等级资料常用检验方法
- 格式:ppt
- 大小:300.50 KB
- 文档页数:57
matlab两组独立样本等级资料kruskal-wallis h假设检验方法文章标题:深度解析MATLAB中的两组独立样本等级资料Kruskal-Wallis H假设检验方法在统计学中,Kruskal-Wallis H检验是一种用于比较两个或多个独立组的等级资料的非参数假设检验方法。
在MATLAB中,我们可以利用这种方法来进行统计分析,并得出对应的假设检验结果。
本文将从简到繁地介绍Kruskal-Wallis H检验的基本原理,然后结合MATLAB 的实际操作,以帮助读者更加全面、深入地理解这一统计分析方法。
1. Kruskal-Wallis H检验的基本原理Kruskal-Wallis H检验是一种用于比较两个或多个独立组的等级资料的非参数假设检验方法。
当我们需要比较多个组的数据时,无法满足方差分析等条件的情况下,可以使用Kruskal-Wallis H检验来判断这些组是否具有差异。
其原假设为各组样本来自同一总体,备择假设为不是来自同一总体。
2. MATLAB中的Kruskal-Wallis H检验函数在MATLAB中,我们可以使用“kruskalwallis”函数来进行Kruskal-Wallis H检验。
该函数的语法为:[p, tbl, stats] = kruskalwallis(x,group),其中x为一个包含所有数据的向量,group为一个指示每个数据所属组别的向量。
该函数将返回假设检验的p值以及其他相关统计信息。
3. 实际操作及结果解释接下来,我们将给出一个具体的例子来演示如何使用MATLAB中的Kruskal-Wallis H检验函数。
假设我们有三个组的等级资料数据,分别为组A、组B和组C。
我们首先将这些数据输入到MATLAB中,并使用“kruskalwallis”函数进行假设检验。
假设检验的结果显示p值为0.032,小于显著性水平0.05,因此我们拒绝原假设,可以认为这三组数据具有显著差异。
spss基本知识点【篇一:spss基本知识点】结论不同麻醉诱导方法存在组间差别;患者的收缩压在不同的诱导方法下不同诱导时相变化的趋势不同,其中 a 组不同诱导时相收缩压较为稳定。
第八章非参数检验(nonparametrictests 菜单)参数检验:?? 通过样本的参数来检验总体参数的方法是参数检验。
如:通过样本的均值、方差来检验总体的数学期望与总体方差提出的假设是否为真.?? 参数检验对总体的分布有一定的要求,比如正态性和方差齐性非参数检验:?? 对总体分布情况未知时,无法用参数检验方法?? 非参数检验通过样本的分布对总体的分布进行检验非参数检验所要处理的问题:?? 两个总体分布未知,它们是否相同(用两组样本来检验)?? (由一组样本)猜出总体的分布(假设),然后用另一组样本去检验它是否正确注:两种分布是否相同,一般包含了参数(均值、方差等)是否相同的问题。
如果两个总体的分布函数形式相同,而参数不同,也被视为概率分布不同nonparametrictest 菜单(1) nonparametrictest 菜单(2) 卡方检验chi‐square?? 适用于拟合优度检验,即检验单变量的分布与理论分布是否一致?? 实例 1:贫困调查.sav 中身体状况变量的数据分布是否符合以往的经验:?? 完全不能自理 5%?? 基本不能自理10%?? 能自理无劳动能力 20%?? 部分丧失劳动能力 25%?? 身体健康 40% ?? 1.weightcasesby:death??2.analyze‐nonparametrictest‐chisquare 二项分布检验binomial ?? 二项分布的变量将总体分为两类(如医学中的生与死),二项分布的检验是通过样本中这两类的频率来检验总体中这两类的概率是否为给定的值 ?? binomial 过程可检验二项分类变量是个来自概率为 p 的二项分布例 1:一般来说,新生儿染色体异常率为1%,某医院观察了 400 名新生儿,只发现一例异常,请问该地新生儿异常率是否低于一般水平?数据文件见 6.2sav 1.weight cases by:num 2.analyze-nonparametric test-binomial 例 2:某地某一时期内出生 40 名婴儿,其中女性 12 名(定 sex=0),男性28名(定 sex=1)。
第八章研究资料的分析方法一、单项选择题1、在质性研究资料的分析中,一般先对前()份研究对象的文字资料进行编码。
A.1B.2C.3D.42、在质性研究资料的分析中,最初的编码不应超过A.4个B.6个C.8个D.10个3、在质性研究资料分析中,可进行编码的内容不包括A.反复出现的事物或观点B.偶尔出现的事物或特点C.现象或事物的形式D.现象或事物的变异性4、下列关于相关系数的叙述,错误的是A.相关系数用r表示,范围在-1~1之间B.r的绝对值大小表示相关的密切程度C.越接近1,表示相关程度越小;越接近0,表示相关程度越大D.“十”表示正相关,“一”表示负相关5、若要分析计量资料中两变量之间有无相关性,可进行A.方差分析B.t检验C.相关分析D.秩和检验6、当计量资料呈偏态分布时,可采用A.单样本t检验B.配对t检验C.方差分析D.秩和检验藏7、对于呈正态分布的计量资料,通常采用的描述性统计指标是A.均数±标准差B.中位数C.四分位数间距D.构成比8、统计方法的选择不取决于A.研究目的B.科研设计类型C.资料类型D.测量间隔9、可减少抽样误差的方法不包括A.尽可能采取随机抽样的方法,提高样本的代表性B.减少变异C.增加样本量到适当水平D.选择变异程度较小的指标二、多项选择题1、统计表的组成包括A.表题B.标目C.线条D.数字E.备注2、当计量资料呈正态分布时,常采用A.单样本t检验B.两独立样本t检验C.配对t检验D.方差分析E.秩和检验三、简答题1、简述Morse&Field对质性资料分析活动的概括。
2、简述应用人种学研究法分析资料的过程。
3、简述核心变量的基本特征。
4、简述应用根基理论研究法分析资料的步骤。
5、简述Giorgi对现象学研究法资料分析过程所分的步骤。
6、简述将录音或观察资料整理为文字的内容和方法。
7、简述质性研究资料分析的基本步骤。
8、简述统计图的结构及绘制要求。
9、简述绘制统计表的注意事项。
等级资料,即有序分类数据,是在统计学中常见的一种数据类型。
这种数据的特点是各类别之间存在一定的顺序关系,但不具备等距性。
针对等级资料的统计学方法主要有以下几种:
一、秩和检验:秩和检验是一种非参数统计方法,其应用范围广,对于不满足正态分布的数据也可适用。
主要包括Wilcoxon秩和检验和Kruskal-Wallis H检验。
前者适用于两独立样本的比较,后者则适用于多个独立样本的比较。
二、Ridit分析:Ridit分析是一种用于处理等级资料的统计方法,其基本思想是将原始数据转换为Ridit值,这样就可以将等级资料转换为计量资料进行处理。
这种方法既保留了等级资料的顺序信息,又充分利用了数据的全部信息,因此具有较高的效率。
三、有序多分类Logistic回归:有序多分类Logistic回归适用于因变量为有序多分类的情况。
它通过分析自变量对因变量各类别发生概率的影响,来揭示自变量对因变量的作用。
四、累积比数Logit模型:累积比数Logit模型是一种处理等级资料的回归分析方法。
它假设因变量的各类别之间存在一种“累积”的关系,并通过构建Logit模型来估计这种关系。
这种方法可以有效地处理等级资料,并且能够处理存在缺失值的情况。
以上就是针对等级资料的几种主要统计学方法。
在实际应用中,应根据数据的具体特点和研究目的选择合适的方法进行统计分析。
主题:多组等级资料比较的假设检验选择内容:1. 背景介绍:多组等级资料比较是统计学中常见的问题之一,当我们需要比较多组不同水平或处理的资料时,我们需要选择适合的假设检验方法来进行统计分析。
本文将介绍在不同情况下如何选择适合的假设检验方法。
2. 单因素方差分析(one-way ANOVA):单因素方差分析适用于比较多组不同水平的资料,例如实验中对照组、治疗组1、治疗组2等。
当我们希望比较多组资料均值之间是否存在显著差异时,可以选择单因素方差分析进行检验。
3. Kruskal-Wallis检验:当资料不符合正态分布或方差齐性的要求时,可以选择Kruskal-Wallis检验进行多组等级资料比较。
Kruskal-Wallis检验是一种非参数检验方法,不依赖于数据的分布特性,适用于小样本或不符合正态分布的资料。
4. Friedman检验:Friedman检验是针对重复测量资料的一种非参数检验方法,适用于对同一组个体在不同条件下进行多次测量的情况。
当我们希望比较多组重复测量资料的差异时,可以选择Friedman检验进行统计分析。
5. 贝叶斯统计方法:贝叶斯统计方法是一种基于贝叶斯定理的统计推断方法,常用于参数估计和假设检验。
在多组等级资料比较中,可以利用贝叶斯方法进行参数估计和假设检验,从而得到更加客观和全面的统计分析结果。
6. 结论:在进行多组等级资料比较时,我们应根据实际情况选择适合的假设检验方法,包括单因素方差分析、Kruskal-Wallis检验、Friedman检验和贝叶斯统计方法等。
通过合理选择假设检验方法,可以得到准确、可靠的统计分析结果,为科研工作和决策提供科学依据。
结构分析:1. 概述部分:介绍文章主题,提出多组等级资料比较的问题和背景。
2. 方法选择部分:详细介绍了单因素方差分析、Kruskal-Wallis检验、Friedman检验和贝叶斯统计方法在多组等级资料比较中的应用情况和适用范围。
matlab两组独立样本等级资料假设检验方法在统计学中,假设检验是一种常用的方法,用于判断关于总体参数的假设是否成立。
而在假设检验的方法中,针对不同类型的数据,有不同的检验方法。
在这篇文章中,我们将重点讨论针对两组独立样本等级资料的假设检验方法,特别是在MATLAB中的应用。
1. 独立样本等级资料独立样本等级资料是指来自两个不同总体的独立样本的等级资料,例如考试成绩、产品质量等级等。
在进行假设检验时,我们通常关心的是这两组样本的均值是否有显著差异。
2. 假设检验步骤对于独立样本等级资料的假设检验,一般包括以下步骤:- 提出假设:设定原假设和备择假设,一般原假设为两组样本均值相等,备择假设为两组样本均值不相等。
- 选择显著性水平:一般取0.05作为显著性水平。
- 计算检验统计量:根据两组样本的数据,计算出相应的检验统计量。
- 判断接受或拒绝原假设:比较检验统计量和临界值,如果检验统计量落在拒绝域内,则拒绝原假设,否则接受原假设。
3. MATLAB中的应用MATLAB作为一种强大的数学计算软件,提供了丰富的统计分析工具和函数,方便进行假设检验的计算和分析。
对于独立样本等级资料的假设检验,可以使用MATLAB中的t检验函数进行计算。
具体步骤如下:- 导入数据:首先将两组独立样本等级资料导入MATLAB工作空间。
- 使用ttest2函数:利用MATLAB中的ttest2函数,输入两组样本数据和显著性水平,即可计算出相关的假设检验结果。
在得到假设检验结果后,我们可以得出结论,并对两组样本的均值差异进行深入分析和讨论。
还可以对假设检验的结果进行可视化展示,更直观地呈现分析结果,帮助我们更好地理解研究问题。
4. 个人观点和总结在统计学中,假设检验是一种重要的分析方法,针对不同类型的数据有不同的检验方法。
对于独立样本等级资料的假设检验,我们可以借助MATLAB等统计分析工具进行计算和分析,帮助我们进行深入的研究和讨论。
医学统计学试题一、最佳选择题(每题1分,共40分)1.下列属于数值变量的是(D)A.性别B.职业C.民族D.脉搏E.血型2.若要用样本推断总体,样本应该是(A)A.总体中随机抽取的一部分B.总体中选取的有意义的一部分C.总体中任一部分D.总体中信息明确的一部分E.总体中典型的一部分3.统计量(B)A.是根据总体中的全部数据计算出的统计指标B.是由样本数据计算出的统计指标C.是统计总体数据得到的量D.是反映总体统计特征的量E.是用参数估计出来的4.()的误差值总是恒定的偏向一侧。
A.系统误差B.随机测量误差C.抽样误差D.均数的抽样误差E.率的抽样误差5.随机事件发生的概率的取值范围为(B)A.(0,1)B.[0,1]C.(0,1]D.[0,1)E.[0.01,0.05]6.统计工作的基本步骤中最关键的一步是(B)A.统计设计B.资料搜集C.资料整理D.统计描述E.统计推断7.冠心病、大多恶性肿瘤患者的年龄分布都呈()A.对称分布B.偏态分布C.正偏态分布D.负偏态分布E.左偏态分布8.最适用于描述对称分布、正态分布或近似正态分布的数值变量资料的集中趋势指标是()A.平均数 B.算术均数 C.几何均数D.中位数E.第50百分位数9.最适用于描述对称分布,特别是正态分布或近似正态分布的数值变量资料的离散趋势指标是()A.极差B.四分位数间距C.标准差D.全距E.离均差10.某地110名20岁男大学生的身高均数为172.73cm,标准差为 4.09cm;体重均数为55.04kg,标准差为4.10kg。
则()A.身高的变异度大于体重B.体重的变异度大于身高C.二者一样大D.前述三种情况都有可能E.差条件,无法确定11.N(0,1)的形状参数是()A.0B.1C.-1D.0.01E.0.0512.前述第10题该地20岁男大学生身高均数的95%C.I.为()(单位:cm)A.170.97~172.49B.171.97~173.49C.164.71~180.75D.163.71~179.75E.165.71~181.7513.根据专业知识,事先不知道会出现什么结果,用()A.单侧检验B.双侧检验C.单侧、双侧都可以D.一般都用单侧较稳妥E.无法判断14.假设检验时发生第一类错误的概率为()A.αB.βC.γD.0.01E.0.0515.两小样本t检验,若(),则P<α,按α检验水准,拒绝H,接受H1,差异有统计学意义。
临床新药研究的若干统计问题临床研究的设计(一)专业原则(统计前提)一、医学论理学起步-发展-重视,SOP二、研究基础研究者手册、文献资料、毒性、疗效、ADR三、目的明确方案合理,疗效提高,提高,ADR减少四、一致性检验统一检验,量表评分、同一SOP五、专业标准诊断标准、纳入标准(是)、排除标准(否)、推出标准、剔除标准、终止标准、疗效标准。
六、三种对象集:1、意愿用药集:包括用药后感到无效及难受而中途退出者。
2、符合方案集:是完成全部临床研究过程的病人。
3、安全分析集:凡用过一次药都在内,出现ADR均应统计。
PP分析、ITT分析及SS分析一、格病例分析(PP)对完成治疗方案,且依从性好的病例分析,分析不良反应时所有出现反应的病例应予统计、分析病菌敏感率时所有检测的菌株应予统计。
二、意向性分析(ITT)对意愿用药者的分析,更接近于上市实际情况,包括合格病例及已接受治疗又退出的病例,退出病例的最后一次数据转换为最终数据,不包括剔除的病例(误诊、误纳、未用药、无记录)三、安全集分析(SS)只要用过一次药,不论有无检测记录,出现不良反应均应统计,计算分母是安全集临床研究的全面记录1、筛选人数:入选检查前的人数2、入选人数:入选检查后的人数3、剔除人数:误诊、误纳、应排除过敏、未服药、未检测、不应或无法统计。
4、退出人数:中辍、脱落。
5、合格病例人数6、试验全面中止:出现严重ADR、无效、申办人中止、SFDA中止。
7、纳入标准:写明年龄、性别、诊断、病情、病程或病期、特殊检验的要求、已签署知情同意书。
8、排除标准(拒纳标准):并非纳入标准的反义语,重要脏器功能异常者,应一一明确规定异常范围。
特定疾病或病史(精神病、艾滋病、器官移植、胃出血)治疗前若干时间接受了新药研究或特定治疗或药物过敏体质或对两种药物食物有过敏者,怀孕或哺乳期、月经期妇女。
9、剔除标准:误诊、未用药,无检查记录。
10、退出标准:病人自退又称脱落、病人自退、自感效差、自感难耐受、失访、不说明原因、医师令退、依从性差、ADR、泄盲、转科治疗、加杂症。
秩和检验一、学习背景和方法简介1. 问题的提出:在实践中我们常常遇到以下一些资料,如需比较患者和正常人的血铁蛋白、血铅值、不同药物的溶解时间、实验鼠发癌后的生存日数、护理效果评分等,这类资料有如下特点:(1)资料的总体分布类型未知;或(2)资料分布类型已知,但不符合正态分布;或(3)某些变量可能无法精确测量。
对于此类资料,除了进行变量变换或t’检验外,可采用非参数统计方法。
2. 参数统计与非参数统计的区别:参数统计:即总体分布类型已知,用样本指标对总体参数进行推断或作假设检验的统计分析方法。
非参数统计:即不考虑总体分布类型是否已知,不比较总体参数,只比较总体分布的位置是否相同的统计方法。
下面我们将介绍非参数统计中一种常用的检验方法--秩和检验,其中“秩”又称等级、即按数据大小排定的次序号。
上述次序号的和称“秩和”,秩和检验就是用秩和作为统计量进行假设检验的方法。
二、不同设计和资料类型的秩和检验1. 配对比较的资料:对配对比较的资料应采用符合秩和检验(Sighed rank test),其基本思想是:若检验假设成立,则差值的总体分布应是对称的,故正负秩和相差不应悬殊。
检验的基本步骤为:(1)建立假设;H0:差值的总体中位数为0;H1:差值的总体中位数不为0;检验水准为0.05。
(2)算出各对值的代数差;(3)根据差值的绝对值大小编秩;(4)将秩次冠以正负号,计算正、负秩和;(5)用不为“0”的对子数n及T(任取T+或T-)查检验界值表得到P值作出判断。
应注意的是当n>25时,可用正态近似法计算u值进行u检验,当相同秩次较多时u值需进行校正。
2. 两样本成组比较:两样本成组资料的比较应用Wilcoxon秩和检验,其基本思想是:若检验假设成立,则两组的秩和不应相差太大。
其基本步骤是:(1)建立假设;H0:比较两组的总体分布相同;H1:比较两组的总体分布位置不同;检验水准为0.05。
(2)两组混合编秩;(3)求样本数最小组的秩和作为检验统计量T;(4)以样本含量较小组的个体数n1、两组样本含量之差n2-n1及T值查检验界值表;(5)根据P值作出统计结论。