医学统计学等级资料秩和检验
- 格式:ppt
- 大小:884.50 KB
- 文档页数:12
医学统计学之秩和检验什么是秩和检验?秩和检验(Wilcoxon rank-sum test),又称为Mann-Whitney U检验,是非参数假设检验的一种常用方法,用于比较两个独立样本的位置差异。
这个方法基于样本的秩次,而不依赖于数据的具体分布。
秩和检验的适用场景秩和检验通常用于以下情况:1.样本数据不满足正态分布假设;2.无法满足方差齐性假设;3.样本容量较小。
秩和检验是一种非常灵活的方法,适用于大部分类型的数据分布,甚至可以包括极端的离群值。
秩和检验的原理秩和检验的原理是将两个样本的观察值合并后,按照大小重新排列,并赋予秩次。
然后利用秩次之和来比较两个样本的位置差异。
1.对于两个独立样本,将两组数据合并为一个整体的样本。
2.对于每个观察值,分别计算出在整体样本中的秩次。
3.计算两组样本的秩和,比较其大小。
4.根据秩和的大小以及样本容量,查表或计算检验统计量的p-value。
秩和检验的步骤秩和检验的具体步骤如下:1.将两个样本合并为一个整体样本,并标记属于哪个样本。
2.对整体样本中的观察值进行排序,得到秩次。
3.计算秩和,并比较两个样本的秩和大小。
4.根据秩和大小以及样本容量,查找临界值。
5.根据临界值判断是否拒绝原假设,或者计算统计量的p-value。
6.根据p-value判断是否拒绝原假设。
秩和检验的示例假设我们有两个医学治疗方法A和B,想要比较其对病人治疗效果的差异。
我们随机选择了两组病人,分别给予方法A和B进行治疗,然后观察他们的疗效。
以下是我们观察到的结果:组A:8, 10, 12, 10, 14 组B:9, 11, 14, 12, 13我们可以按照秩次将两组数据合并,并计算秩和:组A:8(1), 10(3), 12(4), 10(3), 14(5) 组B:9(2), 11(4), 14(5), 12(4), 13(2)组A的秩和为16,组B的秩和为17。
然后,我们根据秩和的大小以及样本容量,在秩和表中查找临界值。