过改变晶体结构,可以改变材料的性质,如增加或减少导电性。
总之,材料中的晶体结构是材料科学基础中的重要内容。
了解晶体结构有助于我们理解材料的性质和行为,并为材料设计和合成提供基础。
晶体结构的研究对于材料科学的发展非常重要,并在材料的合成和制备中起到了指导作用。