等级资料常用检验方法
- 格式:ppt
- 大小:277.50 KB
- 文档页数:8
matlab两组独立样本等级资料kruskal-wallis h假设检验方法文章标题:深度解析MATLAB中的两组独立样本等级资料Kruskal-Wallis H假设检验方法在统计学中,Kruskal-Wallis H检验是一种用于比较两个或多个独立组的等级资料的非参数假设检验方法。
在MATLAB中,我们可以利用这种方法来进行统计分析,并得出对应的假设检验结果。
本文将从简到繁地介绍Kruskal-Wallis H检验的基本原理,然后结合MATLAB 的实际操作,以帮助读者更加全面、深入地理解这一统计分析方法。
1. Kruskal-Wallis H检验的基本原理Kruskal-Wallis H检验是一种用于比较两个或多个独立组的等级资料的非参数假设检验方法。
当我们需要比较多个组的数据时,无法满足方差分析等条件的情况下,可以使用Kruskal-Wallis H检验来判断这些组是否具有差异。
其原假设为各组样本来自同一总体,备择假设为不是来自同一总体。
2. MATLAB中的Kruskal-Wallis H检验函数在MATLAB中,我们可以使用“kruskalwallis”函数来进行Kruskal-Wallis H检验。
该函数的语法为:[p, tbl, stats] = kruskalwallis(x,group),其中x为一个包含所有数据的向量,group为一个指示每个数据所属组别的向量。
该函数将返回假设检验的p值以及其他相关统计信息。
3. 实际操作及结果解释接下来,我们将给出一个具体的例子来演示如何使用MATLAB中的Kruskal-Wallis H检验函数。
假设我们有三个组的等级资料数据,分别为组A、组B和组C。
我们首先将这些数据输入到MATLAB中,并使用“kruskalwallis”函数进行假设检验。
假设检验的结果显示p值为0.032,小于显著性水平0.05,因此我们拒绝原假设,可以认为这三组数据具有显著差异。
常用的检测方法及检测频率默认分类 2009-11-01 15:34:04 阅读953 评论0字号:大中小订阅常用的检测方法及检测频率发表人: 顾庆点击次数514工程质量检测工作是公路工程技术管理中的一个重要组成部分,也是公路工程质量控制和竣工验收评定工作中不可缺少的一个主要环节。
用定量的方法,科学地评定各种材料和构件的质量;能合理地控制并科学地评定工程质量。
路基、路面工程质量检测一、压实度的检测方法对于路基及路面基层,压实度是指实际达到的工地干密度与室内标准击实试验所得的最大干密度的比值;对沥青路面,压实度是指现场实际达到的密度与室内标准密度的比值。
1、灌砂法:灌砂法是利用均匀颗粒的砂去置换试洞的体积,它是当前最通用的方法,很多工程中都把灌砂法列为现场测定密度的主要方法。
该方法可用于测试各种土或路面材料的密度其缺点是需要携带多量的砂,而且称量次数较多,因此其测试速度较慢。
采用此法时应符合下列规定:(1)当集料的最大料径小于15mm、测定层的厚度不超过150mm时,宜采用Ф100mm 的大型灌砂筒测试。
(2)当集料的粒径等于或大于15mm,但不大于40mm,测定层的厚度超过150mm,但不超过200mm时,应用Ф150mm的大型灌砂筒测试。
2、环刀法:环刀法是测量现场密度的传统方法。
国内采用的环刀容积通常为200cm3,环刀高度通常约5cm。
用环刀法测得的容重是环刀内土样所在深度范围内的平均密度,它不能代表整个碾压层的平均密度。
只有使环刀所取的土恰好是碾压层中间的土,环刀法所得的结果才可能与灌砂法的结果大致相同。
另外,环刀法适用面较窄,对于含有粒料的稳定土及松散性材料无法使用。
3、核子密度仪法:该法是利用放射性元素(通常是γ射线和中子射线)测量土或路面材料的密度和含水量。
其特点是测量速度快,需要人员少,缺点是放射性物质对人体有害。
对于核子密度仪法,可作施工控制使用,但需与常规方法比较,以验证其可靠性。
等级资料,即有序分类数据,是在统计学中常见的一种数据类型。
这种数据的特点是各类别之间存在一定的顺序关系,但不具备等距性。
针对等级资料的统计学方法主要有以下几种:
一、秩和检验:秩和检验是一种非参数统计方法,其应用范围广,对于不满足正态分布的数据也可适用。
主要包括Wilcoxon秩和检验和Kruskal-Wallis H检验。
前者适用于两独立样本的比较,后者则适用于多个独立样本的比较。
二、Ridit分析:Ridit分析是一种用于处理等级资料的统计方法,其基本思想是将原始数据转换为Ridit值,这样就可以将等级资料转换为计量资料进行处理。
这种方法既保留了等级资料的顺序信息,又充分利用了数据的全部信息,因此具有较高的效率。
三、有序多分类Logistic回归:有序多分类Logistic回归适用于因变量为有序多分类的情况。
它通过分析自变量对因变量各类别发生概率的影响,来揭示自变量对因变量的作用。
四、累积比数Logit模型:累积比数Logit模型是一种处理等级资料的回归分析方法。
它假设因变量的各类别之间存在一种“累积”的关系,并通过构建Logit模型来估计这种关系。
这种方法可以有效地处理等级资料,并且能够处理存在缺失值的情况。
以上就是针对等级资料的几种主要统计学方法。
在实际应用中,应根据数据的具体特点和研究目的选择合适的方法进行统计分析。
主题:多组等级资料比较的假设检验选择内容:1. 背景介绍:多组等级资料比较是统计学中常见的问题之一,当我们需要比较多组不同水平或处理的资料时,我们需要选择适合的假设检验方法来进行统计分析。
本文将介绍在不同情况下如何选择适合的假设检验方法。
2. 单因素方差分析(one-way ANOVA):单因素方差分析适用于比较多组不同水平的资料,例如实验中对照组、治疗组1、治疗组2等。
当我们希望比较多组资料均值之间是否存在显著差异时,可以选择单因素方差分析进行检验。
3. Kruskal-Wallis检验:当资料不符合正态分布或方差齐性的要求时,可以选择Kruskal-Wallis检验进行多组等级资料比较。
Kruskal-Wallis检验是一种非参数检验方法,不依赖于数据的分布特性,适用于小样本或不符合正态分布的资料。
4. Friedman检验:Friedman检验是针对重复测量资料的一种非参数检验方法,适用于对同一组个体在不同条件下进行多次测量的情况。
当我们希望比较多组重复测量资料的差异时,可以选择Friedman检验进行统计分析。
5. 贝叶斯统计方法:贝叶斯统计方法是一种基于贝叶斯定理的统计推断方法,常用于参数估计和假设检验。
在多组等级资料比较中,可以利用贝叶斯方法进行参数估计和假设检验,从而得到更加客观和全面的统计分析结果。
6. 结论:在进行多组等级资料比较时,我们应根据实际情况选择适合的假设检验方法,包括单因素方差分析、Kruskal-Wallis检验、Friedman检验和贝叶斯统计方法等。
通过合理选择假设检验方法,可以得到准确、可靠的统计分析结果,为科研工作和决策提供科学依据。
结构分析:1. 概述部分:介绍文章主题,提出多组等级资料比较的问题和背景。
2. 方法选择部分:详细介绍了单因素方差分析、Kruskal-Wallis检验、Friedman检验和贝叶斯统计方法在多组等级资料比较中的应用情况和适用范围。
统计分析是中医临床研究总结的重要组成部分,统计分析方法选择的恰当与否以及对统计学结论的正确理解,直接影响对中医临床研究结果评价的客观性。
本章针对当前中医临床研究中数据分析方法中出现的一些问题,简要介绍了显著性检验的基本原理和方法,并按资料的类型举例说明,可望有助于研究者应用统计方法时选择和参考。
第一节临床研究数据类型一、计量资料(measurement data)在临床研究中,通过对观察单位用定量的办法测量某项指标数量大小所得到的资料,称为计量资料。
如测量病人的身高(cm)、体重(kg)、血压(kPa)、血红蛋白(g/L)、血液中胆固醇含量(mmol)、中风病人的出血量、用药后退烧的时间(小时)、住院天数等。
对这一类资料常用的描述性指标有平均数、标准差。
推断性分析有t检验、u检验、方差分析、相关与回归分析等。
二、分类资料(categories data)也称命名资料,是将观察单位按某种属性或类别分组,然后清点各组的观察单位数目所得到的资料,如性别分男、女,临床试验观察结果分阳性、阴性,血型按A、B、AB、O四型分类,中医证候分类等,这一类资料常用的描述性分析指标有构成比、率和相对比及率的标准误等。
推断性分析主要有u检验、X2检验。
三、等级资料(ranked data)将观察单位按某种属性的不同程度分组,统计各组的观察单位数目所得到的资料,如临床疗效判定为痊愈、显效、有效、无效;病情分轻、中、重;实验室检测结果分-、±、+、++、+++、++++等,它们之间只有等级、程度上的差异,这一类资料常用的推断性分析有Ridit分析、秩和检验等。
四、数据类型转换根据分析的需要,有时可以进行数据类型的互相转化,例如每个人的血红蛋白属计量资料,若按血红蛋白正常与异常分为两组,资料便转换为计数资料;又如病人某证候的记分为分类资料,若将记分分成轻、中、重三型,资料便转换为等级资料,在多因素分析中有时需要将定性指标数量化,如将分多项的治疗结果转化为评分,分别用0、1、2、3….表示,则可按计量资料处理。
秩和检验一、学习背景和方法简介1. 问题的提出:在实践中我们常常遇到以下一些资料,如需比较患者和正常人的血铁蛋白、血铅值、不同药物的溶解时间、实验鼠发癌后的生存日数、护理效果评分等,这类资料有如下特点:(1)资料的总体分布类型未知;或(2)资料分布类型已知,但不符合正态分布;或(3)某些变量可能无法精确测量。
对于此类资料,除了进行变量变换或t’检验外,可采用非参数统计方法。
2. 参数统计与非参数统计的区别:参数统计:即总体分布类型已知,用样本指标对总体参数进行推断或作假设检验的统计分析方法。
非参数统计:即不考虑总体分布类型是否已知,不比较总体参数,只比较总体分布的位置是否相同的统计方法。
下面我们将介绍非参数统计中一种常用的检验方法--秩和检验,其中“秩”又称等级、即按数据大小排定的次序号。
上述次序号的和称“秩和”,秩和检验就是用秩和作为统计量进行假设检验的方法。
二、不同设计和资料类型的秩和检验1. 配对比较的资料:对配对比较的资料应采用符合秩和检验(Sighed rank test),其基本思想是:若检验假设成立,则差值的总体分布应是对称的,故正负秩和相差不应悬殊。
检验的基本步骤为:(1)建立假设;H0:差值的总体中位数为0;H1:差值的总体中位数不为0;检验水准为0.05。
(2)算出各对值的代数差;(3)根据差值的绝对值大小编秩;(4)将秩次冠以正负号,计算正、负秩和;(5)用不为“0”的对子数n及T(任取T+或T-)查检验界值表得到P值作出判断。
应注意的是当n>25时,可用正态近似法计算u值进行u检验,当相同秩次较多时u值需进行校正。
2. 两样本成组比较:两样本成组资料的比较应用Wilcoxon秩和检验,其基本思想是:若检验假设成立,则两组的秩和不应相差太大。
其基本步骤是:(1)建立假设;H0:比较两组的总体分布相同;H1:比较两组的总体分布位置不同;检验水准为0.05。
(2)两组混合编秩;(3)求样本数最小组的秩和作为检验统计量T;(4)以样本含量较小组的个体数n1、两组样本含量之差n2-n1及T值查检验界值表;(5)根据P值作出统计结论。
临床新药研究的若干统计问题临床研究的设计(一)专业原则(统计前提)一、医学论理学起步-发展-重视,SOP二、研究基础研究者手册、文献资料、毒性、疗效、ADR三、目的明确方案合理,疗效提高,提高,ADR减少四、一致性检验统一检验,量表评分、同一SOP五、专业标准诊断标准、纳入标准(是)、排除标准(否)、推出标准、剔除标准、终止标准、疗效标准。
六、三种对象集:1、意愿用药集:包括用药后感到无效及难受而中途退出者。
2、符合方案集:是完成全部临床研究过程的病人。
3、安全分析集:凡用过一次药都在内,出现ADR均应统计。
PP分析、ITT分析及SS分析一、格病例分析(PP)对完成治疗方案,且依从性好的病例分析,分析不良反应时所有出现反应的病例应予统计、分析病菌敏感率时所有检测的菌株应予统计。
二、意向性分析(ITT)对意愿用药者的分析,更接近于上市实际情况,包括合格病例及已接受治疗又退出的病例,退出病例的最后一次数据转换为最终数据,不包括剔除的病例(误诊、误纳、未用药、无记录)三、安全集分析(SS)只要用过一次药,不论有无检测记录,出现不良反应均应统计,计算分母是安全集临床研究的全面记录1、筛选人数:入选检查前的人数2、入选人数:入选检查后的人数3、剔除人数:误诊、误纳、应排除过敏、未服药、未检测、不应或无法统计。
4、退出人数:中辍、脱落。
5、合格病例人数6、试验全面中止:出现严重ADR、无效、申办人中止、SFDA中止。
7、纳入标准:写明年龄、性别、诊断、病情、病程或病期、特殊检验的要求、已签署知情同意书。
8、排除标准(拒纳标准):并非纳入标准的反义语,重要脏器功能异常者,应一一明确规定异常范围。
特定疾病或病史(精神病、艾滋病、器官移植、胃出血)治疗前若干时间接受了新药研究或特定治疗或药物过敏体质或对两种药物食物有过敏者,怀孕或哺乳期、月经期妇女。
9、剔除标准:误诊、未用药,无检查记录。
10、退出标准:病人自退又称脱落、病人自退、自感效差、自感难耐受、失访、不说明原因、医师令退、依从性差、ADR、泄盲、转科治疗、加杂症。
秩和检验一、学习背景和方法简介1. 问题的提出:在实践中我们常常遇到以下一些资料,如需比较患者和正常人的血铁蛋白、血铅值、不同药物的溶解时间、实验鼠发癌后的生存日数、护理效果评分等,这类资料有如下特点:(1)资料的总体分布类型未知;或(2)资料分布类型已知,但不符合正态分布;或(3)某些变量可能无法精确测量。
对于此类资料,除了进行变量变换或t’检验外,可采用非参数统计方法。
2. 参数统计与非参数统计的区别:参数统计:即总体分布类型已知,用样本指标对总体参数进行推断或作假设检验的统计分析方法。
非参数统计:即不考虑总体分布类型是否已知,不比较总体参数,只比较总体分布的位置是否相同的统计方法。
下面我们将介绍非参数统计中一种常用的检验方法--秩和检验,其中“秩”又称等级、即按数据大小排定的次序号。
上述次序号的和称“秩和”,秩和检验就是用秩和作为统计量进行假设检验的方法。
二、不同设计和资料类型的秩和检验1. 配对比较的资料:对配对比较的资料应采用符合秩和检验(Sighed rank test),其基本思想是:若检验假设成立,则差值的总体分布应是对称的,故正负秩和相差不应悬殊。
检验的基本步骤为:(1)建立假设;H0:差值的总体中位数为0;H1:差值的总体中位数不为0;检验水准为0.05。
(2)算出各对值的代数差;(3)根据差值的绝对值大小编秩;(4)将秩次冠以正负号,计算正、负秩和;(5)用不为“0”的对子数n及T(任取T+或T-)查检验界值表得到P值作出判断。
应注意的是当n>25时,可用正态近似法计算u值进行u检验,当相同秩次较多时u值需进行校正。
2. 两样本成组比较:两样本成组资料的比较应用Wilcoxon秩和检验,其基本思想是:若检验假设成立,则两组的秩和不应相差太大。
其基本步骤是:(1)建立假设;H0:比较两组的总体分布相同;H1:比较两组的总体分布位置不同;检验水准为0.05。
(2)两组混合编秩;(3)求样本数最小组的秩和作为检验统计量T;(4)以样本含量较小组的个体数n1、两组样本含量之差n2-n1及T值查检验界值表;(5)根据P值作出统计结论。
五种检验方法:
以下是五种常用的检验方法:
1.假设检验:通过提出假设,然后使用样本数据来验证假设是否成立。
这种方法常用
于数据分析,如显著性检验等。
2.抽样检验:在总体中随机抽取一部分样本进行检验,然后根据样本的检验结果推断
总体的情况。
这种方法常用于质量控制、市场调研等领域。
3.序贯检验:在生产过程中不断进行检测,一旦发现不合格品就立即停止生产,并进
行调整。
这种方法可以减少浪费和提高生产效率。
4.过程能力分析:通过对生产过程的数据进行分析,评估生产过程的能力,并找出改
进的方向。
这种方法可以帮助企业提高产品质量和生产效率。
5.回归分析:通过分析变量之间的关系,建立数学模型,预测未来的趋势。
这种方法
常用于预测分析、市场调研等领域。