第二章 复变函数钟玉泉版习题解答提示
- 格式:docx
- 大小:507.15 KB
- 文档页数:14
复变函数论第四版答案钟玉泉(1)提到复变函数,首先需要了解复数的基本性质和四则运算规则。
怎么样计算复数的平方根,极坐标与xy 坐标的转换,复数的模之类的。
这些在高中的时候基本上都会学过。
(2)复变函数自然是在复平面上来研究问题,此时数学分析里面的求导数之类的运算就会很自然的引入到复平面里面,从而引出解析函数的定义。
那么研究解析函数的性质就是关键所在。
最关键的地方就是所谓的Cauchy—Riemann 公式,这个是判断一个函数是否是解析函数的关键所在。
(3)明白解析函数的定义以及性质之后,就会把数学分析里面的曲线积分的概念引入复分析中,定义几乎是一致的。
在引入了闭曲线和曲线积分之后,就会有出现复分析中的重要的定理:Cauchy 积分公式。
这个是复分析的第一个重要定理。
(4)既然是解析函数,那么函数的定义域就是一个关键的问题。
可以从整个定义域去考虑这个函数,也可以从局部来研究这个函数。
这个时候研究解析函数的奇点就是关键所在,奇点根据性质分成可去奇点,极点,本性奇点三类,围绕这三类奇点,会有各自奇妙的定理。
(5)复变函数中,留数定理是一个重要的定理,反映了曲线积分和零点极点的性质。
与之类似的幅角定理也展示了类似的关系。
(6)除了积分,导数也是解析函数的一个研究方向。
导数加上收敛的概念就可以引出Taylor 级数和Laurent 级数的概念。
除此之外,正规族里面有一个非常重要的定理,那就是Arzela 定理。
(7)以上都是从分析的角度来研究复分析,如果从几何的角度来说,最重要的定理莫过于Riemann 映照定理。
这个时候一般会介绍线性变换,就是Mobius 变换,把各种各样的区域映射成单位圆。
研究Mobius 变换的保角和交比之类的性质。
(8)椭圆函数,经典的双周期函数。
这里有Weierstrass 理论,是研究Weierstrass 函数的,有经典的微分方程,以及该函数的性质。
以上就是复分析或者复变函数的一些课程介绍,如果有遗漏或者疏忽的地方请大家指教。
精心整理页脚内容习题一答案1. 求下列复数的实部、虚部、模、幅角主值及共轭复数:(1)132i+(2)(1)(2)i i i --(3)131i i i--(4)8214i i i -+-解:(1)1323213iz i -==+, 因此:32Re , Im 1313z z ==-,(2)3(1)(2)1310i i iz i i i -+===---,因此,31Re , Im 1010z z =-=,(3)133335122i i iz i i i --=-=-+=-, 因此,35Re , Im 32z z ==-,(4)82141413z i i i i i i =-+-=-+-=-+ 因此,Re 1, Im 3z z =-=,2. 将下列复数化为三角表达式和指数表达式: (1)i (2)13i -+(3)(sin cos )r i θθ+(4)(cos sin )r i θθ-(5)1cos sin (02)i θθθπ-+≤≤解:(1)2cossin22iii e πππ=+=(2)13i -+23222(cos sin )233i i e πππ=+=(3)(sin cos )r i θθ+()2[cos()sin()]22ir i reπθππθθ-=-+-=(4)(cos sin )r i θθ-[cos()sin()]i r i re θθθ-=-+-=(5)21cos sin 2sin2sin cos 222i i θθθθθ-+=+精心整理页脚内容3. 求下列各式的值: (1)5(3)i -(2)100100(1)(1)i i ++-(3)(13)(cos sin )(1)(cos sin )i i i i θθθθ-+--(4)23(cos5sin 5)(cos3sin 3)i i ϕϕϕϕ+-(5)3i (6)1i +解:(1)5(3)i -5[2(cos()sin())]66i ππ=-+- (2)100100(1)(1)i i ++-50505051(2)(2)2(2)2i i =+-=-=-(3)(13)(cos sin )(1)(cos sin )i i i i θθθθ-+--(4)23(cos5sin 5)(cos3sin 3)i i ϕϕϕϕ+- (5)3i 3cossin22i ππ=+(6)1i +2(cossin )44i ππ=+ 4. 设121, 3,2iz z i +==-试用三角形式表示12z z 与12z z解:12cossin, 2[cos()sin()]4466z i z i ππππ=+=-+-,所以12z z 2[cos()sin()]2(cos sin )46461212i i ππππππ=-+-=+,5. 解下列方程: (1)5()1z i +=(2)440 (0)z a a +=>解:(1)51,z i +=由此2551k i z i ei π=-=-,(0,1,2,3,4)k =(2)4444(cos sin )za a i ππ=-=+11[cos (2)sin (2)]44a k i k ππππ=+++,当0,1,2,3k =时,对应的4个根分别为:精心整理页脚内容(1), (1), (1), (1)2222a a a a i i i i +-+--- 6. 证明下列各题:(1)设,zx iy =+则2x y z x y+≤≤+证明:首先,显然有22z x y x y =+≤+;其次,因222,x y x y +≥固此有2222()(),x y x y +≥+从而222x y z x y +=+≥。
p90第二章习题(一)[ 1, 6, 9, 14(3), 26 ]1. 设连续曲线C : z = z(t), t∈[α, β],有z’(t0) ≠ 0 (t0∈[α, β]),试证曲线C在点z(t0)有切线.【解】首先,因为当t →t0时,(z(t) -z(t0))/(t-t0) →z’(t0) ≠ 0,故| (z(t) -z(t0))/(t-t0) | → | z’(t0)| ≠ 0,因此存在δ> 0,使得∀t∈[α, β],当0 < | t-t0 | < δ时,有| (z(t) -z(t0))/(t-t0) |≠ 0,故| z(t) -z(t0) |≠ 0,即z(t) ≠z(t0).此时,存在唯一确定的过点z(t0)以及点z(t) (t ≠t0)的割线:(y(t) -y(t0))(X-x(t0)) + (x(t) -x(t0))(Y-y(t0)) = 0.此方程等价于(y(t) -y(t0))/(t-t0) · (X-x(t0)) + (x(t) -x(t0))/(t-t0) · (Y-y(t0)) = 0.当t→t0时,有y’(t0) (X-x(t0)) + x’(t0)) (Y-y(t0)) = 0.因为z’(t0) ≠ 0,故y’(t0)2 + x’(t0)2≠ 0.直线y’(t0) (X-x(t0)) + x’(t0)) (Y-y(t0)) = 0就是曲线C在点z(t0)处的切线.[这里采用的切线的定义:切线是指割线的极限位置的直线.在这个题目的证明中,我们主要说明两点:第一,当t充分接近t0 (t≠t0),有唯一确定的割线过点z(t0)和z(t);第二,当t →t0 (t≠t0)时,过z(t0)和z(t)的割线确实有“极限位置”] 6. 若函数f(z)在区域D内解析,且满足下述条件之一,试证f(z)在D内为常数.(6.1) 在D内f’(z) = 0;【解】设f(z) = u(x, y) + i v(x, y),(x, y)∈D.由f’(z) = 0及f’(z) = u x + i v x,知u x = v x = 0;由Cauchy-Riemann方程,v y = u x = 0,u y = -v x = 0;因u x = u y = 0,故u在区域D内为常数.因v x = v y = 0,故v在区域D内为常数.所以,f(z) = u(x, y) + i v(x, y)在区域D内为常数.(6.2) ( f(z))*在D内解析;【解】因f(z) = u(x, y) + i v(x, y)在区域D内解析,由Cauchy-Riemann方程,u x = v y,v x = -u y;因( f(z))* = u(x, y) -i v(x, y)在区域D内解析,由Cauchy-Riemann方程,u x = -v y,v x = u y;因此得到u x = u y = v x = v y = 0,所以u, v都在区域D内为常数.所以,f(z) = u(x, y) + i v(x, y)在区域D内为常数.(6.3) | f(z) |在D内为常数;【解】若| f(z) |在D内恒为零,则在D内f(z) = 0 (常数).若在D内| f(z) | = c > 0,则f(z) · ( f(z))* = c2.因f(z)在D内解析且f(z) ≠ 0,故( f(z))* = c2/ f(z)在D内解析.由(2)知f(z)在区域D内为常数.(6.4) Re( f(z))或Im( f(z))在D内为常数.【解】设f(z) = u(x, y) + i v(x, y).若u(x, y) = Re( f(z))在D内为常数,则u x = u y = 0.由Cauchy-Riemann方程,v x = -u y = 0,v y = u x = 0;所以v(x, y) = Im( f(z))也在D内为常数.故f(z)在区域D内为常数.9. 试证下面的定理:设f(z) = u(r, θ) + i v(r, θ),z = r e iθ,若u(r, θ), v(r, θ)在点(r, θ)是可微的,且满足极坐标的Cauchy-Riemann方程:∂u/∂r = (1/r)∂v/∂θ,∂v/∂r = (-1/r)∂u/∂θ(r > 0),则f(z)在点z是可微的,并且f’(z) = (cosθ-i sinθ)(∂u/∂r + i∂v/∂r) = (r/z)(∂u/∂r + i∂v/∂r).【解】注意到在点(r, θ)处,因为r > 0,r, θ也是(x, y)的可微函数,并且,r x = x/r = cosθ,r y = y/r = sinθ;θx = -y/r2 = - sinθ/r,θy = x/r2 = cosθ /r.所以u, v也是(x, y)的可微函数.由求导的链锁法则,我们有u x = u r·r x + uθ·θx = ((1/r)vθ)· cosθ + (-r v r) · (- sinθ/r)= vθ · (cosθ /r) + v r · sinθ= vθ ·θy + v r ·r y= v y;以及v x = v r·r x + vθ·θx = ((-1/r)uθ)· cosθ + (r u r) · (- sinθ/r)= uθ · (- cosθ /r) + u r · (- sinθ)= - (uθ ·θy + u r ·r y)= -u y;即满足Cauchy-Riemann方程,故f(z)在点z是可微的,且f’(a) = u x + i v x = (vθ · (cosθ /r) + v r · sinθ) + i (uθ · (- cosθ /r) + u r · (- sinθ))= (r u r · (cosθ /r) + v r · sinθ) + i ((-r v r) · (- cosθ /r) + u r · (- sinθ))= (cosθ-i sinθ)(∂u/∂r + i∂v/∂r)= (r/z)(∂u/∂r + i∂v/∂r).[ r = √(x2 + y2)在(x, y) ≠ (0, 0)处有连续的偏导数,所以是可微的.θ作为(x, y)函数在(x, y) ≠ (0, 0)处的可微性的证明如下(参考第一章习题13的解答):设D1 = { z∈ | Re(z) > 0},D2 = { z∈ | Im(z) > 0},D3 = { z∈ | Im(z) < 0},D4 = { z∈ | Re(z) < 0}.则 \{0} = D1⋂D2⋂D3⋂D4.在D1上,θ = arctan(y/x) + 2k1π;在D2上,θ = arccot(x/y) + 2k2π;在D3上,θ = arccot(x/y) -π + 2k3π;在D4上,θ = arctan(y/x) + π + 2k4π.不论在那个区域D j上,θ都有连续的偏导数,因此θ在 \{0}上是可微的.] 14. 试验证:(3) lim z→ 0 ( z–z cos z )/( z– sin z ) = 3.【解】因分母z– sin z的一阶导数1 – cos z在原点处的值为0,故此题不能直接用L’Hospital法则(第2题的结论).但可对lim z→ 0 sin z / z用L’Hospital法则.开始以为这个题目应该放在后面的章节,可是终究不甘心,考虑再三,退到sin z 最原始的定义,发现可以以它的实部和虚部为实变量展开.先用L’Hospital法则,lim z→ 0 sin z / z = cos 0 = 1,得到sin z = z + o(z),z→ 0.所以1 – cos z = 2 sin 2(z/2) = 2 ( z/2 + o(z) )2 = z2/2 + o(z2),z→ 0.而sin z = sin(x + i y) = exp( i (x + i y) ) – exp( –i (x + i y) )/(2 i)= (exp(–y)(cos x + i sin x) – exp(y)(cos x–i sin x))/(2 i)= (exp(y) + exp(–y)) sin x + i (exp(y) – exp(–y)) cos x )/2注意到当k + m≥ 3时,o(x k y m) = o(| z |3),z→ 0;故sin z = (1 + y2/2 + o(y3)) (x–x3/6 + o(x4) ) + i (y + y3/6 + o(y4)) (1 –x2/2 + o(x3))= (x + i y ) – (x3 + i 3x2y– 3xy2/2 –i y3 )/6 + o(z3) = z–z3/6 + o(z3),z→ 0.所以,( z–z cos z )/( z– sin z ) = z (1 – cos z )/( z– sin z )= z (z2/2 + o(z2))/(z3/6 + o(z3)) → 3,z→ 0.26. 试证:在将z平面适当割开后,函数f(z) = ( (1 – z ) z2 )1/3能分出三个单值解析分支.并求出在点z = 2取负值的那个分支在z = i处的值.【解】根据课本p83的结论,1和0是仅有的支点,∞不是支点.所以,将z平面沿从0到1的直线段I = { z∈ | Im(z) = 0, 0 ≤ Re(z) ≤ 1 }割开后,就能保证变点z不会单绕0或1转一周,因此在G= \I上函数f(z)就能分出三个单值解析分支.设g(z) = ((1 – z ) z2 )1/3是在点z = 2取负值的那个分支.设arg g(2) = π + 2kπ ( k∈ ).又设C是G内一条从2到i的任一曲线,当变点z沿着曲线C从2到i时,z的辐角的连续增量为∆C arg z = π/2 + 2k0π ( k0∈ ),因此∆C arg (z2 )= π + 4k0π,相应地,1 –z的辐角的连续增量为∆C arg (1 –z )= 3π/2 + 2k0π ( m∈ ),所以g(z)的辐角的连续增量为∆C arg g(z) = (π + 3π/4 + 6k0π)/3 = 7π/12 + 2k0π.根据课本p84的结论,g(i) = | g(i) | · exp( i ∆C arg g(z)) · exp( i arg g(2))= | ((1 –i )i2 )1/3 | · exp( i (7π/12 + 2k0π)) · exp( i (π + 2kπ))= - 21/6 · exp( 7πi/12 ).[从上述的做法中可以看出,我们不妨(事实上也常常地)取k, k0 = 0,并不会造成任何影响.这类题目用辐角的连续增量来考虑是方便的,否则就有可能陷入辐角难以选择的困境,因为那时我们已经忘记了要求辐角是随着变点z连续变化的.设z = r1 exp( iθ1),1 –z = r2 exp( iθ2),那么g(z) = (r12 r2 )1/3 exp( i (2θ1 + θ2 + 2kπ)/3) (k是0, 1, 2之一).当z = 2时,r1(2)= 2,r2(2)= 1;θ1(2) = 0,θ2(2)= π.由于g(2) = 21/3 exp( i (π + 2kπ)/3) < 0,故只能k = 1.当z = i时,r1(i)= 1,r2(i)= 21/2;θ1(i) = π/2,θ2(i) = 7π/4.所以g(i) = (21/2)1/3 exp( i (2(π/2) + 7π/4 + 2π)/3) = - 21/6 · exp( 7πi/12 ).但是,为什么θ2(i) = 7π/4而不是θ2(i) = –π/4 ?事实上,当初的θ1(2)和θ2(2)一旦选定,就决定了其这个单值解析分支中其他点的辐角选择,因为我们要求辐角是连续变化的.确定i的辐角θ1(i)时,要保证z从2到i的过程中,θ1(z)是连续变化的.故应该取θ1(i) = π/2.(增加了π/2)但1 –i的辐角θ2(i),则应该是从z = 2时θ2(2)= π开始连续变化到z = i时所得到的辐角θ2(i),也就是说,θ2从π开始增加了3π/4,因此θ2(i) = π + 3π/4 = 7π/4.特别强调的是:这里的θj(z)的连续变化,应该是随着同一个变点z来变化的.比如,如果我们认为z绕割线I反向地从2转到i,那么,θ1(i) = - 3π/2,这时,θ2(i) = π- 5π/4 = -π/4,显然,如此计算g(i)也会得到上述的结果.至此,我们应该可以看出,两种做法的本质是相同的.]∀∃∅-⨯±≠≥·◦≤≡⊕⊗≅αβχδεφγηιϕκλμνοπθρστυϖωξψζ∞∙︒ℵℜ℘∇∏∑⎰ ⊥∠ √§ψ∈∉⊆⊂⊃⊇⊄⊄∠⇒♣♦♥♠§ #↔→←↑↓⌝∨∧⋃⋂⇔⇒⇐∆∑ΓΦΛΩ∂∀m∈ +,∃m∈ +,★〈α1, α2, ..., αn〉lim n→∞,+n→∞∀ε > 0,∑u n,∑n≥ 1u n,m∈ ,∀ε > 0,∃δ> 0,【解】⎰[0, 2π]l 2 dx,f(x) = (-∞, +∞)[-π, π]∑1 ≤k≤n u n,[0, 2π]。
创作编号:BG7531400019813488897SX创作者:别如克*习题一答案1.求下列复数的实部、虚部、模、幅角主值及共轭复数:(1)132i+(2)(1)(2)ii i--(3)131ii i--(4)8214i i i-+-解:(1)1323213i zi-==+,因此:32 Re, Im1313 z z==-,232arg arctan,31313z z z i==-=+(2)3(1)(2)1310i i izi i i-+===---,因此,31Re, Im1010z z=-=,131arg arctan,31010 z z z iπ==-=--(3)133335122i i iz ii i--=-=-+=-,因此,35Re, Im32z z==-,535,arg arctan,232iz z z+ ==-=(4)82141413z i i i i i i=-+-=-+-=-+因此,Re1,Im3z z=-=,arg arctan3,13z z z iπ==-=--2. 将下列复数化为三角表达式和指数表达式: (1)i (2)1-+ (3)(sin cos )r i θθ+(4)(cos sin )r i θθ-(5)1cos sin (02)i θθθπ-+≤≤解:(1)2cossin22iii e πππ=+=(2)1-+23222(cos sin )233i i e πππ=+=(3)(sin cos )r i θθ+()2[cos()sin()]22ir i reπθππθθ-=-+-=(4)(cos sin )r i θθ-[cos()sin()]i r i re θθθ-=-+-=(5)21cos sin 2sin 2sin cos 222i i θθθθθ-+=+ 22sin [cossin]2sin 2222ii eπθθπθπθθ---=+=3. 求下列各式的值:(1)5)i - (2)100100(1)(1)i i ++-(3)(1)(cos sin )(1)(cos sin )i i i θθθθ-+-- (4)23(cos5sin 5)(cos3sin 3)i i ϕϕϕϕ+-(5(6解:(1)5)i -5[2(cos()sin())]66i ππ=-+-5552(cos()sin()))66i i ππ=-+-=-+(2)100100(1)(1)i i ++-50505051(2)(2)2(2)2i i =+-=-=-(3)(1)(cos sin )(1)(cos sin )i i i θθθθ-+--2[cos()sin()](cos sin)33)sin()][cos()sin()]44i ii iππθθππθθ-+-+=-+--+-)sin()](cos2sin2)1212i iππθθ=-+-+(2)12)sin(2)]1212iiπθππθθ-=-+-=(4)23(cos5sin5)(cos3sin3)iiϕϕϕϕ+-cos10sin10cos19sin19cos(9)sin(9)iiiϕϕϕϕϕϕ+==+-+-(5=11cos(2)sin(2)3232k i kππππ=+++1,0221,122,2i ki ki k+=⎪⎪⎪=-+=⎨⎪-=⎪⎪⎩(6=11(2)sin(2)]2424k i kππππ=+++88,0,1iie ke kππ==⎪=⎩4.设12,z z i==-试用三角形式表示12z z与12zz解:12cos sin, 2[cos()sin()]4466 z i z iππππ=+=-+-,所以12z z 2[cos()sin()]2(cos sin )46461212i i ππππππ=-+-=+,12z z 1155[cos()sin()](cos sin )2464621212i i ππππππ=+++=+ 5. 解下列方程: (1)5()1z i += (2)440 (0)z a a +=>解:(1)z i += 由此25k i z i ei π=-=-, (0,1,2,3,4)k =(2)z==11[cos (2)sin (2)]44a k i k ππππ=+++,当0,1,2,3k =时,对应的4个根分别为:(1), 1), 1), )i i i i +-+--- 6. 证明下列各题:(1)设,zx iy =+z x y≤≤+证明:首先,显然有z x y =≤+;创作编号:BG7531400019813488897SX创作者: 别如克*其次,因222,x y x y +≥ 固此有2222()(),x y x y +≥+从而z =≥。
《复变函数》第二章习题全解钟玉泉版第二章解析函数(一)1.证明:0>?δ,使{}0001/),(t t t t δδ+-∈?,有)()(01t z t z ≠,即C 在)(0t z 的对应去心邻域内无重点,即能够联结割线)()(10t z t z ,是否就存在数列{}01t t n →,使)()(01t z t z n =,于是有0)()(lim )(0101001=--='→t t t z t z t z n n t t n此与假设矛盾.01001),(t t t t t >?+∈δ 因为 [])()(arg )()(arg010101t z t z t t t z t z -=--所以 []])()(lim arg[)()(arglim )()(arg lim 0101010101010101t t t z t z t t t z t z t z t z t t t t t t --=--=-→→→因此,割线确实有其极限位置,即曲线C 在点)(0t z 的切线存在,其倾角为)(arg 0t z '.2.证明:因)(),(z g z f 在0z 点解析,则)(),(00z g z f ''均存在.所以 )()()()()()(lim )()()()(lim )()(lim 00000000000z g z f z z z g z g z z z f z f z g z g z f z f z g z f z z z z z z ''=----=--=→→→ 3.证明:()()()()()3322,0,0,,0,00x y x y u x y x y x y ≠?-?=+??=?()()()()()3322,0,0,,0,00x y x y v x y x y x y ≠?+?=+??=?于是()()()00,00,00,0limlim 1x x x u x u xu xx →→-===,从而在原点()f z 满足C R -条件,但在原点,()()()()()'0,00,0x x u iv u iv f f z z z+-+-=()()()()()()333311i x y i zx y z ??+--+??=+??当z 沿0y x =→时,有()()()'212f f z i z x --+= 故()f z 在原点不可微.4.证明:(1)当0≠z 时,即y x ,至少有一个不等于0时,或有y x u u ≠,,或有y x u u ≠-,故z 至多在原点可微.(2)在C 上处处不满足C R -条件. (3)在C 上处处不满足C R -条件.(4)221yx yix z z z z ++==,除原点外, 在C 上处处不满足C R -条件. 5.解:(1) y x y x v xy y x u 22),(,),(==,此时仅当0==y x 时有 xy v xy u x v y u x y y x 22,22-=-===== 且这四个偏导数在原点连续,故)(z f 只在原点可微. (2) 22),(,),(y y x v x y x u ==,此时仅当y x =这条直线上时有00,22=-=====x y y x v u y v x u且在y x =这四个偏导数连续,故)(z f 只在y x =可微但不解析. (3) 333),(,2),(y y x v x y x u ==,且00,9622=-=====x y y x v u y v x u 故只在曲线0212312=-x y 上可微但不解析.(4) 32233),(,3),(y y x y x v xy x y x u -=-=在全平面上有xy v xy u y x v y x u x y y x 66,33332222-=-=-=-==-= 且在全平面上这四个偏导数连续,故可微且解析. 6.证明:(1)y y x x iu v iv u z fD yi x z -=+='=∈+=?)(0,(2)设().f z u iv =+则()f z u iv =-,由()f z 与()f z 均在D 内解析知,,x y y x u v u v ==-,,x y y x u v u v =-=结合此两式得0x y x y u u v v ====,故,u v 均为常数,故)(z f 亦为常数. (3)若0)(=≡C z f ,则显然0)(≡z f ,若0)(≠≡C z f ,则此时有0)(≠z f ,且2)()(C z f z f ≡,即)()(2z f C z f ≡也时解析函数,由(2)知)(z f 为常数.(4)设().f z u iv =+,若C y x u ≡),(,则0,0≡≡y x u u ,由C R -条件得0,0≡=≡-=x y y x u v u v 因此v u ,为常数, 则)(z f 亦为常数.7.证明:设,f u iv g i f p iQ =+==+则,,f u iv g v iu =-=-由 ()f z 在D 内解析知,x y y x u v u v ==-从而 ,x x y v y y x p v u Q p v u Qx ==-====- 因而()g z 亦D 内解析.8.解:(1)由32233),(,3),(y y x y x v xy x y x u -=-=,则有222233,6,6,33y x v xy v xy u y x u y x y x -==-=-=故y x y x v v u u ,,,为连续的,且满足C R -条件,所以()z f 在z 平面上解析,且 22236)33()(z xyi y x i v u z f x x =+-=+='(2) ()()()(),cos sin ,cos sin x x u x y e x y y y v x y e y y x y =-?=- ()cos sin cos x x y u e x y y y y v =-+= ()sin sin cos x y x u e x y y y y v =--+=-故()f z 在z 平面上解析,且()()()'cos 1sin sin 1cos x xf z e y x y y ie y x y y =?+-+?+-(3)由xshy y x v xchy y x u cos ),(,sin ),(==,则有xchy v xshy v xshy u xchy u y x y x cos ,sin ,sin ,cos =-===故y x y x v v u u ,,,为连续的,且满足C R -条件,所以()z f 在z 平面上解析,且 z xshyi xchy i v u z f x x cos sin cos )(=-=+=' (4)由xshy y x v xchy y x u sin ),(,cos ),(-==,则有xchy v xshy v xshy u xchy u y x y x sin ,cos ,cos ,sin -=-==-= 故y x y x v v u u ,,,为连续的,且满足C R -条件,所以()z f 在z 平面上解析,且 z xshyi xchy i v u z f x x sin cos sin )(-=--=+=' 9.证明:设,i z x yi re θ=+=则cos ,sin ,x r y r θθ== 从而cos sin ,sin cos r x y x y u u u u u r u r θθθθθ=+=-+cos sin ,sin cos ,r x y x y v u v v v r v r θθθθθ=+=-+再由11,r r u v v u r rθθ==-,可得,x y y x u v u v ==-,因此可得()f z 在点z 可微且()()()'11cos sin sin cos x y r r f z u iu r u u i r u u r r θθθθθθ=-=--+ ()()1cos sin sin cos r i u i u r θθθθθ=--+()()cos sin sin cos r r i u i v θθθθ=-++ ()()cos sin r r i u iv θθ=-+ ()()1cos sin r r r r ru iv u iv i zθθ=+=++10.解:(1)x y i x z i e e e 2)21(22--+--== (2)222222y zxyiy zz e e e -+-==(3) 22222211x yi xy ix iyx yx yx y ze eeee--++++===?所以22221Re cos x yx y x y ze e ++??=11.证明:(1)因为)sin (cos y i y e e e e e x yi x yi z z +=?==+ 因此 )sin (cos y i y e e x z -=而)sin (cos y i y e e e e e x yi x yi z z -=?==--,得证.(2)因为 ie e z iziz 2sin --=所以 z ie e i e e z iziz z i z i sin 22sin =+=-=--- (3)因为2cos iziz e e z -+=所以z e e e e z iziz z i z i cos 22cos =+=+=-- 12.证明:分别就m 为正整数,零,负整数的情形证明,仅以正整数为例当1=m 时,等式自然成立. 假设当1-=k m 时,等式成立.那么当k m =时,kz z k z k z e e e e =?=-1)()(,等式任成立. 故结论正确.13.解:(1) )1sin 1(cos 333i e e e e i i +=?=+(2) ()()()11cos 12i i i i e e i ---+-=()112i i i e e -+++=cos11sin1122e i e e e=++- ? ?????14.证明:(1)由于z z g z z f ==)(,sin )(在点0=z 解析且01)0(,0)0()0(≠='==g g f 因此 11cos sin lim0===→z z zz z(2)由于0)(,1)(=-=z g e z f z 在点0=z 解析,且01)0(,0)0()0(≠='==g g f因此 11lim0==-=→z z z z e ze(3)由于z z z g z z z z f sin )(,cos )(-=-=在点0=z 解析, 且1)0(,0)0()0(,0)0()0(,0)0()0(='''=''=''='='==g g f g f g f 因此3cos 1sin cos 1lim sin cos lim00=-+-=--→→zzz z z z z z z z z 15.证明:2cos iziz e e z -+=)cos()cos(cos nb a b a a +++-+=222)()()()(nb a i nb a i b a i b a i ia ia e e e e e e +-++-+-++++++ =??--?+--?+-+ib bn i ia ib b n i ia e e e e e e 111121)1()1(=)2cos(2sin 21sinnb a b bn ++=右边同理证明(2).16.证明:(1) z i e e i i e e i e e iz zz z z iz i iz i sinh 222)sin()()(=-?=-=-=--- (2) z e e e e iz z z iz i iz i cosh 22)cos()()(=+=+=-- (3) z i ie e i e e iz iziz iz iz sin 22)sinh(=-?=-=-- (4) z z iz i iz cos )cos()cos()cosh(=-=?=(5) z i zzi iz iz iz tanh cosh sinh )cos()sin()tan(===(6) z i zzi iz iz iz tan cos sin )cosh()sinh()tanh(===17.证明:(1) 1)(sin )(cos )(222222=+=+=-iz iz ishz z ch z sh z ch(2) 111sec 222222=+=+=+zch zsh z ch z sh z ch z th z h (3) )sin()sin()cos()cos()cos()(21212121iz iz iz iz iz iz z z ch -=+=+ 2121shz shz chz chz +=18.证明:(1) xshy i xchy iy x yi x yi x z cos sin )sin(cos )cos(sin )sin(sin +=+=+= (2) xshy i xchy iy x yi x yi x z sin cos )sin(sin )cos(cos )cos(cos +=-=+= (3) y x y xsh y xch xshy i xchy z 22222222sinh sin cos sin cos sin sin +=+=+= (4) y x y xsh y xch xshy i xchy z 22222222sinh cos sin cos sin cos cos +=+=-=19.证明: chz e e e e shz zz z z =+='-='--2)2()( shz e e e e chz zz z z =-='+='--2)2()( 20.解:(1) )31arg(31ln )31ln(i i i i z +++=+= )23(2ln ππk i ++= ),1,0( ±=k(2)由于2ln iz π=,则有i i e z i=+==2sin2cosππ(3)由于)2(1ππk e e i z +=-=,故)2(ππk i z += (4)z z sin cos -=,即1tan -=z ,所以ππk i i i z +-=+-=411ln 21 (5) 设,z x iy =+由12tgz i =+得()()sin 122cos iz iz iz iz zi e e i e e z--=+→-=-+2255iz i e →=-+22cos 25y e x -→=-,1sin 25x =41ln 5,54y e y -→==且1112,222tg x x arctg π=-=-+11ln 5224z arctg i π→=-++21.证明:因)1arg(1ln )1ln()1ln(-+-=-=-θθθi i i re i re re z ,所以)cos 21ln(21)sin ()1(ln 1ln )]1Re[ln(222θθθθr r r re re z i i -+=+-=-=- 22.解: 32)(3)()(πθk z ik ez r z w +=,)2,1,0;2)(0;(=<<∈k z G z πθ利用i i w -=)(定2,=k k ,再计算)(2i w -23.解: 2,22ππii e i e ==-,由32)2(-=-w 定1,=k k ,再计算i ei w π451)(=24.解: )24(2ln )]2)1(arg(1[ln )1ln()1(πππk i k i i i i i i ieeei +-+++++===+)24(2lnππk i ee +-?= ),2,1,0( ±±=kππk i k i i i i e e e e 23ln )]23(arg 3[ln 3ln 3-++?=== ),2,1,0( ±±=k25.解:z 在z 平面上沿0=z 为圆心,1>R 为半径的圆周C 从A 走到B ,经过变换4z w =,其象点w 在w 平面上沿以0=w 为心,14>R 为半径的象圆周从A '走到B ',刚好绕1+=w w 的支点-1转一整周,故它在B '的值为B w '+1.因此1)()(4+-=-=R z f z f AB.26.证明:()f z =可能的支点为0,1,∞由于 3|12+,故()f z 的支点为0,1z =,因此在将z 平面沿实轴从0到期割开后,就可保证变点z 不会单绕0或者说转一周,于是在这样割开后的z 平面上()f z 就可以分出三个单值解析分支. 另由已知 ()arg f z π=得()()arg c i f zi f i e π?=()2arg 1arg 3c c i z z e-+??=32342i ππ??+=712i eπ=.(二)1.证明:由()21z f z z =-得()()2'2211z f z z +=-,从而于是()f z 在D 必常数()()()()()()22'2222111111z zf z z z f z z z z+-+?==---()4242121Re m z I z i z z -+=+- 所以 ()()4'421Re 12Re z f z z f z z z ??-?= ? ?+-??由于1z <,因此410,z ->且()24422212Re 1210z z z z z+-≥+-=->故()()'Re 0f z z f z ??> ? ???.2.证明:同第一题221Im 2111)()(1zzi z z z z f z f z -+-=-+='''+. 3.证明:题目等价域以下命题:设1,E E 为关于实轴对称的区域,则函数在E 内解析)(z f ?在1E 内解析.设)(z f 在E 内解析,对任意的10E z ∈,当1E z ∈时,有E z E z ∈∈,0,所以)()()(lim )()(lim0000000z f z z z f z f z z z f z f z z z z '=--=--→→ 这是因为)(z f 在E 内解析,从而有)()()(lim 0000z f z z z f z f z z '=--→,由0z 的任意性可知, )(z f 在1E 内解析. 4.证明:(1)由于)(21),(21z z iy z z x -=+=,根据复合函数求偏导数的法则,即可得证. (2))(21)(21x vy u i y v x u z v i z u z f ??+??+??-??=??+??=??所以x v y u y v x u ??-==??,,得 0=??zf5.证明: x y sh y sh x y xch yi x z 222222sin )sin 1(sin )sin(sin +=-+=+= 所以z x y sh shy sin sin 22=+≤ 而z y shy Im =≥ ,故左边成立.右边证明可应用z sin 的定义及三角不等式来证明. 6.证明:有 R ch y ch y sh y sh x z 2222221sin sin ≤=+≤+= 即chR t ≤sin又有 R ch y ch y sh y x z 2222221sinh cos cos ≤=+≤+= 7.证明:据定义,任两相异点21,z z 为单位圆1<="" bdsfid="432" p="">212221212121)32()32()()(z z z z z z z z z f z f -++-++=--0112222121=-->--≥++=z z z z 故函数)(z f 在1<="">8.证明:因为)(z f 有支点-1,1,取其割线[-1,1],有(1) 10182)(,8)(arg ie c ei f z f ππ-=-=?(2) i c c e i f z f i z f 852)(,85)(arg ,811)(arg 32πππ=--=?-=?9.解: 因为)(z f 有支点∞±,,1i ,此时支割线可取为:沿虚轴割开],[i i -,沿实轴割开],1[+∞,线路未穿过支割线,记线路为C ,)]arg())(arg()1arg([21)(arg i z i z z z f c c c c ??+--?+-?=?2]0[21ππ-=-=故 i z f 5)(-=.10.证明:因为()f z =的可能支点为0,1,z =∞,由题知()f z 的支点为0,1,z =于是在割去线段0Re 1≤≤的平面上变点就不可能性单绕0或1转一周,故此时可出两二个单值解析分支,由于当z 从支割线上岸一点出发,连续变动到1z =-时,只z 的幅角共增加2π,由已知所取分支在支割线上岸取正值,于是可认为该分支在上岸之幅角为0,因而此分支在1z =-的幅角为2π,故()21i f e π-==,i f 162)1(-=-''.。
习题一 P311题 (2)i ii i -+-11 = 1)1(2)1(--++i i i i =223i --)R e (z 23-= ; 21)(-=z I m ; z = 23-2i + ; z =210;arg(z) = arctan-31π (4) 8i i i +-214 i i +-=41 i 31-= ;;1)Re(=z ;3)Im(-=z ;31i z += ;10=z 3a r c t a na r g -=z ; 5题(2) πππi e i 2)sin (cos 22=+=-;(4)⎥⎦⎤⎢⎣⎡-=⎥⎦⎤⎢⎣⎡-+=-)43sin(arctan )43cos(arctan 5)43sin(arctan )43cos(arctan 91634i i i;5θi e = );43arctan(-=θ (6) θθθθθθθθϑθθ7sin 7cos )()()2sin 2(cos )sin (cos )7(4322323i e e e e e i i i i i i i -====+---- ; 8题(2) 16)2()1(848==+πie i (4));3432sin 3432(cos2163ππππ-+-=--k i k i ;431arctan ππθ-=-= ;2,1,0=K);1(24)2222(2360i i K -=-= );125sin 125(cos261ππi K += );1213sin 1213(cos 262ππi K +=12题(2) ;3)2(=-z R e 即 ;3])2[(e =+-iy x R ;32=-x 5=x 直线(6) ;4)arg(π=-i z ;4))1(arg(π=-+y i x arctan;41π=-x y ;11=-xy 1+=x y 以i 为起点的射线(x>0). 13题(1) 0)(<z I m ; 即y<0, 不含实轴的下半平面,开区域,无界,单连通。
第一章 复变与复变函数(一)1.解:1)23()21(22=-+=zArgz=argz+πk 2=πππk k 232)3arctan(+-=+- ),2,1,0( ±±=k2.解:因为i ei z e i z 6423,2121ππ-=-==+=所以iie z z e z z 1251221,22121ππ==⋅ 3.解:由044=+a z 得44a z -= 则二项方程的根为a w k k ⋅-=)1(4 )3,2,1,0(=k a e e i i k ⋅⋅=442ππ )3,2,1,0(=k因此 )1(20i a w +=,)1(21i a w +-=)1(22i a w --=,)1(23i a w -=4.证明:因为)Re(2212221221z z z z z z ++=+)R e (2212221221z z z z z z -+=-两式相加得)(22221221221z z z z z z +=-++几何意义:平行四边形两队角线的平方和等于各边平方和. 5.证明:由第4题知)(22221221221z z z z z z +=-++由题目条件 0321=++z z z 知321z z z -=+可有 321z z z =+ 于是 3)(2)(22322212212221221=-+=--+=-z z z z z z z z z同理 3213232=-=-z z z z所以 3133221=-=-=-z z z z z z 因此321,,z z z 是内接宇单位圆的等边三角形的顶点. 6.解:(1)表示z 点的轨迹是1z 与2z 两点连线的中垂线;不是区域. (2)令yi x z +=,由4-≤z z 得yi x yi x +-≤+)4(,即2222)4(y x y x +-≤+,得2≤x因此, z 点的轨迹是以直线2=x 为右界的右半平面(包括直线);不是区域.(3)同(2)yi x z +=,得0>x ,故z 点的轨迹是以虚轴为左界的右半平面(包括虚轴;是区域.(4)由⎪⎩⎪⎨⎧≤≤<-<3Re 24)1arg(0z z π 得⎪⎩⎪⎨⎧≤≤<-<3241arctan 0x x y π 即⎩⎨⎧≤≤-<<3210x x y 可知z 点的轨迹是一梯形(不包括上,下边界);不是区域.(5)z 点的轨迹是以原点为圆心,2为半径以及(3,0)为圆心,1为半径得两闭圆的外部.是区域.(6)z 点的轨迹的图形位于直线1Im =z 的上方(不包括直线1Im =z )且在以原点为圆心,2为半径的圆内部分(不包括圆弧);是区域. (7)z 点的轨迹是4arg π=z ,半径为2的扇形部分;是区域.(8)z 点的轨迹是以)2,0(i 为圆心,21为半径以及)23,0(i 为圆心, 21为半径的两闭圆的外部.是区域.7.证明:已知直线方程一般式为),,(0c b a c by ax =++为实常数,b a ,不全为零. 以 izz y z z x 2,2-=+= 代入化简得0)(21)(21=+++-c z bi a z bi a 令 0)(21≠=+αbi a 得 0=++c z z αα反之(逆推可得).8.证明: 因为Z 平面上的圆周可以写成()0z z -=γγ>0 其中0z 为圆心,γ为半径 所以 ()()200z z z z z z 2γ=-=--0000z z z z z z z z =⋅-⋅-⋅+⋅ 令2001,,A B z C z 2==-=-γ,从而圆周可以写成 0A Z Z B Z B ZC +++=,A C 为实数,且22200B z z AC 2=>-γ=9.证明:可证1213z z z z --为实数. 10.解:(1)令)1(i t yi x z +=+=,得y x =,即曲线为一,三象限的角平分线. (2)令,sin cos t ib t a yi x z +=+=得t b y t a x sin ,cos ==,则有12222=+by a x ,故曲线为一椭圆.(3)令)0(≠+=+=t i t t yi x z ,可得ty t x 1,==,则1=xy ,故曲线为一双曲线.(4)令22tt yi x z +=+=,得221,t y t x ==,即1=xy )0,0(>>y x ,故曲线为双曲线在第一象限内的一支. 11.解:(1)由于4222==+z y x ,又有)(411122yi x y x yi x yi x z w -=+-=+== 所以 ,4,4y v x u -==则41)(1612222=+=+y x v u这表示在w 平面上变成的曲线是以原点为圆心,21为半径的圆周. (2)将x y =代入yi x w +=1,即yix iv u +=+1中得 xi x x i i x iv u 22121)1(1-=--=+=+于是,21,21xv x u -==因此u v -=,故曲线为w 平面上二,四象限的角分线. (3)同上将1=x 代入变换yix iv u +=+1得 21111yyiyi iv u +-=+=+ 于是,1,1122yy v y u +-=+=且u y y y v u =+=++=+22222211)1(1 故解得41)21(22=+-v u ,这表示曲线变成w 平面上的一个以)0,21(为圆心,21为半径的圆周.(4)因1)1(22=+-y x ,即可得0=--z z z z 将wz w z 1,1==代入得01111=--⋅w w w w ,即ww w w w w +=1,因此1=+w w所以这表示曲线变成w 平面上的一条过)0,21(且平行于虚轴的直线.12.证明:(1)首先考虑函数n z z f =)(在z 平面上的连续性. 对复平面上任意一点0z ,来证明nn z z z z 00lim =→不妨在圆10+=≤z M z 内考虑. 因为10102100(-----≤+++-≤-n n n n nn nM z z z z zzz z z z ,故对0>∀ε,只需取1-≤n nM εδ,于是当δ<-0z z 时,就有ε<-nn z z 0.(2)由连续函数运算法则,两连续函数相除,在分母不为零时,仍连续.因此)(z f 在z 平面上除使分母为零点外都连续. 13.证明:令ππ<<-⎩⎨⎧=≠=z z z z z f arg 0,00,arg )(分情况讨论:(1) 若00=z ,由于当z 沿直线)(arg 00πθπθ<<-=z 趋于原点时,)(z f 趋于0θ,这里0θ可以取不同值,因而)(z f 在00=z 处不连续.(2) 若)0(0<=x z 由定义当z 从上半平面趋于0z 时, )(z f 趋于π,当z 从下半平面趋于0z 时, )(z f 趋于π-,所以)(z f 在实轴上不连续.(3) 其他点0z ,作一个以0z 为中心δ为半径的圆,只要δ充分小,这个圆总可以不与负实轴相交.任取0Argz 的一个值0θ,以0z 为中心δ为半径的圆,因0z z n →,故存在自然数N ,当N n >时,n z 落入圆内,从原点引此圆的两条切线,则此两条切线夹角为)(2δϕ,0arcsin)(z δδϕ=,因此总可以选取n Argz 的一个值n z arg .当N n >时,有)(arg 0δϕθ<-n z ,因0→δ时,0)(→δϕ.因而,总可以选取δ,使)(δϕ小于任何给定的0>ε,即总有ε<-0arg arg z z .因此)(z f 在0z 连续.综上讨论得知, )(z f 除原点及负实轴上的点外处处连续.14.证明:由于)(z f 的表达式都是y x ,的有理式,所以除去分母为零的点0=z ,)(z f 是连续的,因而只须讨论)(z f 在0=z 的情况.当点yi x z +=沿直线kx y =趋于0=z 时, 222211)(kkk k y x xy z f +→+=+=这个极限值以k 的变化而不同,所以)(z f 在0=z 不连续.15.证明:由z z f =)(连续即得.16.证明:1z -在1z <内连续且不为0,故11z-在1z <内连续 011,0,2εδδ⎛⎫∃=∀>< ⎪⎝⎭,均存在121,142z z δδ=-=-使得124z z δδ-=<()()1212112111f z f z z z δ-=-=>-- 故()f x 在1z <内非一致连续17.证明:必要性:设i y x z n 000lim +==∞→,由定义0,0>∃>∀N ε,当N n >时,恒有ε<-0z z n ,从而由定义知 ε<-≤-00z z x x n n ε<-≤-00z z y y n n 即)(,00∞→→→n y y x x n n 充分性:由定义得00000)()(y y x x i y y x x z z n n n n n -+-≤-+-=- 因此,当)(,00∞→→→n y y x x n n 时,必有)(0∞→→n z z n . 18.证明:利用第17题,及关于实数列收敛的柯西准则来证明.必要性:设0lim z z n n =∞→.则由定义对0)2(,0>=∃>∀εεN N ,当N n >时,恒有20ε<-z z n .因而对任何自然数p ,也有20ε<-+z z p n .利用三角不等式及上面两不等式, 当N n >时,有 ε<-+-≤-++00z z z z z z n p n n p n充分性:设对0)(,0>∃>∀εεN ,当N p n n >+,时,有ε<-+0z z p n ,由定义得 ε<-≤-++n p n n p n z z x xε<-≤-++n p n n p n z z y y由此根据实数序列的柯西准则,必存在两个实数00,y x ,使)(,00∞→→→n y y x x n n ,有i y x i y x z n n n 00+→+=19.证明:设)),3,2,1(( =≤+=n M z i y x z n n n n ,因为M z y x n n n ≤≤,,所以{}{}n n y x ,都有界.根据实数列的致密性定理,知{}n x 有收敛于某常数a 的子序列{}k n x ,相地在),2,1( =+k i y x k k n n 中,{}k n y 任有界,因而{}k n y 也有以收敛于某一常数b 的子序列{}kj n y ,在),2,1( =+=j i y x z kj kj kj n n n 中, {}k n x 任收敛于a ,因此所设序列有一收敛于bi a +的子序列.20.证明:(1)若00=z ,则由定义对N ∃>∀,0ε,当N n >时有{}2ε<n z而 nz z z n z z z n z z z z nN N N n n +++++++=+++='++ 212121 固定N ,取⎭⎬⎫⎩⎨⎧⎥⎦⎤⎢⎣⎡+++=nz z z q N N 2102,max ,则当0N n >时,有221ε<++n z z z N故 ε<+++++≤'++n z z z n z z z z n N N N n 2121(2)若00≠z ,则当0)(lim 0=-∞→z z n n ,000010)()(z n nz z z z z z z n n -+-+-=-'0)()(001→-+-=nz z z z n(二)1.解:ii i e e e i i ϕϕϕϕϕϕϕ193)3(2532)()()3sin 3(cos )5sin 5(cos ==-+- 2.解:由于it e z =,故nt i nt e z nt i nt e z nti n nti n sin cos ,sin cos -==+==-- 因此 nt zz nt z z n nn n sin 21,cos 21=-=+ 3.证明:已知(155122cos sin 2233nnn n n n n n x iy i ⎛⎫⎛⎫+=-=-=+ ⎪ ⎪ ⎪⎝⎭⎝⎭ππ 因此 552cos ,2sin33n n n n n n x y ππ== 11n n n n x y x y ---()()151515522cos sin sin cos 3333n n n n n n ππππ---⎡⎤=-⎢⎥⎣⎦()215152sin 33n n n ππ--⎛⎫=- ⎪⎝⎭4.证明:第一个不等式等价于2222)(21y x z y x +=≤+,即)(222222y x y x y x +≤++,即0)(2>-y x 这是显然的,因此第一个不等式成立. 第二个不等式等价于2222222)(y y x x y x y x z ++=+≤+= ,即02≥y x 这是显然的,因此第二个不等式成立. 5.证明:利用公式 )Re(2212221221z z z z z z -+=-以及z z =Re6.证明: 因为21,az b az b az bz bz a bz a bz a+++==⋅+++所以22221a abz abz b b abz abz a+++==+++故1az bbz a+=+7.解:设0z 为对角线→31z z 的中点,则 i z z z 21)(21310+=+=分别左旋及右旋向量30z z 各2π,写成复数等式后,即可由此解得顶点2z 的坐标为(4,1); 顶点4z 的坐标为(-2,3).8.证明:由于123z z z ∆与123w w w ∆同向相似的充要条件是33,z w ∠=∠且23231313z z w w z z w w --=--,而23313arg ,z z z z z -∠=-2313arg w w w w w -∠=-,于是有23231313z z w w z z w w --=--,即1122331101z w z w z w =.9.证明:123,,z z z 4,z 四点共圆或共直线的充要条件为1233410z z z z z z ∠+∠=或π但3212321argz z z z z z z -∠=-,1434143arg z zz z z z z -∠=- 3232141421432143a r g a r g a r g z z z z z z z z z z z z z z z z ----+=⋅----, 因此1234,,,z z z z 共圆周或共直线的充要条件为34141232:z z z z z z z z ----为实数. 10.证明:由21Oz Oz ⊥知2arg arg 21π±=-z z故i z zz z 2121±=,两边平方即得02121=+z z z z ,反之亦然. 11.证明:因为2221k z z z z =--,从而22121k z z z z zz z z =⎪⎪⎭⎫⎝⎛--⎪⎪⎭⎫ ⎝⎛-- 所以 ()2222221112z z z z k z z z z z z +-=+--即 212222122122)()()1(z z k z k z z z k z z k z -=-----亦即 2222122221122122222221)1()1()(1k z z k k z z z z z z k k z k z z --=---+=---故有 221222111kz z k k z k z z --=---,此为圆的方程,该圆圆心为222101k z k z z --=,半径为2211kz z k--=ρ ),10(21z z k ≠≠<. 12.证明:2222)1()1(11111b a b a z z zz+--<+-⇔+<-⇔<+- 022)1()1(2222>⇔<-⇔+--<+-⇔a a a b a b a几何意义:右半平面上的点到(1,0)的距离a 小于到(-1,0)点的距离b ;到(1,0)的距离a 小于到(-1,0)点的距离b 的点在右半平面上.第二章 解析函数(一)1.证明:0>∃δ,使{}0001/),(t t t t δδ+-∈∀,有)()(01t z t z ≠,即C 在)(0t z 的对应去心邻域内无重点,即能够联结割线()(10t z t z ,是否就存在数列{}01t t n →,使)()(01t z t z n =,于是有0)()(lim )(0101001=--='→t t t z t z t z n n t t n此与假设矛盾.01001),(t t t t t >⇒+∈δ因为 [])()(a r g)()(a r g 010101t z t z t t t z t z -=-- 所以 []])()(lim arg[)()(arglim )()(arg lim 0101010101010101t t t z t z t t t z t z t z t z t t t t t t --=--=-→→→因此,割线确实有其极限位置,即曲线C 在点)(0t z 的切线存在,其倾角为)(arg 0t z '.2.证明:因)(),(z g z f 在0z 点解析,则)(),(00z g z f ''均存在.所以 )()()()()()(lim )()()()(lim )()(lim 00000000000z g z f z z z g z g z z z f z f z g z g z f z f z g z f z z z z z z ''=----=--=→→→3.证明:()()()()()3322,0,0,,0,00x y x y u x y x y x y ≠⎧-⎪=+⎨⎪=⎩()()()()()3322,0,0,,0,00x y x y v x y x y x y ≠⎧+⎪=+⎨⎪=⎩于是()()()00,00,00,0limlim 1x x x u x u xu xx →→-===,从而在原点()f z 满足C R -条件,但在原点,()()()()()'0,00,0x x u iv u iv f f z z z +-+-= ()()()()()()333311i x y i zx y z ⎡⎤+--+⎣⎦=⎡⎤+⎣⎦当z 沿0y x =→时,有()()()'212f f z i z x --+= 故()f z 在原点不可微.4.证明:(1)当0≠z 时,即y x ,至少有一个不等于0时,或有y x u u ≠,,或有y x u u ≠-,故z 至多在原点可微.(2)在C 上处处不满足C R -条件. (3)在C 上处处不满足C R -条件. (4)221yx yix z z z z ++==,除原点外, 在C 上处处不满足C R -条件. 5.解:(1) y x y x v xy y x u 22),(,),(==,此时仅当0==y x 时有 xy v xy u x v y u x y y x 22,22-=-===== 且这四个偏导数在原点连续,故)(z f 只在原点可微. (2) 22),(,),(y y x v x y x u ==,此时仅当y x =这条直线上时有 00,22=-=====x y y x v u y v x u且在y x =这四个偏导数连续,故)(z f 只在y x =可微但不解析. (3) 333),(,2),(y y x v x y x u ==,且00,9622=-=====x y y x v u y v x u 故只在曲线0212312=-x y 上可微但不解析.(4) 32233),(,3),(y y x y x v xy x y x u -=-=在全平面上有 xy v xy u y x v y x u x y y x 66,33332222-=-=-=-==-= 且在全平面上这四个偏导数连续,故可微且解析. 6.证明:(1)y y x x iu v iv u z f D yi x z -=+='=∈+=∀)(0,(2)设().f z u iv =+则()f z u iv =-,由()f z 与()f z 均在D 内解析知,,x y y x u v u v ==-,,x y y x u v u v =-=结合此两式得0x y x y u u v v ====,故,u v 均为常数,故)(z f 亦为常数. (3)若0)(=≡C z f ,则显然0)(≡z f ,若0)(≠≡C z f ,则此时有0)(≠z f ,且2)()(C z f z f ≡,即)()(2z f C z f ≡也时解析函数,由(2)知)(z f 为常数. (4)设().f z u iv =+,若C y x u ≡),(,则0,0≡≡y x u u ,由C R -条件得 0,0≡=≡-=x y y x u v u v 因此v u ,为常数, 则)(z f 亦为常数.7.证明:设,f u iv g i f p iQ =+==+则,,f u iv g v iu =-=-由 ()f z 在D 内解析知,x y y x u v u v ==-从而 ,x x y v y y x p v u Q p v u Q x ==-====- 因而()g z 亦D 内解析.8.解:(1)由32233),(,3),(y y x y x v xy x y x u -=-=,则有 222233,6,6,33y x v xy v xy u y x u y x y x -==-=-=故y x y x v v u u ,,,为连续的,且满足C R -条件,所以()z f 在z 平面上解析,且 22236)33()(z xyi y x i v u z f x x =+-=+='(2) ()()()(),cos sin ,cos sin x x u x y e x y y y v x y e y y x y =-⋅=- ()cos sin cos x x y u e x y y y y v =-+=()s i n s i n c o s x y x u e x y y y y v =--+=- 故()f z 在z 平面上解析,且()()()'cos 1sin sin 1cos x xf z e y x y y ie y x y y =⋅+-+⋅+-⎡⎤⎡⎤⎣⎦⎣⎦(3)由xshy y x v xchy y x u cos ),(,sin ),(==,则有x c h yv x s h y v x s h y u x c h y u y x y x c o s ,s i n ,s i n ,c o s =-=== 故y x y x v v u u ,,,为连续的,且满足C R -条件,所以()z f 在z 平面上解析,且 z x s h y i x c h y i v u z f x x c o s s i n c o s )(=-=+=' (4)由xshy y x v xchy y x u sin ),(,cos ),(-==,则有x c h y v x s h y v x s h y u x c h y u y x y x s i n ,c o s ,c o s ,s i n -=-==-=故y x y x v v u u ,,,为连续的,且满足C R -条件,所以()z f 在z 平面上解析,且 z x s h y i x c h y i v u z f x x s i n c o s s i n )(-=--=+=' 9.证明:设,i z x yi re θ=+=则cos ,sin ,x r y r θθ== 从而cos sin ,sin cos r x y x y u u u u u r u r θθθθθ=+=-+cos sin ,sin cos ,r x y x y v u v v v r v r θθθθθ=+=-+再由11,r r u v v u r rθθ==-,可得,x y y x u v u v ==-,因此可得()f z 在点z 可微且()()()'11cos sin sin cos x y r r f z u iu r u u i r u u r r θθθθθθ=-=--+()()1c o s s i n s i n c o s r i u i ur θθθθθ=--+ ()()c o s s i n s i n c o s r r i u ivθθθθ=-++ ()()c o s s i n r r i u iv θθ=-+()()1c o s s i n r r r r ru i v u i v i zθθ=+=++10.解:(1)x y i x z i e e e 2)21(22--+--== (2)222222y zxyiy zz e e e -+-==(3) 22222211x yi xy ix iyx yx yx y ze eeee--++++===⋅所以22221Re cos x yx y x y z e e ++⎛⎫= ⎪⎝⎭11.证明:(1)因为)sin (cos y i y e e e e e x yi x yi z z +=⋅==+ 因此 )sin (cos y i y e e x z -=而)sin (cos y i y e e e e e x yi x yi z z -=⋅==--,得证.(2)因为 ie e z iziz 2sin --=所以 z ie e i e e z iziz z i z i sin 22sin =+=-=---(3)因为2cos iziz e e z -+=所以z e e e e z iziz z i z i cos 22cos =+=+=--12.证明:分别就m 为正整数,零,负整数的情形证明,仅以正整数为例 当1=m 时,等式自然成立. 假设当1-=k m 时,等式成立.那么当k m =时,kz z k z k z e e e e =⋅=-1)()(,等式任成立. 故结论正确.13.解:(1) )1sin 1(cos 333i e e e e i i +=⋅=+(2) ()()()11cos 12i i i i e ei ---+-=()112i i i e e-+++=c o s 11s i n 1122e i e e e ⎛⎫⎛⎫=++- ⎪ ⎪⎝⎭⎝⎭14.证明:(1)由于z z g z z f ==)(,sin )(在点0=z 解析 且01)0(,0)0()0(≠='==g g f 因此 11cos sin lim0===→z z zz z(2)由于0)(,1)(=-=z g e z f z 在点0=z 解析,且01)0(,0)0()0(≠='==g g f因此 11lim 00==-=→z zz z e ze(3)由于z z z g z z z z f sin )(,cos )(-=-=在点0=z 解析, 且1)0(,0)0()0(,0)0()0(,0)0()0(='''=''=''='='==g g f g f g f 因此 3cos 1sin cos 1lim sin cos lim00=-+-=--→→zzz z z z z z z z z 15.证明:2cos iziz e e z -+=)c o s ()c o s (c o s nb a b a a +++-+=222)()()()(nb a i nb a i b a i b a i ia ia e e e e e e +-++-+-++++++ =⎥⎦⎤⎢⎣⎡--⋅+--⋅+-+ibbn i ia ib b n i ia e e e e e e 111121)1()1( =)2cos(2sin 21sinnb a b bn ++=右边同理证明(2).16.证明:(1) z i e e i i e e i e e iz zz z z iz i iz i sinh 222)sin()()(=-⋅=-=-=--- (2) z e e e e iz z z iz i iz i cosh 22)cos()()(=+=+=-- (3) z i ie e i e e iz iziz iz iz sin 22)sinh(=-⋅=-=--(4) z z iz i iz cos )cos()cos()cosh(=-=⋅= (5) z i zzi iz iz iz tanh cosh sinh )cos()sin()tan(===(6) z i zzi iz iz iz tan cos sin )cosh()sinh()tanh(===17.证明:(1) 1)(sin )(cos )(222222=+=+=-iz iz ishz z ch z sh z ch(2) 111sec 2222222=+=+=+zch zsh z ch z sh z ch z th z h (3) )sin()sin()cos()cos()cos()(21212121iz iz iz iz iz iz z z ch -=+=+ 2121s h z s h z c h z c h z += 18.证明:(1) xshy i xchy iy x yi x yi x z cos sin )sin(cos )cos(sin )sin(sin +=+=+= (2) xshy i xchy iy x yi x yi x z sin cos )sin(sin )cos(cos )cos(cos +=-=+= (3) y x y xsh y xch xshy i xchy z 22222222sinh sin cos sin cos sin sin +=+=+= (4) y x y xsh y xch xshy i xchy z 22222222sinh cos sin cos sin cos cos +=+=-=19.证明: chz e e e e shz zz z z =+='-='--2)2()( s h z e e e e c h z zz z z =-='+='--2)2()(20.解:(1) )31arg(31ln )31ln(i i i i z +++=+= )23(2ln ππk i ++= ),1,0( ±=k(2)由于2ln iz π=,则有i i e z i=+==2sin2cos2πππ(3)由于)2(1ππk e e i z +=-=,故)2(ππk i z += (4)z z sin cos -=,即1tan -=z ,所以 ππk i i i z +-=+-=411ln 21(5) 设,z x iy =+由12tgz i =+得()()sin 122cos iz iz iz iz zi e e i e e z--=+→-=-+ 2255izi e →=-+22cos 25y e x -→=-,1sin 25x =41ln 5,54y e y -→==且1112,222tg x x arctg π⎡⎤⎛⎫=-=-+ ⎪⎢⎥⎝⎭⎣⎦11ln 5224z arctg i π⎡⎤⎛⎫→=-++ ⎪⎢⎥⎝⎭⎣⎦ 21.证明:因)1arg(1ln )1ln()1ln(-+-=-=-θθθi i i re i re re z ,所以)cos 21ln(21)sin ()1(ln 1ln )]1Re[ln(222θθθθr r r re re z i i -+=+-=-=- 22.解: 32)(3)()(πθk z ik ez r z w +=,)2,1,0;2)(0;(=<<∈k z G z πθ利用i i w -=)(定2,=k k ,再计算)(2i w -23.解: 2,22ππii e i e ==-,由32)2(-=-w 定1,=k k ,再计算i ei w π451)(=24.解: )24(2ln )]2)1(arg(1[ln )1ln()1(πππk i k i i i i i i i eeei +-+++++===+)24(2ln ππk i ee+-⋅= ),2,1,0( ±±=kππk i k i i i i e e e e 23ln )]23(arg 3[ln 3ln 3-++⋅=== ),2,1,0( ±±=k25.解:z 在z 平面上沿0=z 为圆心,1>R 为半径的圆周C 从A 走到B ,经过变换4z w =,其象点w 在w 平面上沿以0=w 为心,14>R 为半径的象圆周从A '走到B ',刚好绕1+=w w 的支点-1转一整周,故它在B '的值为B w '+1.因此1)()(4+-=-=R z f z f AB.26.证明:()f z =0,1,∞由于 3|12+,故()f z 的支点为0,1z =,因此在将z 平面沿实轴从0到期割开后,就可保证变点z 不会单绕0或者说转一周,于是在这样割开后的z 平面上()f z 就可以分出三个单值解析分支. 另由已知 ()a r g f z π=得()()a r g c i f zi f i e e π∆=()2a r g 1a rg 3c c i z z e ⎡⎤∆-+∆⎣⎦=32342i ππ⎡⎤+⋅⎢⎥⎣⎦=712i e π=.(二)1.证明:由()21z f z z =-得()()2'2211z f z z +=-,从而于是()f z 在D 必常数()()()()()()22'2222111111z zf z zz f z z z z+-+⋅==---()4242121Re m z I z i z z -+=+- 所以 ()()4'421Re 12Re zf z z f z z z ⎛⎫-⋅= ⎪ ⎪+-⎝⎭由于1z <,因此410,z ->且()24422212Re 1210z z z z z +-≥+-=->故()()'Re 0f z z f z ⎛⎫⋅> ⎪ ⎪⎝⎭.2.证明:同第一题221Im 2111)()(1zzi z z z z f z f z -+-=-+='''+. 3.证明:题目等价域以下命题:设1,E E 为关于实轴对称的区域,则函数在E 内解析)(z f ⇒在1E 内解析.设)(z f 在E 内解析,对任意的10E z ∈,当1E z ∈时,有E z E z ∈∈,0,所以 )()()(lim )()(lim0000000z f z z z f z f z z z f z f z z z z '=--=--→→ 这是因为)(z f 在E 内解析,从而有)()()(lim 0000z f z z z f z f z z '=--→,由0z 的任意性可知, )(z f 在1E 内解析. 4.证明:(1)由于)(21),(21z z iy z z x -=+=,根据复合函数求偏导数的法则,即可得证. (2))(21)(21x vy u i y v x u z v i z u z f ∂∂+∂∂+∂∂-∂∂=∂∂+∂∂=∂∂ 所以x v y u y v x u ∂∂-=∂∂∂∂=∂∂,,得 0=∂∂zf5.证明: x y sh y sh x y xch yi x z 222222sin )sin 1(sin )sin(sin +=-+=+= 所以 z x y sh shy sin sin 22=+≤ 而 z y s h y Im =≥ ,故左边成立.右边证明可应用z sin 的定义及三角不等式来证明. 6.证明:有 R ch y ch y sh y sh x z 2222221sin sin ≤=+≤+=即 c h R t ≤s i n又有 R ch y ch y sh y x z 2222221sinh cos cos ≤=+≤+= 7.证明:据定义,任两相异点21,z z 为单位圆1<z ,有212221212121)32()32()()(z z z z z z z z z f z f -++-++=--0112222121=-->--≥++=z z z z 故函数)(z f 在1<z 内是单叶的.8.证明:因为)(z f 有支点-1,1,取其割线[-1,1],有(1) 10182)(,8)(arg ie c e i f z f ππ-=-=∆(2) i c c e i f z f i z f 852)(,85)(arg ,811)(arg 32πππ=--=∆-=∆ 9.解: 因为)(z f 有支点∞±,,1i ,此时支割线可取为:沿虚轴割开],[i i -,沿实轴割开],1[+∞,线路未穿过支割线,记线路为C ,)]arg())(arg()1arg([21)(arg i z i z z z f c c c c ⋅∆+--∆+-∆=∆ 2]0[21ππ-=-= 故 i z f 5)(-=.10.证明:因为()f z =0,1,z =∞,由题知()f z 的支点为0,1,z =于是在割去线段0Re 1≤≤的平面上变点就不可能性单绕0或1转一周,故此时可出两二个单值解析分支,由于当z 从支割线上岸一点出发,连续变动到1z =-时,只z 的幅角共增加2π,由已知所取分支在支割线上岸取正值,于是可认为该分支在上岸之幅角为0,因而此分支在1z =-的幅角为2π,故()21i f e π-==,i f 162)1(-=-''.第三章复变函数的积分(一)1.解:)10(≤≤=x x y 为从点0到1+i 的直线方程,于是∫∫+++−=+−iC yi x d ix y x dz ix y x 1022)()()(∫∫+=++−=102102)1()()(dx x i i ix x d ix x x 31013)1(3i x i −−=⋅−=2.解:(1)11,:≤≤−=x x z C ,因此111==∫∫−C dx x dz z (2)θi e z C =:,θ从π变到0,因此200===∫∫∫πθπθθd e i de dz z i C i (3)下半圆周方程为πθπθ2,≤≤=i e z ,则202===∫∫∫πθππθθd ie i de dz z i C i 3.证明:(1)11,0:≤≤−=y x C 因为1)(222≤=+=iy i y x z f ,而积分路径长为2)(=−−i i 故2)()(2222≤+=+∫∫−i i C dz iy x dz iy x .(2)0,1:22≥=+x y x C 而1)(4422≤+=+=y x iy x z f ,右半圆周长为π,所以π≤+∫−ii dz iy x )(22.4.解:(1)因为距离原点最近的奇点2π±=z ,在单位圆1≤z 的外部,所以zcos 1在1≤z 上处处解析,由柯西积分定理得0cos =∫C zdz .(2)1)1(122122++=++z z z ,因奇点i z +−=1在单位圆1≤z 的外部,所以2212++z z 在1≤z 上处处解析,由柯西积分定理得0222=++∫C z z dz .(3))3)(2(652++=++z z e z z e zz ,因奇点3,2−−=z 在单位圆1≤z 的外部,所以652++z z e z 在1≤z 上处处解析,由柯西积分定理得0652=++∫C z z z dz e .(4)因为2cos z z 在1≤z 上处处解析,由柯西积分定理得0cos 2=∫C dz z z .5.解:(1)因2)2()(+=z z f 在z 平面上解析,且3)2(3+z 为其一原函数,所以3223)2()2(3222i i z dz z i −=−+−+=+∫+−−(2)设t i z )2(+=π,可得dt e e e e i dt i t i dz z t i t t i t i)(22)2)(22cos(2cos 1010220∫∫∫−−+++=++=ππππππ1−+=e e 6.解:220(281)az z dz π++∫=2320243|a z z z π⎡⎤++⎢⎥⎣⎦=3322281623a a a πππ++7.证明:由于)(),(z g z f 在单连通区域D 内解析,所以])()([),()(′z g z f z g z f 在D 内解析,且)()()()(])()([z g z f z g z f z g z f ′+′=′仍解析,所以)()(z g z f 是)()()()(z g z f z g z f ′+′的一个原函数.从而∫=′+′βααβ)]()([)]()()()([z g z f dz z g z f z g z f 因此得∫∫′−=′βαβααβdz z g z f z g z f dz z g z f )()()]()([)()(.8.证明:||1||1,02z dz z z ==∴=+∫Q 设,i i z e dz ie d θθθ==⇒222200(cos sin )[(cos 2)sin ]0(cos 2)sin 2i i i d i i d e e θππθθθθθθθθθ−+−==+++∫∫=202sin (12cos )54cos i d πθθθθ−+++∫于是2012cos 0,54cos d πθθθ+=+∫故012cos 054cos d πθθθ+=+∫.9.解:(1)因为12)(2+−=z z z f 在2≤z 上是解析的,且21≤∈=z z ,根据柯西公式得iz z i dz z z z z z ππ4)12(21121222=+−=−+−=≤∫(2)可令12)(2+−=z z z f ,则由导数的积分表达式得i z f i dz z z z z z ππ6)(2)1(121222=′=−+−==∫10.解:(1)若C 不含±z=1,则201zdz z π=−∫c sin4(2)若C 含z=1但不含有z=-1,则22212zdz i i z ππ=⋅=−∫c sin4(3)若C 含有z=-1,但不含z=1,则:221zdz i zπ=−∫c sin4(4)若C 含有1z =±,则2111sin (12411c zdz z dz z z z ππ=−−−+∫∫c sin42(222i iπ==11.证明:θθθθθπθθπθθ∫∫∫−=++=+20sin cos 20sin cos )()sin (cos sin cos id e e i d i e dz ze i i C z ∫⋅+−=πθθθθθ20cos cos )cos(sin )sin(sin d ie e 再利用柯西积分公式i d e dz z e C C z πξξξ20=−=∫∫则∫=πθπθθ20cos 2)cos(sin d e ,由于)cos(sin cos θθe 关于πθ=对称,因此∫=πθπθθ0cos )cos(sin d e 12.解:令173)(2++=ξξξϕ,则)173(2)(2)()(2++⋅==−=∫z z i z i d zz f C πϕπξξξϕ则)76(2)(+=′z i z f π因此)166(2)766(2)1(i i i i f +−=++=+′ππ13.证明:利用结论:)(z f 在D 内单叶解析,则有0)(≠′z f 由题知,))((:b t a t z z C ≤≤=为D 内光滑曲线,由光滑曲线的定义有1)C 为若尔当曲线,即21t t ≠时,)()(21t z t z ≠;2)0)(≠′t z ,且连续于[a,b]要证Γ为光滑曲线,只须验证以上两条即可.而在)(z f w =的变换下,C 的象曲线下的参数方程为))](([)(:b t a t z f t w w ≤≤==Γ1)因21t t ≠时,)()(21t z t z ≠,又因)(z f 在D 内单叶解析,所以当21t t ≠时,)()(21z f z f ≠.因此当21t t ≠时,有)()(21t w t w ≠.2)因为0)(≠′t z 且连续于[a,b],又因0)(≠′z f ,则由解析函数的无穷可微性知)(z f ′′在D 内也存在,所以)(z f ′在D 内也连续,则由复合函数求导法则0)()()(≠′′=′t z z f t w ,且连续于[a,b].14.证明:由上题知C 和Γ均为光滑曲线,因)(w Φ沿Γ连续以及)(),(z f z f ′′在包含C 的区域D 内解析,因此)()]([z f z f ′Φ也连续,故公式中的两端积分存在.则dtt z t z f t z f dz z f z f C b a)())(())](([)()]([′′Φ=′Φ∫∫∫∫ΓΦ=′Φ=b adw w dt t w t w )()()]([15.证明:应用刘维尔定理,因)(z f 恒大于一正的常数,则)(1z f 必恒小于一正的常数,则)(1z f 为常数,故)(z f 为常数.16.解:(1)因为22u x xy y =+−,所以有22x y u x y v x y=+⇒=+22()2y v xy c x ⇒=++2()2x y v y c x u y x′⇒=+=−=−2()()2x x x c x D ′⇒=−⇒=−+c 2222()()(2)22y x f z x xy y xy D i ⇒=+−++−+由已知12Di D ⇒+⇒=i f(i)=-1+i -1+i=-1+222221()()(2)222y x f z x xy y i xy ⇒=+−++−+(2)由C R −条件,coy e y y y x e u v x x x y +−==)sin cos (,则∫+−=dycoy e y y e y xe v x x x )sin cos (∫−+=ydyy e y e y xe x x x sin sin sin )(cos sin x y y e y xe x x ϕ++=又因x y v u −=,故))(cos sin sin (cos sin sin x y e y xe y e y y e y e y e x x x x x x Φ′+++−=−−−即C x x =Φ=Φ′)(,0)(,故)cos sin ()sin cos ()(C y y e y xe i y y y x e z f x x x +++−=又因,0)0(=f 故00)0(=⇒==C iC f ,所以)cos sin ()sin cos ()(y y e y xe i y y y x e z f x x x ++−=(3)由C R −条件,222)(2y x xy v u x y +=−=,所以∫++−=+=)()(222222x y x x dy y x xy u ϕ又因x y u v =,故y x y x y x y x x )()()(2222′+=′+′+−ϕ,即0)(=′x ϕ.所以C x =)(ϕ,故2222)(y x y i C y x x z f ++++−=又因为0)2(=f ,所以21=C ,故222221)(y x y i y x x z f ++++−=17.证明:设222()4()4()x y f z u iv f z u v ′=+⇒=+2()f z =22u v +,2()22y x f z uu vv x ∂=+∂2222222()2222x x x x f z u uu v vv x∂=+++∂同理可得:2222222()2222y y y y f z u uu v vv y∂=+++∂于是结合C R −条件及,u v 为调和函数可得:22222222222()()4()2()2()x x x y x y f z u v u u u v v v x y∂∂+=+++++∂∂=4(22x x u v +)=42()f z ′18.证明:)(z f 在D 内解析,则)(z f ′在D 内也解析.已知0)(≠′z f ,则)(ln z f ′在D 内解析,于是其实部)(ln z f ′为D 内的调和函数.19.解:∫−==z z i z k dz z v z f 022)()(势函数和流函数分别为kxy y x =),(ϕ)(2),(22y x k y x −−=ϕ故势线和流线为双曲线.20.解:根据流量和环量的定义来计算i y x y x xy y x y x y x z z f 22222222222224)1(24)1(111)(+−−−+−−−−=−=环量04)1(24)1(111222222222222=+−−−+−−−−=Γ∫dy y x y x xy dx y x y x y x C C 流量为04)1(24)1(11222222222222=+−−++−−−−∫dx y x y x xy dy y x y x y x C 同理,在32,C C 处也为0.(二)1.答:)(z f 不必需要在0=z 解析,如zz f 1)(=在0=z 处不解析.2.解:若沿负实轴]0,(−∞隔开z 平面,z 就能分成两个单值解析分支,即)1,0,arg ()(22arg =<<−=+k z e z z k z i k πππ(1)在πθθ≤≤=0,:1i e z C 上,z 取主值支.这时(1)式中argz 代换为0,=k θ,则2θi e z =,故i zdz C 221+−=∫.(2)在πθθ≤≤=−0,:2i e z C 上,z 取主值支.这时(1)式中argz 代换为0,=−k θ,则i zdz C 222−−=∫.3.证明:利用积分估值定理及三角不等式212112111≤−+≤−+=−+z z z z 且由积分估值定理有π811≤−+∫C dz z z 4.证明:因为sz e z f =)(在单连通区域z 平面上解析,则ττ∫=−ba s as bs d se e e 由积分估值定理有ab M d se ba s −≤∫ττ其中M 可由ττστσττ⋅+⋅≤⋅⋅=⋅=⋅=),max()(b a it t it s s e s e e s e s e s se 得出.5.解:设i z e α=,1c 为0到1的直线段,2c 为1到z 的圆弧,则由柯西积分定理12222111C dz dz dz c c z z z =++++∫∫∫=1220011i i dx ie d x e θαθθ+++∫∫=214C dz RE z π=+∫6.解:z e z f z sin )(=在圆周a z =内解析,故其积分值与路径无关,只与起点终点有关,而积分路径为封闭的圆周,故∫=Cz zdz e 0sin 因此,原式=∫∫∫==−C C Cz a adz zdz e dz z 22sin π7.证明:因为()f z 在||1z ≤上连续,所以()f z 在||1z ≤一致连续,因此0ε∀>,0δ∃>,使当11r δ−<<时均有|()()|,2i i f e f re θθεπ−<(02)θπ<<于是:||1||1||1|()||()()|z z z rf z dz f z dz f z dz r ====−∫∫22001|()()|i i i i f e ie d f re rie d r ππθθθθθθ=−∫∫20|()()|i i f e f re d πθθθε≤−<∫所以||1()0z f z dz ==∫.8.证明:首先由题设积分∫r K dz z f )(存在,应用积分估值定理.rr M dz z f r K π2)()(⋅≤∫而由题设(3)0)(lim =⋅+∞→r r M r ,故得证.9.证明:(1)参见教材(3.16)式的证明.因为)(z f 在点0=z 的邻域内连续,则对0ε∀>,0δ∃>,0=∈∀z z 的邻域,有ε<−)0()(f z f 所以∫∫−=−πθπθθθπθ2020))0()(()0(2)(d f d re f f d re f i i∫∫=<−≤ππθπεθεθθ20202)0()(d d f d re f i 故)0(2)(lim 0f d re f i r πθθ=→(2)取(1)中的0=a ,再利用圆周的参数方程化简(1)中等式左端即证.10.证明:||111[2()]()2z dz z f z i z zπ=±+∫=2||112()()()]2z f z f z f z dz i z zπ=±±∫=2(0)(0)2(0)f f f ′′±=±11.证明:由题设,)(z f ′在D 内含C 之单连通区域内解析,∫∫′≤′=−ba ba dz z f dz z f a fb f )()()()(考虑到)(z f ′在有界闭集C 上的连续性,必存在点C ∈ξ,使得)(ξf ′是)(z f ′在C 上的最大值.∫∫−′≤′b a b a a b f dz z f )()(ξ由上得ab f a f b f −′≤−)()()(ξ如果C ∈∀η,都有0)(=′ηf ,则沿C ,0)(≡′z f ,于是沿C ,)(z f 为常数,故)()(a f b f =,题中等式成立.如果存在C ∈ξ使0)(≠′ξf ,且是)(z f ′在C 上的最大值,则可令))(()()(a b f a f b f −′−=ξλ,则题中等式成立.12.证明:取圆周1<=ρz 由于)(z f 在1<z 内解析,故知)(z f 在ρ≤z 上解析,且有ρ−=−≤1111)(z z f 由柯西不等式,知)1(!)(!)0()(ρρρρ−=≤n n n n M n f 对于ρ在(0,1)上,当1+=n n ρ时,)1(ρρ−n 取最大值)11()1(n n n n n +−+于是得)1(!ρρ−n n 的最小值为n n n n )1()!1(++,当∞→n 时e n n n 1)1(→+所以有)0()(n f 的估值为e n f n )!1()0()(+≤.13.证明:由柯西不等式nn R R M n a f )(!)()(≤,其中L ,2,1,)(max )(===−n z f R M R a z 可知∫∫==⋅≤=′1212)(21)(21)0(z z dzz z f dz z z f i f ππ1112112=≤∫=z dz π14.证明:应用反证法假设满足R z >且M z f >)(的z 不存在,则必存在某正数M R ,,使得对于任意的z ,R z >时,M z f ≤)(,又由)(z f 的连续性.则当R z ≤时,)(z f 必有最大值,设其为1M ,令{}10,max M M M =,则在∞<z 时有0)(M z f ≤,于是得到)(z f 在全平面上是有界的,则由刘维尔定理,)(z f 必为常数,与题矛盾,假设错误.15.解:由22()(4)2(),v x y x xy y x y µ+=−++−+得22(4)()(24)2x x v x xy y x y x y µ+=+++−+−=223362x y xy −+−两式相加并结合C R −条件得:22332x x y µ=−−从而323232,32x y x x v y x y y µ=−−=−+−故322332(32)f x y x x i x y y y =−−+−−16.解:在D 内,由条件(1),(2)已知满足柯西积分公式的条件,故得在D 内)()(21z f z f =在C 上,由条件(3)知)()(21z f z f =故综合得在C D D +=上有)()(21z f z f =.第四章 解析函数的幂级数表示法(一)1.解:(1)其部分和数列14151311()414121(4--++-++++-=n i n S n由交错级数收敛性判别及极限运算法则知n n S 4lim ∞→存在,设为l S n n =∞→4lim ,又有,0241,0142414→+-=→+=++n a n i a n n 由此得知l S n n =∞→lim ,因此级数收敛,但非绝对收敛.(2)∑∑∑∞=∞=∞=≤=+111!)34(!1!)53(n n n nn n n b n n i ,可知原级数绝对收敛. (3)由于1226251251lim lim >=+=+=∞→∞→i ia nnn nn n ,故原级数发散. 2.解:(1)11lim lim1=+==∞→+∞→n n c c R n n n n(2)212lim lim 1=+==∞→+∞→n nc c R n n n n(3)01limlim 1==∞→∞→n c R n n nn 3.证明:(1)如果∞≠=+∞→λn n n c c 1lim,则∞≠=+∞→λnn n c c1lim ,则级数的收敛半径为⎪⎩⎪⎨⎧∞+==+∞→n n n c c R 1lim 1λ 00=≠λλ(2)由(1)可证其收敛半径为R . (3)由(1)可证其收敛半径为R .4.证明:因为∑∑∞=∞==0n nn n nn R c z c 收敛,而当R z ≤时,∑∑∞=∞=≤0n n n n nnR c z c,因此级。
第二章 习题解答提示(一)1.(定理)设连续曲线[]βα,),(:∈=t t z z C ,有[]),(0)(00βα∈≠'t t z ,则(试证)曲线C 在点)(0t z 有切线。
分析 1)在)(0t z 的某去心领域内能联结割线()(10t z t z ; 2)割线的极限位置就是切线。
证1),0>∃δ使}{\),(0001t t t t δδ+-∈∀,有)()(01t z t z ≠,即C 在)(0t z 的 对应去心领域内无重点,即能够连接割线()(10t z t z ,否则就存在数列{},01t t n →使)()(01t z t z n =。
于是0)()(lim )(0101001=--='→t t t z t z t z n n t t n ,这与假设矛盾。
2)01001),(t t t t t >⇒+∈δ,[],)()(arg )()(arg010101t z t z t t t z t z -=--[])()(arg lim 010t z t z t t -∴→(对)(0t z 割线)()(10t z t z 倾角的极限)⎥⎦⎤⎢⎣⎡--=--=→→01010101)()(lim arg )()(arglim 0101t t t z t z t t t z t z t t t t )(a r g0t z '=。
因此,割线确实有极限位置,即曲线C 在点)(0t z 的切线存在,其 倾角为)(arg 0t z '.3. 设 ⎪⎩⎪⎨⎧=≠+==+++-.0,0;0,)(223333)(z iy x z z f y x y x i y x试证)(z f 在原点满足..R C -条件,但却不可微. 证 1) 有公式(2.5)及(2.6)有;1)0()(lim0i z f z f iv u x y x x +=-=+→=.1)0()(lim0+=-=+-→=i zf z f v iu y x y y2) 但z 当沿直线0)0(→≠=m mx y 时,zf z f z )0()(lim-→随m 而变.4. 试证下列函数在z 平面上任何点都不解析: (1) z ; (2) y x +; (3) z Re ; (4)z1. 分析 由于孤立的可微点不是解析点,故只须证明各函数 个别点外处处不满足解析的必要条件:..R C -条件.证 (1) 当0≠z 时,即y x ,至少有一0≠时,或有,y x v u ≠ 或有.x x v u -≠故z 至多在原点可微;(2) 在上处处不满足..R C -条件;(3) 的结论同(2); (4),122y x iy x zz z z ++==除原点外,..R C -条件处处不成立. 5. 判断下列函数的可微性和解析性: (1) ;)(22y ix xy z f += (2) ;22iy x +(3) ;32)(33iy x z f += (4) ).3(33223y xy i xy x -+- 分析 如只在孤立点或只在直线上可微,都未形成由可微点构成的圆邻域,故都在其上不解析;利用推论2.3考查可微性,然后应用解析的定义.解 (1) .),(,),(22y x y x v xy y x u == 仅当0==y x 时,22,22xy v u xy x v u y x y y x -=-=====且此四偏导数在原点连续,故)(z f 只在原点可微,且.0)2()()0()0,0(2)0,0(===+='xyi x iv u f x x6. 若函数)(z f 在区域D 内解析,且满足下列条件之一,试 证)(z f 在D 内必为常数.(1) 在D 内;0)(='z f (2))(z f 在D 内解析; (3) )(z f 在D 内为常数;(4) )(Re z f 或)(Im z f 在D 内为常数. 分析 分别由各题设条件及..R C -条件得:在D 内,0====y x y x v v u u 从而v u ,在D 内为常数.引理* 在区域D 内0====y x y x v v u u(A)⇒在D 内v u ,为常数.事实上,1) 设000iy x z +=为D 内一定点.)(00y y i x x iy x z ∆++∆+=+=是D 内任一点.若这两点能用全含于D 内的直线段z z 0来联结, 则有:),(),(0000y x u y y x x u u -∆+∆+=∆ x y y x x u x ∆∆+∆+=),(00θθ).10(),(00<<∆∆+∆++θθθy y y x x u y )(B这是因为,”若令),10(,00≤≤∆+=∆+=t y t y y x t x x 则有),,()(00y t y x t x u t F ∆+∆+= x y t y x t x u t F x ∆∆+∆+='),()(00 .),(00y y t y x t x u y ∆∆+∆++而.,y dtdy x dt dx ∆=∆= 由数学分析中的微分中值定理得)()01)(()0()1(θθF F F F '=-'=-).10(<<θ于是)(B 式成立.”从而由)(A 知,0=∆u 即),(),(00y x u y x u =.即在D 内u 为常数.同理,在D 内v 为常数.2) 若联结两点0z 与z 的直线段不全含于D 内,由区域的连通性知,可用全含在D 内的折线段将0z 与z 连接.若111iy x z +=是折线上0z 后面的一个顶点,则在)1段中u ∆的表达式)(B 中, 令,1010,y y y x x x =∆+=∆+立即得).,(),(0011y x u y x u =如此逐步推算,由一顶点至另一顶点,最后可得()().,,00y x u y x u =即在D 内u 为常数. 同理,在D 内v 为常数.引理*证毕. 证(1)...)(0,y y x x iu v R C iv u z f D iy x z --+='=∈+=∀(2) 由题设条件iv u +及iv u -在D 内解析,再由..R C -条件可推得0====y x y x v v u u 最后有引理*可得证.(3) 由题设,在D 内=)(z f 常数C . 1) .0)(0≡⇒=z f C 2) .0)(0≠⇒≠z f C证一 )()()(2z f C z f C z f =⇒=在D 内解析,于是由题(2)得知D z f 在)(内为常数.证二 ,0222≠=+C v u 分别对y x ,微分,再应用..R C - 条件,讨论解二元一次方程组,即得在D 内.0====y x y x v v u u(4) 由..R C -条件推得,在D 内.0====y x y x v v u u 8. 试证下列函数在z 平面上解析,并分别求出其导函数. (1) ;33)(3223i y xy yi x x z f --+=(2) );sin cos ()sin cos ()(y x y y ie y y y x e z f xx ++-= (3) ;cos sin )(xshy i xchy z f += (4) ;sin cos )(xshy i xchy z f -= 证 应用定理2.5及求导公式(2.7).),2cos(2sin 21sin )cos()cos(cos nb a b bn nb a b a a ++=+++++ (1)及).2sin(2sin 21sin )sin()sin(sin nb a b bn nb a b a a ++=+++++ (2)证一 分别证明(1)和(2).按定义将正,余弦函数表成指数函数,再等比级数求和的公式简化.注 由于a 和b 是复数,不能从(1)+i (2)着手化简后,再比较实,虚部. 证二 先将(1)和(2)式两端各乘2sin b去分母后,再应用三角函数中积化和差的公式,代入左端化简.16. 试证:(1)ishz iz =)sin(;(2)chz iz =)cos(;(3)z i iz sh sin )(=;(4)z iz ch cos )(=; (5)ithz iz tg =)(;(6)itgz iz th =)(.证 (1)、(2)应用定义2.5及2.7;(3)由(1);(4)由(2);(5)、(6)由定义2.6、及2.7及(1)、(2). 17. 试证:(1)122=-z sh z ch ;(2)1sec 22=+z th z h ;(3)212121)(shz shz chz chz z z ch +=+.证 (1)由16题(1)、(2);(2)由本题(1);(3)由16题(1)、(2). 18. 若,iy x z +=试证:(1)xshy i xchy z cos sin sin +=; (2)xshy i chy z sin cos cos -=;(3)y sh x z 222sin sin +=; (4)y sh x z222cos cos +=.证 (1)、(2)应用16题(1)、(2);(3)、(4)分别应用本题(1)、(2)及17题(1). 20. 试解方程:(4)0sin cos =+z z ;(5)i tgz 21+=. 解 (4).0)sin 21cos 21(2=+z zππk z +-=4(k 为整数).(5)Arc z =)21(1)21(121)21(i i i i Lni i tg +-++=+=+-=5221i Ln i⎥⎦⎤⎢⎣⎡-+=21)12(21arctg k z π +).,1,0(5ln 4±=k i21. 设θi re z =,试证[])cos 21ln(21)1ln(Re 2θr r z -+=-. 证 设ϕρi e z =-1,则[]ρln )1ln(Re =-z .22. 设3z w =确定在从原点0=z 起沿正实轴割破了的z 平面上,并且i i w -=)(,试求)(i w -之值.解一 32)(3)()(πθk z ik ez r z w +=,(G z ∈:πθ2)(0<<z ;2,1,0=k )1) 利用i i w -=)(定)2;2,=k k 求)(2i w -. 解二 作图2.0.13)(z z f =3arg 31)(arg π=∆=∆⇒z z f c c .再由公式(2.25)计算).)((6i ei f π-=-23. 设3z w =确定在从原点0=z 起沿负实轴割破了的z 平面上,并且32)2(-=-w (这是边界上岸点对应的函数值),试求)(i w 之值.解一 .,222ππii e i e ==-由32)2(-=-w 定,1,=k k 从而.)(651i ei w π=解二 作图2.0.2.3)(z z f =,而[].arg )2(arg 3π=-=-z f又∆ .6arg 31)(arg ,2arg ππ-=∆=∆-=z z f z c c 再应用公式(2.25)计算))((65i e i f π=.24. 已知1)(4+=z z f 在ox 轴上A 点(1>=R OA )的初值为14++R ,令z 由A 起沿正向再以原点为中心的圆周上走41圆周而至oy 轴的B 点,问)(z f 在B 点的终值为何?分析 题设的函数1)(4+=z z f 是具有四个有限支点的二值函数,讨论起来比较繁难,而经过变数代换4z w =后,就简化成具有单有限支点-1的二值函数1+=w w .解 z 在z 平面上沿以0=z 为心,1>R 为半径的圆周c 从A 走到B ,经过变换4z w =,其象点w 在w 平面上w=0为心,14>R 为半径的象圆周Γ从'A 走到B ',刚好绕1+=w w 的交点-1转一整周.故它在B '的值为1+-w .因此1|)(|)(4+-=-=R z f z f A B . 25. 试证:在将z 平面适当割开后,函数32)1()(z z z f -=能分出三个单值解析分支.并求出在点2=z 取负值的那个分支在i z =的值.分析 仿例2.3.14,2.3.15及2.3.16解之.证 )(z f 的支点是,1,0=z 在沿]1,0[割开的z 平面的区域D 内,)(z f 能分出三个单值解析分支.证一 令11r z =-1θi e ,2r z = 2θi e当2=z 时,2,1,0,2121====r r θπθ.由已知π)(arg z f k 定1,=k k .然后计算i ei f 127612)(π-=32232121)]()[()(πθθk ik ez r z r z f ++=证二 作图2.0.4.由2到i ,取路线1C .,127)(arg 1π=∆z f c 再按公式(2.25)计算)(i f 证三 作图2.0.4.由2到I ,取路线2C ,π1217)(arg 2-=∆z f c .再按(2.25)计算)(i f .(二)1.设21)(z z z f -=,试证().1,0)()(Re <>⎥⎦⎤⎢⎣⎡'z z f z f z证2224221I m (2111)()(zz i z z z z f z f z -=-=-+='.2.设zzz f -=1)(,试证 ().1,0)()(1Re <>⎥⎦⎤⎢⎣⎡'''+z z f z f z 证3.若函数在上半平面内解析,试证函数在下半平面内解析. 证一设z z 、0分别为下半z 平面内的定点及动点,可证)()()(lim0000z f z z z f z f z z '=--→.由0z 的任意性及解析的定义得证.证二),(),()(y x iv y x u z f +=在上半平面)0(>y 内解析⇒1)),(),,(y x v y x u 在0>y 可微,且2)yy x v x y x u ∂∂=∂∂),(),(, )0(),(),(>∂∂-=∂∂y xy x v y y x u ()* 考查)0)(,(),()(<--=y y x iv y x u z f ,则可证:1)),(),,(y x v y x u ---在0<y 内可微,且由()*式有 2)[][]yy x v x y x u y ∂--∂*∂-∂>-),()(,)0(, [][]xy x v y y x u ∂--∂-=∂-∂),()(,. 4.(形式导数)(1)设二元函数),(y x u 有偏导数.此函数可以写成iy x z +=及z 的函数).2,2(izz z z u u -+= 试证(形式地)⎪⎪⎭⎫⎝⎛∂∂+∂∂=∂∂⎪⎪⎭⎫ ⎝⎛∂∂-∂∂=∂∂y u i x u z u y u i x u z u 21,21 (2)设复变函数),(),()(y x iv y x u z f +=,且),(y x u 和),(y x v 都有偏导数.试证(形式地):对于)(z f ,柯西—黎曼(Cauchy-Riemann)条件可以写成0=∂∂+∂∂=∂∂zvi z u z f (由此可见,解析函数是以条件0=∂∂zf为其特征的.因此,我们不妨说,一个解析函数与z 无关,而是z 一数的函数.)证 (形式地)(1)由于)(21),(21z z iy z z x -=+=. 这里视z z ,为两个独立变量.根据复合函数求偏导的法则,即可形式地得证。
习题二解答1、解:1)连续 令iyx z zy x iv y x u z f +=+=+=,11),(),()(2则由222222222212111111zxy izy x zz z+-++-+=++=+显然,),(),,(y x v y x u 在1<z 内连续2)不一致连续 因为取⎪⎭⎫ ⎝⎛>-=+=>∀=δδεδδ11'',1',0,51n inn z i n n z 取显然,()δδδ<+=--+=-1111'''n n nn n n z z但()()()()222222111111''11'11nn n n z z ---⎪⎪⎭⎫⎝⎛+-=+-+δδ()()ε>=->--=-+-=41421412121212222222nn n n n n n n2、()iyx z y x zz f +=+==,222则,0),(,),(22=+=y x v y x y x u0,2,2====y x y x v v y u x u显然上述四个偏导在整个复平面上连续 由R C-条件⎩⎨⎧==⇒⎩⎨⎧==00202y x y x22222222)2()1(2),(,)2()1(1),(xy y x xyy x v xy y x yx y x u +-+-=+-+-+=∴()2zz f =∴只在0=z 处可导,而处处不解析3、证明:()yy x xziUV R C iV U z f D iy x V--+='=∈+=0,0====∴y x yx V V UU),(),,(y x V y x U 在D 内为常数 故)(z f 在D 内为常数 4、证明(1)令()),(),(y x iv y x u z f +=若),(y x u 在D 内为常数,则在D 内,0==y xu u由C-R 条件知,对),(y x v 有在D 内0==y xv v∴),(),,(y x v y x u 在D 内为常数 )(z f在D 内为常数对),(y x v 于D 内为常数时,同理可证得结论 (2)由()222v u z f +=在D 内为常数设()*22cv u =+若0=c 知()0=z f 于D若0≠c ,此时:对()*求偏微分得22022=+=+y y x x vv uu vv uu再由C-R 条件,并讨论二元一次方程组的解,可解出====y x y x v v u u ,由此可得)(z f 在D 内为常数5、证明:若∈z 上半平面,则∈z 下半平面 设()),(),(y x iv y x u z f +=,则()),(),(),(),(y x i y x y x iv y x u z f ψϕ+∆---=)(z f 在上半平面解析),(),,(y x v y x u ⇔在上半平面解析且满足RC -方程x y y x v u v u -==,又()()),(,),,(,y x v y x y x u y x --=-=ψϕ()()()()yy x v y x y x v x yy x u y x y x u x x ∂-∂=∂∂∂-∂-=∂∂∂-∂-=∂∂∂-∂=∂∂,,,,,,ψψϕϕ∴当)(z f 在半平面解析时,),(,,y x y )(x ψϕ在下半平面可微,且满足R C -方程xyy x2222,2222ψϕψϕ-==)(z f ∴在下半平面解析6、证明:(1)xyi y x iy )(x z 2.2222+-=+=xv y v y uy x ux xy y x v y x y x u y x 2,2,2,22),(,),(22==-===-=显然y x y xv v u u,,,在整个复平面连续,且xy x v uy v u -==,2z ∴在复平面解析 (2)yie y e ee xx iyx zsin cos +==-ye v y e v y e u y e u yie y x v y e y x u xy xx xy xx xxcos ,sin ,sin ,cos sin ),(,cos ),(==-====显然,yx y xv v u u,,,在整个复平面上解析,且x y y xv v v u-==,满足C-R 方程z e ∴在整个复平面上解析()()()()[]()xee y x v x ee y x u xeei x e e xe ei x eeieei z yyyyyyyyy yyyizizcos 2),(,sin 2),(cos 2sin 2sin cos 2121sin3--------=+=--+=++-=-=xee u x ee u yyy yyx sin 2,cos 2---=+=x eev x ee v yyy yyx cos 2,sin 2++=--=--yx y x v v u u ,,,在复平面上连续,且满足x y y xv u v u-==,zsin ∴在整个复平面上解析(4)同理z cos 在整个复平面上解析 (5)()xyi y x iy x z 222--=+=xv y v y u x u xy y x v y x y x u y x y x 2,2,2,22),(,),(22-=-=-==-=-=yx y x v v u u ,,,在复平面上连续由得xy y x v u v u ⎪⎩⎪⎨⎧-==⎩⎨⎧==⇒⎩⎨⎧+=--=02222y x y y x x所以2z 只在0=z 处可导,而在整个复平面上均不解析 同理可证z z e z cos ,sin ,在复平面上不解析、7、证明()θθθθθθθθθθθθ∂∂⋅=∂∂∴⎪⎪⎭⎫⎝⎛∂∂+∂∂-∂∂+⋅-=∂∂⋅∂∂+∂∂⋅∂∂=∂∂∂∂+⋅∂∂=∂∂⋅∂∂+∂∂⋅∂∂=∂∂-===vr ru x uy u r R C r yv r xv y y vxx v v y u x u r yy u r x x u ru r y r x y x iv y x u z f 1cos sin cos sin 22sin cos sin ,cos ),,(),(条件则设()()rv ru y u xu y v x v r yy v r x x v rv x u y u r r yu r xu y yu x x u u ∂∂-=∂∂∴⋅∂∂-⋅∂∂=⋅∂∂+⋅∂∂=∂∂⋅∂∂+∂∂⋅∂∂=∂∂⎥⎦⎤⎢⎣⎡∂∂-∂∂=∂∂+-⋅∂∂=∂∂⋅∂∂+∂∂⋅∂∂=∂∂θθθθθθθθθθθθcos sin sin cos sin cos cos sinrv ru vr ru :∂∂-=∂∂∂∂⋅=∂∂∴θθ,1条件是极坐标下的柯西一黎曼8、证明:(1)如同证明)(z f 存在则),(),,(y x v y x u 的偏导数也存在一样归纳可证明:)(z f 的实部和虚部在D 内也有任意阶导数 而xy y xv u u u-==,xy yy xy xxv u v u -==∴,=+∴yy xxv u,同理0=+yy xxv v(2)设()()),(,y x iv y x u z f +=,则()222vu z f +=()()⎥⎥⎦⎤⎢⎢⎣⎡∂∂+⎪⎪⎭⎫ ⎝⎛∂∂+∂∂⋅+⎪⎪⎭⎫⎝⎛∂∂=∂∂⎥⎥⎦⎤⎢⎢⎣⎡∂∂+⎪⎭⎫ ⎝⎛∂∂+∂∂+⎪⎭⎫ ⎝⎛∂∂=∂∂∴22222222222222222222y v vy v y u u y uyz f x v v x v x u u x u xz f又0,022222222=∂∂+∂∂=∂∂+∂∂yv xv yu xu且,,xv yu yv xu ∂∂-=∂∂∂∂=∂∂代入整理得:()()()22222222244z f x v x u yz f xz f '=⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛∂∂+⎪⎭⎫ ⎝⎛∂∂=∂∂+∂∂9、()()()()()[]()[]()()()()()()()()()()()()()()(),1,0,122sin122cos 2122sin 122cos2,1,022ln 22cos 1,1,0,,2,1,0,242ln 2121arg 1ln 11sin 1cos 2122ln 222arg 2ln 2222222221arg 1ln 2122222202arg ln 222ln 2±=+++=+++====-±=+=====±=====+±+⎪⎭⎫⎝⎛++=++++=++==+++-+--++⎪⎭⎫⎝⎛+-⎥⎦⎤⎢⎣⎡++++k k i k k i k e e e e k k is k e eeek e eee i k k i k i i i i Ln i ee e ek i k i Ln k i k i k i i Ln k k i i k i i i i iLnii i ziπππππππππππππππππππ10、()()()()()1111221cos 22222-+-=-+=∴-+==+-+==-z z iLn w z z Ln iw z z ezee eez w ziwiwiwiwiw即故11、证明:()()()()()zz eeiz ee z iz i z e e ieeiee i iz ee z zzzzzzzziz i izi zzcosh cosh 21cos 2cosh sin sinh 212121sin 2sinh =∴+=+=-=∴-⋅-=-=-=-=---+---()()()()()()()222221ln 1ln 11ln 101221sin 1z iz i iiz i w iiz iw iiz eizee eeiz w ziwiwiwiwiw-+-=-+=-+=∴-+==---==-即故()()()()212112212121222222sinh cosh cosh sinh cos sin cos sin )sin()(1sin cos sin cos sinhcoshz z z z iz iz i iz iz i iz iz i z z son iz iz z i iz z z +=--=+-=+=+=--=-212121212121212121sinh sinh coshcosh )sin )(sin (cos cos sin sin cos cos )cos()(cos )cosh(z z z z iz i iz i z iz z iz iz iz iz iz z z i z z +=--+=-=+=+=+yz i y z z siyiy i i iy z ziy iy z iy x sinh cos cosh cos cos )(cos sin cos sin cos sin )sin(+=-+=+=+yx i y x iy i x i iy z iyx iy z iy x sinh sin cosh cos sin )(sin cos cos sin sin cos cos )cos(-=--=-=+ziz i iz dzd z dzd z iz iz i i iz i dz d z dz d sinh sin )(cos cosh cosh cos cos )sin (sinh =-====⋅-=-=12、证明()()⎪⎪⎭⎫⎝⎛∂∂+∂∂=∂∂⎪⎪⎭⎫ ⎝⎛∂∂+∂∂=⎪⎭⎫ ⎝⎛-⋅∂∂+⋅∂∂=∂∂⋅∂∂+∂∂⋅∂∂=∂∂⎪⎪⎭⎫⎝⎛∂∂-∂∂=⋅∂∂+⋅∂∂=∂∂⋅∂∂+∂∂⋅∂∂=∂∂-+=-=∂∂=∂∂=∂∂=∂∂-=+=-=+=y u i x u zv y u i xui zux u zy y u zx xu z u y u i x u i y u x u z y y u y x x u z u i zz z z u y x u izy zx izy zx z z iy ,z z x iy x z iy x z 21212121212121)2,2(),(21,21,21,21,2121,同理于是得由),(0,2121212121=∂∂+∂∂=∂∂∴=∂∂+∂∂=∂∂∂∂-=∂∂∂∂=∂∂⎪⎪⎭⎫⎝⎛∂∂+∂∂⋅+∂∂⋅-∂∂⋅=⎪⎪⎭⎫ ⎝⎛∂∂+∂∂+⎪⎪⎭⎫ ⎝⎛∂∂+∂∂=∂∂+∂∂=∂∂+=zv iz u zf z f zv izu zf y ux v y v x u:x v y u i y v x u y v i x v i y u i x u zv i z u zf ivu f 成柯西一黎曼条件可以写对于得由柯西一黎曼条件13、解:()()()⎪⎭⎫ ⎝⎛-+=⎪⎪⎪⎪⎭⎫ ⎝⎛-+=⎪⎭⎫ ⎝⎛-+====z z Ln z z Ln z f z z Ln z f ,z e zf e z f z z111111)11(20)1(,)(11从而不解析点无定义在。
第二章部分习题解答1 •试证下列函数在7平面上任何点都不解析。
(2) /(z ) = Rez o色=1色=0空=o 勿’金 >,知1爪)在刁平面上任何点都不解析。
2.下列函数何处可导?何处解析?(1)旳“+的解 (1)由于OXf(z) = xy 2+ix 2y 仅在点“0处可导,在?平面处处不解析。
3•证明:如果函数/(z )=w + /v在区域D 内解析,并满足下列条件之一,那么/⑴ 是常数。
仃)在。
内广^ =°; ⑵雨在D 内解析。
⑶"(z)l 在D 内是一个常数。
解(1)的证明由于/⑵P+必丸,故由引理得纵"=°,根据C.R 条件 即有亏9 = 于是讥乙刃、风兀丿)恒为常数,即/⑵在D 内恒为常数。
(2)若7U) = ^ = u-iv 在区域D 内解析,贝I 」du _ d(- v) _ dv _ d(— v) _ Sudx dy dy ? dy dx dx又f(z) = u^iv 在区域D 内解析,贝IJdu du __dx , 5y dx dy知/(z)在z 平面上任何点都不解析。
du dx(1)在Z 平面上处处连续,且当且仅当 沪0时,6 才满足C~R 条件,故du dv du dv—=— —— --------- dx dy, dy dx结合(1)、(2)两式,有du _ du _dv _dv dx dy dx vy故以在〃内均为常数,分別记之为均=C 19u 2=C 2(C l9C 2为实常数), 则 /(Z ) = M+ ,V =C] +iC 2 =C 为一复常数。
(3)若1%)1在D 内为一常数,记为G,则两边分别对于x 和y 求 偏导,得由于/C)在〃内解析,满足C-R 条件du dv dudv II■I■,dx dy ?dx代入上式又可写得duu---- dx du v ——+ dxSv dv c——=——=U同理,可解得% 巧 故均为常数,分别记为U = C^V = C 29 则 /(z) = u + iv=C {+iC 2=C 为一复常数。
第二章 习题解答提示(一)1.(定理)设连续曲线[]βα,),(:∈=t t z z C ,有[]),(0)(00βα∈≠'t t z ,则(试证)曲线C 在点)(0t z 有切线。
分析 1)在)(0t z 的某去心领域内能联结割线()(10t z t z ; 2)割线的极限位置就是切线。
证1),0>∃δ使}{\),(0001t t t t δδ+-∈∀,有)()(01t z t z ≠,即C 在)(0t z 的 对应去心领域内无重点,即能够连接割线()(10t z t z ,否则就存在数列{},01t t n →使)()(01t z t z n =。
于是0)()(lim )(0101001=--='→t t t z t z t z n n t t n ,这与假设矛盾。
2)01001),(t t t t t >⇒+∈δ,[],)()(arg )()(arg010101t z t z t t t z t z -=--[])()(arg lim 010t z t z t t -∴→(对)(0t z 割线)()(10t z t z 倾角的极限)⎥⎦⎤⎢⎣⎡--=--=→→01010101)()(lim arg )()(arglim 0101t t t z t z t t t z t z t t t t )(a r g0t z '=。
因此,割线确实有极限位置,即曲线C 在点)(0t z 的切线存在,其 倾角为)(arg 0t z '.3. 设 ⎪⎩⎪⎨⎧=≠+==+++-.0,0;0,)(223333)(z iy x z z f y x y x i y x试证)(z f 在原点满足..R C -条件,但却不可微. 证 1) 有公式(2.5)及(2.6)有;1)0()(lim0i z f z f iv u x y x x +=-=+→=.1)0()(lim0+=-=+-→=i zf z f v iu y x y y2) 但z 当沿直线0)0(→≠=m mx y 时,zf z f z )0()(lim-→随m 而变.4. 试证下列函数在z 平面上任何点都不解析: (1) z ; (2) y x +; (3) z Re ; (4)z1. 分析 由于孤立的可微点不是解析点,故只须证明各函数 个别点外处处不满足解析的必要条件:..R C -条件.证 (1) 当0≠z 时,即y x ,至少有一0≠时,或有,y x v u ≠ 或有.x x v u -≠故z 至多在原点可微;(2) 在上处处不满足..R C -条件;(3) 的结论同(2); (4),122y x iy x zz z z ++==除原点外,..R C -条件处处不成立. 5. 判断下列函数的可微性和解析性: (1) ;)(22y ix xy z f += (2) ;22iy x +(3) ;32)(33iy x z f += (4) ).3(33223y xy i xy x -+- 分析 如只在孤立点或只在直线上可微,都未形成由可微点构成的圆邻域,故都在其上不解析;利用推论2.3考查可微性,然后应用解析的定义.解 (1) .),(,),(22y x y x v xy y x u == 仅当0==y x 时,22,22xy v u xy x v u y x y y x -=-=====且此四偏导数在原点连续,故)(z f 只在原点可微,且.0)2()()0()0,0(2)0,0(===+='xyi x iv u f x x6. 若函数)(z f 在区域D 内解析,且满足下列条件之一,试 证)(z f 在D 内必为常数.(1) 在D 内;0)(='z f (2))(z f 在D 内解析; (3) )(z f 在D 内为常数;(4) )(Re z f 或)(Im z f 在D 内为常数. 分析 分别由各题设条件及..R C -条件得:在D 内,0====y x y x v v u u 从而v u ,在D 内为常数.引理* 在区域D 内0====y x y x v v u u(A)⇒在D 内v u ,为常数.事实上,1) 设000iy x z +=为D 内一定点.)(00y y i x x iy x z ∆++∆+=+=是D 内任一点.若这两点能用全含于D 内的直线段z z 0来联结, 则有:),(),(0000y x u y y x x u u -∆+∆+=∆ x y y x x u x ∆∆+∆+=),(00θθ).10(),(00<<∆∆+∆++θθθy y y x x u y )(B这是因为,”若令),10(,00≤≤∆+=∆+=t y t y y x t x x 则有),,()(00y t y x t x u t F ∆+∆+= x y t y x t x u t F x ∆∆+∆+='),()(00 .),(00y y t y x t x u y ∆∆+∆++而.,y dtdy x dt dx ∆=∆= 由数学分析中的微分中值定理得)()01)(()0()1(θθF F F F '=-'=-).10(<<θ于是)(B 式成立.”从而由)(A 知,0=∆u 即),(),(00y x u y x u =.即在D 内u 为常数.同理,在D 内v 为常数.2) 若联结两点0z 与z 的直线段不全含于D 内,由区域的连通性知,可用全含在D 内的折线段将0z 与z 连接.若111iy x z +=是折线上0z 后面的一个顶点,则在)1段中u ∆的表达式)(B 中, 令,1010,y y y x x x =∆+=∆+立即得).,(),(0011y x u y x u =如此逐步推算,由一顶点至另一顶点,最后可得()().,,00y x u y x u =即在D 内u 为常数. 同理,在D 内v 为常数.引理*证毕. 证(1)...)(0,y y x x iu v R C iv u z f D iy x z --+='=∈+=∀(2) 由题设条件iv u +及iv u -在D 内解析,再由..R C -条件可推得0====y x y x v v u u 最后有引理*可得证.(3) 由题设,在D 内=)(z f 常数C . 1) .0)(0≡⇒=z f C 2) .0)(0≠⇒≠z f C证一 )()()(2z f C z f C z f =⇒=在D 内解析,于是由题(2)得知D z f 在)(内为常数.证二 ,0222≠=+C v u 分别对y x ,微分,再应用..R C - 条件,讨论解二元一次方程组,即得在D 内.0====y x y x v v u u(4) 由..R C -条件推得,在D 内.0====y x y x v v u u 8. 试证下列函数在z 平面上解析,并分别求出其导函数. (1) ;33)(3223i y xy yi x x z f --+=(2) );sin cos ()sin cos ()(y x y y ie y y y x e z f xx ++-= (3) ;cos sin )(xshy i xchy z f += (4) ;sin cos )(xshy i xchy z f -= 证 应用定理2.5及求导公式(2.7).),2cos(2sin 21sin )cos()cos(cos nb a b bn nb a b a a ++=+++++ (1)及).2sin(2sin 21sin )sin()sin(sin nb a b bn nb a b a a ++=+++++ (2)证一 分别证明(1)和(2).按定义将正,余弦函数表成指数函数,再等比级数求和的公式简化.注 由于a 和b 是复数,不能从(1)+i (2)着手化简后,再比较实,虚部. 证二 先将(1)和(2)式两端各乘2sin b去分母后,再应用三角函数中积化和差的公式,代入左端化简.16. 试证:(1)ishz iz =)sin(;(2)chz iz =)cos(;(3)z i iz sh sin )(=;(4)z iz ch cos )(=; (5)ithz iz tg =)(;(6)itgz iz th =)(.证 (1)、(2)应用定义2.5及2.7;(3)由(1);(4)由(2);(5)、(6)由定义2.6、及2.7及(1)、(2). 17. 试证:(1)122=-z sh z ch ;(2)1sec 22=+z th z h ;(3)212121)(shz shz chz chz z z ch +=+.证 (1)由16题(1)、(2);(2)由本题(1);(3)由16题(1)、(2). 18. 若,iy x z +=试证:(1)xshy i xchy z cos sin sin +=; (2)xshy i chy z sin cos cos -=;(3)y sh x z 222sin sin +=; (4)y sh x z222cos cos +=.证 (1)、(2)应用16题(1)、(2);(3)、(4)分别应用本题(1)、(2)及17题(1). 20. 试解方程:(4)0sin cos =+z z ;(5)i tgz 21+=. 解 (4).0)sin 21cos 21(2=+z zππk z +-=4(k 为整数).(5)Arc z =)21(1)21(121)21(i i i i Lni i tg +-++=+=+-=5221i Ln i⎥⎦⎤⎢⎣⎡-+=21)12(21arctg k z π +).,1,0(5ln 4±=k i21. 设θi re z =,试证[])cos 21ln(21)1ln(Re 2θr r z -+=-. 证 设ϕρi e z =-1,则[]ρln )1ln(Re =-z .22. 设3z w =确定在从原点0=z 起沿正实轴割破了的z 平面上,并且i i w -=)(,试求)(i w -之值.解一 32)(3)()(πθk z ik ez r z w +=,(G z ∈:πθ2)(0<<z ;2,1,0=k )1) 利用i i w -=)(定)2;2,=k k 求)(2i w -. 解二 作图2.0.13)(z z f =3arg 31)(arg π=∆=∆⇒z z f c c .再由公式(2.25)计算).)((6i ei f π-=-23. 设3z w =确定在从原点0=z 起沿负实轴割破了的z 平面上,并且32)2(-=-w (这是边界上岸点对应的函数值),试求)(i w 之值.解一 .,222ππii e i e ==-由32)2(-=-w 定,1,=k k 从而.)(651i ei w π=解二 作图2.0.2.3)(z z f =,而[].arg )2(arg 3π=-=-z f又∆ .6arg 31)(arg ,2arg ππ-=∆=∆-=z z f z c c 再应用公式(2.25)计算))((65i e i f π=.24. 已知1)(4+=z z f 在ox 轴上A 点(1>=R OA )的初值为14++R ,令z 由A 起沿正向再以原点为中心的圆周上走41圆周而至oy 轴的B 点,问)(z f 在B 点的终值为何?分析 题设的函数1)(4+=z z f 是具有四个有限支点的二值函数,讨论起来比较繁难,而经过变数代换4z w =后,就简化成具有单有限支点-1的二值函数1+=w w .解 z 在z 平面上沿以0=z 为心,1>R 为半径的圆周c 从A 走到B ,经过变换4z w =,其象点w 在w 平面上w=0为心,14>R 为半径的象圆周Γ从'A 走到B ',刚好绕1+=w w 的交点-1转一整周.故它在B '的值为1+-w .因此1|)(|)(4+-=-=R z f z f A B . 25. 试证:在将z 平面适当割开后,函数32)1()(z z z f -=能分出三个单值解析分支.并求出在点2=z 取负值的那个分支在i z =的值.分析 仿例2.3.14,2.3.15及2.3.16解之.证 )(z f 的支点是,1,0=z 在沿]1,0[割开的z 平面的区域D 内,)(z f 能分出三个单值解析分支.证一 令11r z =-1θi e ,2r z = 2θi e当2=z 时,2,1,0,2121====r r θπθ.由已知π)(arg z f k 定1,=k k .然后计算i ei f 127612)(π-=32232121)]()[()(πθθk ik ez r z r z f ++=证二 作图2.0.4.由2到i ,取路线1C .,127)(arg 1π=∆z f c 再按公式(2.25)计算)(i f 证三 作图2.0.4.由2到I ,取路线2C ,π1217)(arg 2-=∆z f c .再按(2.25)计算)(i f .(二)1.设21)(z z z f -=,试证().1,0)()(Re <>⎥⎦⎤⎢⎣⎡'z z f z f z证2224221I m (2111)()(zz i z z z z f z f z -=-=-+='.2.设zzz f -=1)(,试证 ().1,0)()(1Re <>⎥⎦⎤⎢⎣⎡'''+z z f z f z 证3.若函数在上半平面内解析,试证函数在下半平面内解析. 证一设z z 、0分别为下半z 平面内的定点及动点,可证)()()(lim0000z f z z z f z f z z '=--→.由0z 的任意性及解析的定义得证.证二),(),()(y x iv y x u z f +=在上半平面)0(>y 内解析⇒1)),(),,(y x v y x u 在0>y 可微,且2)yy x v x y x u ∂∂=∂∂),(),(, )0(),(),(>∂∂-=∂∂y xy x v y y x u ()* 考查)0)(,(),()(<--=y y x iv y x u z f ,则可证:1)),(),,(y x v y x u ---在0<y 内可微,且由()*式有 2)[][]yy x v x y x u y ∂--∂*∂-∂>-),()(,)0(, [][]xy x v y y x u ∂--∂-=∂-∂),()(,. 4.(形式导数)(1)设二元函数),(y x u 有偏导数.此函数可以写成iy x z +=及z 的函数).2,2(izz z z u u -+= 试证(形式地)⎪⎪⎭⎫⎝⎛∂∂+∂∂=∂∂⎪⎪⎭⎫ ⎝⎛∂∂-∂∂=∂∂y u i x u z u y u i x u z u 21,21 (2)设复变函数),(),()(y x iv y x u z f +=,且),(y x u 和),(y x v 都有偏导数.试证(形式地):对于)(z f ,柯西—黎曼(Cauchy-Riemann)条件可以写成0=∂∂+∂∂=∂∂zvi z u z f (由此可见,解析函数是以条件0=∂∂zf为其特征的.因此,我们不妨说,一个解析函数与z 无关,而是z 一数的函数.)证 (形式地)(1)由于)(21),(21z z iy z z x -=+=. 这里视z z ,为两个独立变量.根据复合函数求偏导的法则,即可形式地得证。