快速凝固失重条件下凝固定向凝固
- 格式:ppt
- 大小:2.11 MB
- 文档页数:16
布里奇曼斯托克定向凝固法介绍布里奇曼斯托克定向凝固法(Bridgman-Stockbarger method)是一种重要的实验方法,用于研究单晶的生长和凝固过程。
它是由二位科学家布里奇曼斯和斯托克巴格发展而成的,并在材料科学领域得到广泛应用。
该方法通过控制熔体的温度梯度和凝固速度来实现单晶的生长,以获得高纯度和大尺寸的晶体材料。
工艺原理温度梯度布里奇曼斯托克定向凝固法的关键在于创建一个合适的温度梯度。
通常,熔体温度从下到上逐渐降低,形成一个从高温到低温的温度梯度。
这样可以控制晶体的生长方向和生长速率。
凝固速度凝固速度是另一个重要的参数。
通过调节凝固速度,可以控制晶体的晶格缺陷和晶体缺陷密度。
快速凝固可以得到高度有序的晶体,而慢速凝固则会导致晶格缺陷的增加。
实验过程1.准备样品:选择合适的晶体材料,并将其制成适当尺寸和形状的熔体。
2.设计熔体容器:选择合适的容器,通常为石英管或陶瓷坩埚。
3.创建温度梯度:将熔体置于熔炉中,通过控制熔炉上下部分的温度来形成温度梯度。
4.开始生长:将熔体加热至适当温度,使其开始凝固。
凝固过程中,缓慢下移熔体容器,保持温度梯度不变。
5.结束生长:当晶体生长到所需尺寸时,停止加热并冷却样品,使其完全凝固。
6.取出晶体:将晶体从熔体容器中取出,并进行后续处理和分析。
应用布里奇曼斯托克定向凝固法在材料科学领域有广泛的应用,特别是在单晶生长和研究方面。
它可以用于生长各种材料的单晶,如金属、半导体和陶瓷。
其应用不仅限于实验室研究,还可以用于工业生产中的单晶材料制备。
优势与局限性优势•能够制备大尺寸和高纯度的单晶材料。
•可以控制晶体的生长方向和生长速率。
•数据可重复性高,实验结果可预测性强。
局限性•该方法需要复杂的实验条件和设备。
•凝固过程中容易引入晶体缺陷,需要进一步的处理和调控。
•在某些材料中,可能会出现晶体断裂或晶格缺陷过多的问题。
发展趋势随着材料科学的发展,人们对高性能材料的需求日益增加。
定向凝固技术及其应用1.定向凝固理论基础及方法定向凝固又称定向结晶,是指金属或合金在熔体中定向生长晶体的一种方法。
定向凝固技术是在铸型中建立特定方向的温度梯度,使熔融合金沿着热流相反的方向,按要求的结晶取向进行凝固铸造的工艺。
它能大幅度地提高高温合金综合性能。
定向凝固的目的是为了使铸件获得按一定方向生长的柱状晶或单晶组织。
定向凝固铸件的组织分为柱状、单晶和定向共晶3种。
要得到定向凝固组织需要满足的条件,首先要在开始凝固的部位形成稳定的凝固壳,凝固壳的形成阻止了该部位的型壁晶粒游离,并为柱状晶提供了生长基础,该条件可通过各种激冷措施达到。
其次,要确保凝固壳中的晶粒按既定方向通过择优生长而发展成平行排列的柱状晶组织,同时,为使柱状晶的纵向生长不受限制,并且在其组织中不夹杂有异向晶粒,固液界面前方不应存在生核和晶粒游离现象。
这个条件可通过下述措施来满足:(1)严格的单向散热。
要使凝固系统始终处于柱状晶生长方向的正温度梯度作用下,并且要绝对阻止侧向散热,以避免界面前方型壁及其附近的生核和长大。
(2)要有足够大的液相温度梯度与固液界面向前推进速度比值以使成分过冷限制在允许的范围内。
同时要减少熔体的非均质生核能力,这样就能避免界面前方的生核现象,提高熔体的纯净度,减少因氧化和吸氧而形成的杂质污染,对已有的有效衬底则通过高温加热或加入其他元素来改变其组成和结构等方法均有助于减少熔体的非均质生核能力。
(3)要避免液态金属的对流。
搅拌和振动,从而阻止界面前方的晶粒游离,对晶粒密度大于液态金属的合金,避免自然对流的最好方法就是自下而上地进行单向结晶。
当然也可以通过安置固定磁场的方法阻止其单向结晶过程中的对流。
从这三个条件我们可以推断,为了实现定向凝固,在工艺技术上必须采取措施避免侧向散热,同时在靠近固液界面的熔体中维持较高的温度梯度。
定向生长理论和它的应用很大程度上取决于先进定向凝固技术。
自从Bridgman和Stockbarger在20世纪20年达提出奠定了现代定向凝固和单晶生长技术基础的Bridgman定向凝固技术,定向凝固就被广泛运用于制备各种结构和功能材料。
关于快速凝固原理的应用1. 引言快速凝固是一种物质从液态到固态变化的过程,就是在短时间内将物质迅速冷却使其凝固。
快速凝固技术在许多领域都有广泛的应用,如冶金工业、材料科学、化学工程等。
本文将介绍快速凝固原理以及其在不同领域中的应用。
2. 快速凝固原理快速凝固原理是指在非平衡条件下,通过迅速冷却使物质快速从液态转变为固态的过程。
它能够在短时间内形成非晶态或超细晶态结构,从而使材料具有优异的性能。
快速凝固原理可以通过多种方式实现,包括快速冷却、高速冷却等。
快速凝固的核心原理是通过迅速冷却来阻止物质的晶体生长和晶格有序排列的形成。
在液态物质中,原子或分子是无序排列的,当物质冷却到一定温度以下时,原子或分子开始有序排列形成晶体结构。
但是,当快速冷却时,原子或分子无法在较短时间内有序排列,从而形成非晶态或超细晶态结构。
3. 冶金工业中的应用在冶金工业中,快速凝固技术被广泛应用于合金制备和材料改性。
通过快速凝固技术,可以制备出具有优异性能的合金材料。
例如,在汽车工业中,利用快速凝固技术可以制备出高强度、轻量化的铝合金,从而提高汽车的燃油效率和安全性能。
此外,快速凝固技术还可以用于制备高性能的磁性材料和高温合金等。
4. 材料科学中的应用在材料科学领域,快速凝固技术被广泛应用于纳米材料制备和薄膜生长。
通过快速凝固技术,可以制备出具有纳米晶特性的材料,这些材料具有较高的强度和优异的导电性能。
同时,快速凝固技术也可以用于纳米颗粒的合成和纳米结构的制备,为纳米科技的发展提供了重要基础。
5. 化学工程中的应用在化学工程领域,快速凝固技术被应用于聚合物的制备和纳米粒子的合成。
通过快速凝固技术,可以控制聚合物的结构和性能,制备出具有特定功能的聚合物材料。
同时,快速凝固技术也可以应用于纳米粒子的制备和纳米复合材料的合成,为化学工程领域的发展提供了新的可能性。
6. 结论快速凝固原理是一种利用迅速冷却来实现物质快速凝固的技术,它可以通过形成非晶态或超细晶态结构来改善材料的性能。
材料快速凝固技术快速凝固技术,也被称为快速凝固加工技术(RSP),是一种能够迅速冷却液体材料并将其凝固成固态形式的先进加工技术。
这种技术的应用范围非常广泛,涵盖了材料科学、催化、纳米科技、生物科技等多个领域。
快速凝固技术的发展极大地促进了材料的研究和应用创新,下面将对快速凝固技术的原理、方法和应用进行介绍。
快速凝固技术的原理主要是利用高速冷却来迅速降低材料的温度,使其在非平衡状态下凝固。
这种快速凝固过程中,原子、分子或离子的运动受到限制,使得凝固过程中产生的晶体或非晶体结构具有独特的性质。
凝固速度的快慢会对材料的微观结构和性能产生重要影响,因此快速凝固技术被广泛应用于制备具有特殊结构和性能的新材料。
快速凝固技术的方法主要包括磁控溅射法(Magnetron Sputtering)、激光熔凝法(Laser Melting)、电子束熔凝法(Electron Beam Melting)和惰性气体快速凝固法(Inert Gas Rapid Solidification)等。
这些方法都通过快速冷却将液态材料迅速凝固,并控制凝固速度和凝固形貌,以获得理想的材料结构和性能。
其中,惰性气体快速凝固法是一种常用的方法,通过高速气体喷射将液态材料迅速冷却,实现材料快速凝固。
快速凝固技术在材料科学领域具有广泛的应用。
首先,快速凝固技术可以制备非晶态材料,这种材料具有优异的力学性能、导电性能、韧性和耐腐蚀性能,被广泛应用于导线、磁盘等领域。
其次,快速凝固技术可以制备纳米晶材料,这种材料具有高强度、高硬度、高韧性和高塑性等优良性能,被广泛应用于制备新型材料、高效催化剂和高性能表面涂层。
再次,快速凝固技术可以制备多元合金材料,这种材料具有优异的热稳定性、耐腐蚀性和抗疲劳性能,广泛应用于航空航天、汽车制造和高速列车等领域。
总之,快速凝固技术是一项非常重要的先进加工技术,它能够通过迅速冷却将液态材料迅速凝固成固态形式,从而制备出具有特殊结构和性能的新材料。
快速凝固技术
嘿,你问快速凝固技术啊?这可挺厉害呢。
快速凝固技术呢,就是让东西很快地从液态变成固态。
就好像你把热巧克力倒在冰盘子上,一下子就凝固了。
这技术能让材料变得特别不一样哦。
首先呢,它能让材料的结构变得很细。
就像你把沙子堆得很密很密,这样材料就更结实,性能也更好。
比如说一些金属材料,用快速凝固技术处理后,强度会大大提高,不容易坏。
还有啊,能做出一些特殊的合金。
平常的方法做不出来的合金,用快速凝固技术说不定就能行。
就像你玩拼图,有些很难拼的图案,用特殊的方法就能拼出来。
这些特殊合金可能有各种神奇的性能,比如耐高温、耐腐蚀啥的。
快速凝固技术的方法也有不少呢。
有一种是雾化法,把液态的材料变成小雾滴,这样冷却得特别快。
就像你把水喷成雾,一会儿就干了。
还有一种是甩带法,把液态材料甩在一个快速转动的轮子上,也是瞬间就凝固了。
我给你讲个事儿吧。
我有个叔叔在一家工厂上班,他们工厂就用快速凝固技术做一些特殊的零件。
以前那些零件很难做,质量也不太好。
用了快速凝固技术后,零件又轻又结实,性能特别棒。
他们工厂的产品也更受欢迎了。
你看,快速凝固技术多厉害啊。
所以啊,快速凝固技术能让材料结构变细、做出特殊合金,方法有雾化法、甩带法等。
这技术在很多领域都有大用处呢。
加油!。
定向凝固技术的发展与应用摘要:定向凝固技术是指利用一定的设备,在一定的工艺条件下使材料的组织具有特殊取向从而获得优异性能的工艺过程。
定向凝固技术是伴随着高温合金的发展而逐步发展起来的。
本文综述了定向凝固技术的定向凝固理论,对比分析了不同定向凝固方法的优缺点,并从四个方面论述了提高温度梯度的途径,最后对定向凝固技术的发展及应用前景做了展望。
关键词:定向凝固;工艺特点;温度梯度;应用1.引言凝固是材料制备与加工的重要手段之一,先进的凝固技术为先进材料开发与利用提供了技术条件。
凝固过程中包含了热量、质量和动量的传输过程,它们决定了材料凝固组织和成分分布,进而影响材料性能。
近20年中,不仅开发出许多先进凝固技术,也丰富和发展了凝固理论。
其中,先进凝固技术主要集中于如下几种类型:定向凝固、快速凝固与近快速凝固技术、外加物理场(压力场、电磁场、超重力或微重力场)中的凝固技术以及强制流动条件下的凝固技术等。
定向凝固技术是对金属材料进行凝固过程进行研究的重要手段之一,可用于模拟合金的凝固过程,制备高质量航空发动机定向和单晶叶片等。
同时,也是研究固液界面形态及凝固组织行之有效的技术手段。
定向凝固技术的出现是涡轮叶片发展过程中的一次重大变革。
铸造高温合金叶片的制造工艺经历了从等轴晶铸造到定向单晶凝固的发展过程,不仅在晶粒结构的控制上取得了很大进展,而且铸造性能也有了很大提高,常规的铸造高温合金尽管有较高的耐温能力,但材料的中温蠕变强度较低。
定向凝固技术能够使晶粒定向排列,在垂直于应力方向没有晶界,同时由于沿晶粒生长的(001)方向具有最低的弹性模量,这样将大大降低叶片工作时因温度不均匀所造成的热应力,因此使蠕变断裂寿命和热疲劳强度得到很大提高,如DS Mar-M200+Hf比等轴晶合金热疲劳性能提高了8倍。
此后,随着各种定向凝固技术的不断发展,固液界面前沿的温度梯度不断增大、冷却速率逐渐提高,定向生产的叶片综合性能也日2. 定向凝固理论2.1成分过冷理论Chalmers、Tiller[1, 2]等人在研究中发现在合金中液固界面前沿由于溶质富集导致平界面失稳而形成胞晶和枝晶,首次提出了著名的成将会产生成分过冷”分过冷”判据:G L m L C o( k o _ 1)V k0D L ( 1) 式中,G L为液固界面前沿液相温度梯度;V为界面生长速度;m L为液相线斜率;C o为合金平均成份;k o为平衡溶质分配系数;D L为液相中溶质扩散系数。
定向凝固(又称为定向结晶)定义定向凝固是在凝固过程中采用强制手段,在凝固金属样未凝固熔体中建立起沿特定方向的温度梯度,从而使熔体在气壁上形核后沿着与热流相反的方向,按要求的结晶取向进行凝固的技术。
该技术最初是在高温合金的研制中建立并完善起来的。
采用、发展该技术最初是用来消除结晶过程中生成的横向晶界,从而提高材料的单向力学性能。
该技术运用于燃气涡轮发动机叶片的生产,所获得的具有柱状乃至单晶组织的材料具有优良的抗热冲击性能、较长的疲劳寿命、较高的蠕变抗力和中温塑性,因而提高了叶片的使用寿命和使用温度,成为当时震动冶金界和工业界的重大事件之一。
定向凝固技术对金属的凝固理论研究与新型高温合金等的发展提供了一个极其有效的手段。
但是传统的定向凝固方法得到的铸件长度是有限的,在凝固末期易出现等轴晶,且晶粒易粗大。
为此出现了连续定向凝固技术,它综合了连铸和定向凝固的优点,又相互弥补了各自的缺点及不足,从而可以得到具有理想定向凝固组织、任意长度和断面形状的铸锭或铸件。
它的出现标志着定向凝固技术进入了一个新的阶段。
定向凝固技术的最大优势在于,其制备的合金材料消除了基体相与增强相相界面之间的影响,有效地改善了合金的综合性能。
同时,该技术也是学者们研究凝固理论与金属凝固规律的重要手段。
原理实现定向凝固需要两个条件:首先,热流向单一方向流动并垂直于生长中的固-液界面;其次,在晶体生长前方的熔液中没有稳定的结晶核心。
为此,在工艺上必须采取措施避免侧向散热,同时在靠近固一液界面的熔液中应造成较大的温度梯度,这是保证非定向柱晶和单晶生长停止、取向正确的基本要素。
实现定向凝固应满足凝固界面具有稳定的定向生长要求,抑制固一液界面前方可能出现的较大成分过冷区,而导致自由晶粒的产生。
根据成分过冷理论,固一液界面要以单向的平面生长方式进行长大时,需要保证足够大(为晶体生长前沿液相的温度梯度,R为界面的生长速度),这就需要通过以下几个基本工艺措施来保证:①严格的单向散热,要使凝固系统始终处于柱状晶生长方向的正温度梯度作用之下,并且要绝对阻止侧向散热,以避免界面前方型壁及其附近的形核和长大;②要减小熔体的异质形核能力以避免界面前方的形核现象,即要提高熔体的纯净度;③要避免液态金属的对流、搅动和振动,以阻止界面前方的晶粒游离。
定向凝固技术1、定向凝固的研究状况定向凝固成形技术是伴随高温合金的发展而逐渐发展起来的,是在凝固过程中采用强制手段,在凝固金属和未凝固熔体中建立起特定方向的温度梯度,从而使熔体沿着与热流相反的方向凝固,以获得具有特定取向柱状晶的技术。
定向凝固技术很好的控制了凝固组织的晶粒取向,消除横向晶界,提高了材料的纵向力学性能,因而自美国普拉特·惠特尼航空公司采用高温合金定向凝固技术以来,这项技术得到广泛的应用。
1.1定向凝固理论的研究定向凝固理论的研究,主要涉及定向凝固中液-固界面形态及其稳定性,液-固界面处相变热力学、动力学,定向凝固过程晶体生长行为以及微观组织的演绎等,其中包括成分过冷理论、MS 界面稳定性、线性扰动理论、非线性扰动理论等。
从Chalmers[1]等的成分过冷理论到Mullins[2]等的界面稳定动力学理论(MS理论),人们对凝固过程有了更深刻的认识。
下面主要分析一下成分过冷理论和界面稳定性理论。
(1)成分过冷理论成分过冷理论是针对单相二元合金凝固过程界面成分的变化提出的,如对于平衡分配系数小于1的合金在冷却下来时,由于溶质在固相和液相中的分配系数不同,溶质原子随着凝固的进行,被排挤到液相中去,并形成一定的浓度梯度,与这种溶质梯度相对应的液相线温度与真实温度分布之间有不同的值,其差值大于零时,意味着该部分熔体处于过冷状态,有形成固相的可能性而影响界面的稳定性。
Chalmers等人通过分析得出了成分过冷的判据,确定了合金凝固过程中固液界面前沿的形态取决于两个参数:GL/v和GL·v,即分别为界面前沿液相温度梯度和凝固速度的商和积。
前者决定了界面形态,而后者决定了晶体的显微组织(即枝晶间距或晶粒大小)[3]。
成分过冷理论能成功的判定无偏析特征的平面凝固的条件,避免胞晶或枝晶的生成。
但是成分过冷理论只考虑了温度梯度和浓度梯度这两个具有相反效应的因素对界面稳定性的影响,忽略了非平面界面的表面张力、凝固时的结晶潜热及固相中温度梯度等的影响。
凝固技术随着科学技术的发展,对凝固技术的重视和深入研究, 形成了许多种控制凝固组织的方法, 其中快速凝固技术,定向凝固技术,均衡凝固技术等已经取得了较快的发展。
这些新兴的凝固技术以其独特的方法在不同的方向都取得了很好的成果。
在金属,无机非金属,高分子材料中都有应用。
快速凝固快速凝固已成为一种具有挖掘金属材料潜在性能与发展前景的开发新材料的重要手段, 同时也成了凝固过程研究的一个特殊领域。
过去对凝固过程的模拟考虑了在熔融状态下的热传导和凝固过程潜热的释放,不考虑金属在型腔内必然存在的流动以及金属在凝固过程中存在的流动。
目前快速凝固技术作为一种研制新型合金材料的技术已开始研究了合金在凝固时的各种组织形态的变化以及如何控制才能得到符合实际生活、生产要求的合金。
着重于大的温度梯度和快的凝固速度的快速凝固技术,正在走向逐步完善的阶段。
快速凝固技术一般指以大于105K/s-106K/s的冷却速率进行液相凝固成固相,是一种非平衡的凝固过程,通常生成亚稳相(非晶、准晶、微晶和纳米晶),使粉末和材料具有特殊的性能和用途。
快速凝固技术得到的合金具有超细的晶粒度,无偏析或少偏析的微晶组织,形成新的亚稳相和高的点缺陷密度等与常规合金不同的组织和结构特征。
由于凝固过程的快冷,起始形核过冷度大,生长速率高,使固液界面偏离平衡,因而呈现出一系列与常规合金不同的组织和结构特征。
快速凝固大致有气枪法,悬铸法,工作表面熔化与自淬火法,雾化法,喷射沉积法等。
气枪法:这种方法的基本原理是将熔解的合金液滴,在高压( >50 atm)惰性气体流(如Ar 或He)的突发冲击作用下,射向用高导热率材料(经常为纯铜)制成的急冷衬底上,由于极薄的液态合金与衬底紧密相贴,因而获得极高的冷却速度( >109℃/S) 。
这样得到的是一块多孔的合金薄膜,其最薄的厚度小于0.5~1.0 μm (冷速达109℃/S)。
旋铸法(chill block melt-spinning)。