(王云松)北京市2012年中考数学二模代数几何综合题分类汇2
- 格式:doc
- 大小:1.24 MB
- 文档页数:19
2012年北京西城区初三数学二模试题(含答案)北京市西城区2012年初三二模试卷数 学 2012. 6一、选择题(本题共32分,每小题4分)下面各题均有四个选项,其中只有一个..是符合题意的.1.8-的倒数是A.8B.8-C.18D.18- 2.在2012年4月25日至5月2日举办的2012(第十二届)北京国际汽车展览会上,约有800 000名观众到场参观,盛况空前.800 000用科学记数法表示应为A.3810⨯ B.48010⨯ C.5810⨯ D.60.810⨯3.若⊙1O 与⊙2O 内切,它们的半径分别为3和8,则以下关于这两圆的圆心距12O O 的结论正确的是 A.12O O =5 B.12O O =11 C.12O O >11 D. 5<12O O <114.如图,在△ABC 中,D 为AB 边上一点,DE ∥BC 交AC 于点E ,若35AD DB =,AE =6,则EC 的长为A . 8 B. 10 C. 12 D. 165.甲、乙、丙、丁四人进行射击测试,每人10次射击成绩的平均数都是8.9环,方差分别是20.61S =甲,20.52S =乙,20.53S =丙,20.42S =丁,则射击成绩波动最小的是A. 甲B. 乙C. 丙D. 丁 6.如图,AB 为⊙O 的弦,半径OC ⊥AB 于点D若OB 长为10,3cos 5BOD ∠=, 则AB 的长是A . 20 B. 16 C. D. 87.若某个多边形的内角和是外角和的3倍,则这个多边形的边数为A . 4 B. 6 C. 8 D. 10 8.如图,在矩形ABCD 中,3=AB ,BC=1. 现将矩形ABCD 绕点C 顺时针旋转90°得到矩形A B CD ''',则AD 边扫过的面积(阴影部分)为A . 21π B. 31π C.41π D. 51π二、填空题(本题共16分,每小题4分)9. 将代数式2610x x -+化为2()x m n -+的形式(其中m ,n 为常数),结果为 . 10.若菱形ABCD 的周长为8,∠BAD =60°,则BD = .11.如图,把一个半径为12cm 的圆形硬纸片等分成三个扇形,用其中一个扇形制作成一个圆锥形纸筒的侧面(衔接处无缝隙且不重叠),则圆锥底面半径等于 cm .12.如图,在平面直角坐标系xOy 中,点1A ,2A ,3A ,…都在y 轴上,对应的纵坐标分别为1,2,3,….直线1l ,2l ,3l ,…分别经过点1A ,2A ,3A ,…,且都平行于x 轴.以点O 为圆心,半径为2的圆与直线1l 在第一象限交于点1B ,以点O 为圆心,半径为3的圆与直线2l 在第一象限交于点2B ,…,依此规律得到一系列点n B (n 为正整数),则点1B 的坐标为 ,点nB 的坐标为 . 三、解答题(本题共30分,每小题5分) 13.计算:101()(π3)6cos4585---+︒14.已知2240x x +-=,求代数式22(2)(6)3x x x x ----的值.15.如图,点F,G分别在△ADE的AD,DE边上,C,B 依次为GF延长线上两点,AB=AD,∠BAF=∠CAE,∠B=∠D.(1)求证:BC=DE;(2)若∠B=35°,∠AFB=78°,直接写出∠DGB 的度数.16.已知关于x的一元二次方程 (m +1)x2 + 2mx + m3 = 0 有两个不相等的实数根.(1)求m的取值范围;(2)当m取满足条件的最小奇数时,求方程的根.17. 如图,在平行四边形ABCD中,点EF分别是AB,CD的中点.(1)求证:四边形AEFD(2)若∠A=60°,AB=2AD=4,求BD的长.18. 吸烟有害健康!你知道吗,即使被动吸烟也大大危害健康.为配合“禁烟”行动,某校组织同学们在某社区开展了“你支持哪种戒烟方式”的问卷调查,征求市民的意见,并将调查结果整理后制成了如下两个统计图:(图中信息不完整)请根据以上信息回答下面问题:(1) 同学们一共随机调查了人;(2) 如果在该社区随机咨询一位市民,那么该市民支持“强制戒烟”方式的概率是;(3) 如果该社区有5 000人,估计该社区支持“警示戒烟”方式的市民约有人.四、解答题(本题共20分,每小题5分)19.如图,某天然气公司的主输气管道途经A小区,继续沿A小区的北偏东60 方向往前铺设,测绘员在A处测得另一个需要安装天然气的M小区位于北偏东30︒方向,测绘员从A 处出发,沿主输气管道步行2000米到达C 处,此时测得M 小区位于北偏西60︒方向.现要在主输气管道AC 上选择一个支管道连接点N ,使从N 处到M 小区铺设的管道最短. (1)问:MN 与AC 满足什么位置关系时,从N 到M 小区铺设的管道最短?(2)求∠AMC 的度数和AN 的长.20.如图,在平面直角坐标系xOy 中,直线483y x =-+与x 轴,y 轴分别交于点A ,点B ,点D 在y 轴的负半轴上,若将△DAB 沿直线AD 折叠,点B 恰好落在x 轴正半轴上的点C 处.(1)求AB 的长和点C 的坐标; (2)求直线CD 的解析式.21.如图,BC 是⊙O 的直径,A 是⊙O 上一点,过点C作⊙O 的切线,交BA 的延长线于点D ,取CD 的中点E ,AE 的延长线与BC 的延长线交于点P . (1)求证:AP 是⊙O 的切线;(2)若OC =CP ,AB =33,求CD 的长.22. 阅读下列材料小华在学习中发现如下结论:如图1,点A ,A 1,A 2在直线l 上,当直线l ∥BC 时, BC A BC A ABC S S S 21∆∆∆==.请你参考小华的学习经验画图(保留画图痕迹):(1)如图2,已知△ABC ,画出一个..等腰△DBC ,使其面积与△ABC 面积相等;(2)如图3,已知△ABC ,画出两个..Rt △DBC ,使其面积与△ABC 面积相等(要求:所画的两个三角形不全等...); (3)如图4,已知等腰△ABC ,画出图1一个..四边形ABDE ,使其面积与△ABC 面积相等,且一组对边DE=AB ,另一组对边BD ≠AE ,对角∠E =∠B .图 2 图 3 图4五、解答题(本题共22分,第23题7分,第24题7分,第25题8分)23. 在平面直角坐标系xOy 中,A 为第一象限内的双曲线1k y x =(10k >)上一点,点A 的横坐标为1,过点A作平行于 y 轴的直线,与x 轴交于点B ,与双曲线2k y x =(20k <)交于点C . x 轴上一点(,0)D m 位于直线AC 右侧,AD 的中点为E . (1)当m=4时,求△ACD 的面积(用含1k ,2k 的代数式表示);(2)若点E 恰好在双曲线1k y x =(10k >上,求m 的值;(3)设线段EB 的延长线与y 轴的负半轴交于点F ,当点D 的坐标为(2,0)D 时,若△BDF 的面积为1,且CF ∥AD ,求1k 的值,并直接写出线段CF 的长.24.如图,在Rt △ABC 中,∠C =90°,AC=6,BC =8.动点P 从点A 开始沿折线AC -CB -BA 运动,点P 在AC ,CB ,BA 边上运动的速度分别为每秒3,4,5 个单位.直线l 从与AC 重合的位置开始,以每秒43个单位的速度沿CB 方向平行移动,即移动过程中保持l ∥AC ,且分别与CB ,AB 边交于E ,F 两点,点P 与直线l 同时出发,设运动的时间为t 秒,当点P 第一次回到点A 时,点P 和直线l 同时停止运动. (1)当t = 5秒时,点P 走过的路径长为 ;当t = 秒时,点P 与点E 重合;(2)当点P 在AC 边上运动时,将△PEF 绕点E 逆时针旋转,使得点P 的对应点M 落在EF 上,点F 的对应点记为点N ,当EN ⊥AB 时,求t 的值;(3)当点P 在折线AC -CB -BA 上运动时,作点P 关于直线EF 的对称点,记为点Q .在点P 与直线l 运动的过程中,若形成的四边形PEQF 为菱形,请直接写出t 的值.25.在平面直角坐标系xOy 中,抛物线21124y x=+的顶点为M ,直线2yx=,点()0P n ,为x 轴上的一个动点,过点P 作x 轴的垂线分别交抛物线21124y x =+和直线2y x =于点A ,点B .⑴直接写出A ,B 两点的坐标(用含n 的代数式表示);⑵设线段AB 的长为d ,求d 关于n 的函数关系式及d 的最小值,并直接写出此时线段OB 与线段PM 的位置关系和数量关系; (3)已知二次函数2y axbx c=++(a ,b ,c 为整数且0a ≠),对一切实数x 恒有x ≤y ≤2124x +,求a ,b ,c 的值.北京市西城区2012年初三二模试卷数学答案及评分标准 2012. 6 一、选择题(本题共32分,每小题4分) 题号 1 2 3 4 5 6 7 8 答案 D C A B D B C C二、填空题(本题共16分,每小题4分) 题号 9 10 11 12 答案 2(3)1x -+ 2 4 (3,1) (21,)n n + 三、解答题(本题共30分,每小题5分)13.解:原式=2516222-+⨯-…………………………………………………………4分=42+.…………………………………………………………………… 5分14.解:原式=22(44)(6)3x x x x x -+---=32324463x x x x x -+-+-=2243x x +-.………………………..….….….….….…………………… 3分∵ 2240x x +-=,∴224x x +=. ………………………………………………………………… 4分 ∴ 原式=22(2)35x x +-=. ….……………………………………………………5分 15.(1)证明:如图1. ∵ ∠BAF =∠CAE ,∴ BAF CAF CAE CAF ∠-∠=∠-∠. FG D C∴ BAC DAE ∠=∠. ………………… 1分 在△ABC 和△ADE 中,,,,B D AB AD BAC DAE ∠=∠⎧⎪=⎨⎪∠=∠⎩∴ △A B C ≌△ADE. ………………………………………………………3分∴BC=DE. ………………………………………………………………… 4分 (2)∠D G B 的度数为67︒.……………………………………………………………… 5分 16. 解:(1)∵关于x 的一元二次方程(m +1)x 2 + 2mx + m - 3 = 0 有两个不相等的实数根, ∴ 10m +≠且0∆>.∵ 2(2)4(1)(3)4(23)m m m m ∆=-+-=+,∴ 230m +>. ﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍1分解得 m >23-. ﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍2分∴ m 的取值范围是 m >23-且m ≠ -1. ﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍ 3分(2)在m >23-且m ≠ -1的范围内,最小奇数m 为1. ﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍4分此时,方程化为210x x +-=. ∵ 224141(1)5b ac ∆=-=-⨯⨯-=,∴ x ==. ∴ 方程的根为 1x =, 2x=.﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍5分17. (1)证明:如图2. ∵ 四边形ABCD∴ AB ∥CD 且AB=CD . ﹍﹍﹍﹍1分 ∵ 点E ,F 分别是AB ,CD 的中点,∴ CD DF AB AE 21,21==. ∴ AE=DF . ﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍ 2分∴ 四边形AEFD 是平行四边形. ﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍3分(2)解:过点D 作DG ⊥AB 于点G . ∵ AB =2AD =4,∴ AD =2. ﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍4分在Rt △AGD 中,∵90,60,AGD A ∠=︒∠=︒ AD =2, ∴ .360sin ,160cos =︒⋅==︒⋅=AD DG AD AG ∴ 3BG AB AG =-=.在Rt △DGB 中,∵90,3,3,DGB DG BG ∠=︒==∴.329322=+=+=BG DG DB ﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍5分18.解:(1)300; ﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍2分 (2)52;﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍4分 (3)1750 . ﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍5分 四、解答题(本题共20分,每小题5分)19.解:(1)当MN ⊥AC 时,从N 到M 小区铺设的管道最短.(如图3)﹍﹍﹍﹍﹍﹍ 1分(2) ∵ ∠MAC =60︒-30︒=30︒,∠ACM =30︒+30︒=60︒,﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍2分∴ ∠AMC =180︒-30︒-60︒=90︒. ﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍ 3分在Rt △AMC 中,∵∠AMC =90︒,∠MAC =30︒,AC =2000,∴ 3cos 200010003AM AC MAC =⋅∠==米). ﹍﹍﹍﹍﹍﹍﹍﹍4分在Rt △AMN 中,∵ ∠ANM =90︒,cos30︒=AMAN, 北南西东东60°60°30°NMAC∴ AN =AM ⋅cos30︒=10003⨯23=1500(米). (5)分答:∠AMC 等于90︒,AN 的长为1500米. 20. 解:(1)根据题意得(6,0)A ,(0,8)B .(如图4)在Rt △OAB 中,∠AOB =90︒,OA =6,OB =8, ∴ 226810AB =+=.﹍﹍﹍﹍﹍﹍﹍ 1分∵ △DAB 沿直线AD 折叠后的对应三角形为△DAC ,∴ AC=AB=10.∴ 16OC OA AC OA AB =+=+=. ∵ 点C 在x 轴的正半轴上, ∴ 点C 的坐标为(16,0)C .﹍﹍﹍﹍﹍ 2分 (2)设点D 的坐标为(0,)D y .(y <0) 由题意可知CD=BD ,22CD BD =.由勾股定理得22216(8)y y +=-. 解得12y =-.∴ 点D 的坐标为(0,12)D -.﹍﹍﹍﹍﹍3分可设直线CD 的解析式为 12y kx =-.(k ≠ 0)∵ 点(16,0)C 在直线12y kx =-上,∴ 16120k -=. ﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍4分解得34k =. ∴ 直线CD 的解析式为3124y x =-.﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍5分21.(1)证明:连结AO ,AC .(如图5) ∵ BC 是⊙O 的直径, ∴ 90BAC CAD ∠=∠=︒.﹍﹍﹍﹍﹍1分 ∵ E 是CD 的中点,∴ AE DE CE ==. ∴ EAC ECA ∠=∠. ∵ OA =OC , ∴ OCA OAC ∠=∠. ∵ CD 是⊙O 的切线,∴ CD ⊥OC . ﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍2分图4 yx D BC O A 图ED A PO C BlD 5D 2D 4D 3D 1ACB∴ 90ECA OCA ∠+∠=︒.∴ 90EAC OAC ∠+∠=︒. ∴ OA ⊥AP .∵ A 是⊙O 上一点,∴ AP 是⊙O 的切线. ﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍3分(2) 解:由(1)知OA ⊥AP .在Rt △OAP 中,∵90OAP ∠=︒,OC=CP=OA ,即OP =2OA ,∴ sin P 21==OP OA . ∴ 30P ∠=︒. ﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍4分∴ 60AOP ∠=︒. ∵ OC=OA , ∴ 60ACO ∠=︒.在Rt △BAC 中,∵90BAC ∠=︒,AB =33,60ACO ∠=︒,∴ 333tan AB AC ACO ===∠. 又∵ 在Rt △ACD 中,90CAD ∠=︒,9030ACD ACO ∠=︒-∠=︒,∴ 323cos cos30AC CD ACD ===∠︒. ﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍5分22.解:(1) 如图所示,答案不唯一. 画出△D 1BC ,△D 2BC ,△D 3BC ,△D 4BC ,△D 5BC 中的一个即可.(将BC 的平行线l 画在直线BC 下方对称位置所画出的三角形亦可)﹍﹍﹍﹍﹍﹍﹍ 2分(2) 如图所示,答案不唯一. (在直线D 1D 2上取其他D 1D 2B CANME B C A符合要求的点,或将BC 的平行线画在直线BC下方对称位置所画出的三角形亦可)﹍﹍﹍﹍﹍﹍﹍﹍﹍4分(3) 如图所示(答案不唯一).﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍ 5分如上图所示的四边形ABDE 的画法说明:(1)在线段BC 上任取一点D (D 不为BC 的中点),连结AD ;(2)画出线段AD 的垂直平分线MN ;(3)画出点C 关于直线MN 的对称点E ,连结DE ,AE . 则四边形ABDE 即为所求.五、解答题(本题共22分,第23题7分,第24题7分,第25题8分)23.解:(1)由题意得A ,C 两点的坐标分别为1(1,)A k ,2(1,)C k .(如图6)∵ 10k >,20k <,∴ 点A 在第一象限,点C 在第四象限,12AC k k =-.当m=4时,1213()2ACD S AC BD k k ∆=⋅=-.﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍2分(2) 作EG ⊥x 轴于点G .(如图7)∵ EG ∥AB ,AD 的中点为E ,∴ △DEG ∽△DAB ,12EG DG DE AB DB DA ===,G 为BD 的中点.图xyC (1,k 2)A (1,k 1)y=k2x y=k 1xD OB图xyC (1,k 2)A (1,k 1)y=k 2xy=k 1xG EDO B图xyC (1,k 2)A (1,k 1)y=k 2xy=k 1xFEDO B∵ A ,B ,D 三点的坐标分别为1(1,)A k ,(1,0)B ,(,0)D m ,∴ 122k AB EG ==,122BD m BG -==,12m OG OB BG +=+=. ∴ 点E 的坐标为11(,)22k m E +.∵ 点E 恰好在双曲线1k y x =上,∴ 11122k m k +⋅=.①﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍3分∵ 10k >,∴ 方程①可化为114m +=,解得3m =.﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍4分当点D 的坐标为(2,0)D 时,由(2)可知点E 的坐标为E (如图8) ∵ 1BDFS ∆=,∴ 11122BDFS BD OF OF ∆=⋅==. ∴ 2OF =. ﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍ 5分设直线BE 的解析式为y ax b =+(a ≠0).∵ 点B ,点E 的坐标分别为(1,0)B ,13(,)22kE , ∴10,3.22a b k a b +=⎧⎪⎨+=⎪⎩解得 1a k =,1b k =-.∴ 直线BE 的解析式为11y k x k =-.∵ 线段EB 的延长线与y 轴的负半轴交于点F ,10k >,∴ 点F 的坐标为1(0,)F k -,1OF k =. ∴ 12k =.﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍ 6分线段CF 的长为 7分24.解:(1) 当t =5秒时,点P 走过的路径长为 19 ;当t = 3 秒时,点P 与点E 重合.(2) 如图9,由点P 的对应点M 落在EF 上,点F 的对应点为点N ,可知∠PEF =∠MEN ,都等于△PEF 绕点E 旋转的旋转角,记为α.设AP =3t (0< t <2),则CP =63t -,43CE t =. ∵ EF ∥AC ,∠C =90°,∴ ∠BEF =90°,∠CPE =∠PEF =α. ∵ EN ⊥AB ,∴ ∠B=∠MEN=α.∴ CPE B ∠=∠.﹍﹍﹍﹍﹍﹍﹍3分∵ tan CE CPE CP ∠=,3tan 4AC B BC ==, ∴ 43CP CE =. ∴ 446333t t -=⨯.﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍4分 解得5443t =.﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍5分(3) t 的值为65(秒)或307(秒).﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍ 7分25.解:(1)21(2)4A n n +,,()B n n ,. ﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍2分(2) d =AB =AByy -=2124nn -+. ∴ d =2112()48n -+=2112()48n -+.∴ 当14n =时,d 当d 取最小值时,线段OBA关系和数量关系是OB ⊥PM 且OB =PM . (如图10)﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍ 5分(3) ∵ 对一切实数x 恒有 x ≤y ≤2124x +, ∴ 对一切实数x ,x ≤2axbx c++≤2124x +都成立.(0a ≠) ①当0x =时,①式化为 0≤c ≤14. ∴ 整数c 的值为0. ﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍ 6分 此时,对一切实数x ,x ≤2ax bx +≤2124x +都成立.(0a ≠) 即222,12.4x ax bx ax bx x ⎧≤+⎪⎨+≤+⎪⎩对一切实数x 均成立.由②得 ()21ax b x +-≥0 (0a ≠) 对一切实数x 均成立.∴ ()210,10.a b >⎧⎪⎨∆=-≤⎪⎩由⑤得整数b 的值为 1. ﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍7分此时由③式得,2ax x +≤2124x +对一切实数x 均成立. (0a ≠) 即21(2)4a x x --+≥0对一切实数x 均成立. (0a ≠) 当a =2时,此不等式化为14x -+≥0,不满足对一切实数x 均成立.④ ②当a ≠2时,∵ 21(2)4a x x --+≥0对一切实数x 均成立,(0a ≠) ∴2220,1(1)4(2)0.4a a ->⎧⎪⎨∆=--⨯-⨯≤⎪⎩∴ 由④,⑥,⑦得 0 <a ≤1.∴ 整数a 的值为1. ﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍8分∴ 整数a ,b ,c 的值分别为1a =,1b =,0c =.⑥。
2012年北京各区县二模试题分类几何综合解析版2012年北京市中考数学二模分类汇编——几何综合与中点有关的问题1.(昌平24) 如图,D 是△ABC 中AB 边的中点,△BCE 和△ACF 都是等边三角形,M 、N 别是CE 、CF 的中点. (1)求证:△DMN 是等边三角形; (2)连接EF ,Q 是EF 中点,CP ⊥EF 于点P .求证:DP =DQ . 同学们,如果你觉得解决本题有困难,可以阅读下面两位同学的解题思路作为参考:小聪同学发现此题条件中有较多的中点,因此考虑构造三角形的中位线,添加出了一些辅助线;小慧同学想到要证明线段相等,可通过证明三角形全等,如何构造出相应的三角形呢?她考虑将△NCM 绕顶点旋转到要证的对应线段的位置,由此猜想到了所需构造的三角形的位置.24. 证明:(1)取AC 的中点G ,连接NG 、DG .NME F C∴DG =21BC ,DG ∥BC ;△NGC 是等边三角形.∴NG = NC CM . …………………2分 ∵∠1 + ∠2 = 180º,∴∠NGD + ∠2 = 240º.∵∠2 + ∠3 = 240º,∴∠NGD =∠3.∴△NGD≌△NCM . ……………………3分 ∴ND = NM ,∠GND =∠CNM .∴∠DNM =∠GNC = 60º.∴△DMN 是等边三角形.………………………………4分(2)连接QN 、PM .∴QN=21CE= PM . ……………………5分Rt △CPE 中,PM =EM ,∴∠4= ∠5.∵MN ∥EF ,∴∠5= ∠6,∠7=∠8.67854P Q N M E C C 321G NM E F∵NQ ∥CE ,∴∠7= ∠4.∴∠6= ∠8.∴∠QND = ∠PMD . ………………………6分∴△QND ≌△PMD .∴DQ = DP . ……………………7分2.(丰台24)在△ABC 中,D 为BC 边的中点,在三角形内部取一点P ,使得∠ABP =∠ACP .过点P 作PE ⊥AC 于点E ,PF ⊥AB 于点F . (1)如图1,当AB =AC 时,判断的DE 与DF 的数量关系,直接写出你的结论; (2)如图2,当AB AC ,其它条件不变时,(1)中的结论是否发生改变?请说明理由.图1图224.解:(1)DE =DF .……1分A E F PB DC E B A DF P(2)DE =DF 不发生改变. (2)分理由如下:分别取BP 、CP 的中点M 、N ,联结EM 、DM 、FN 、DN .∵D 为BC 的中点,∴BP DN BP DN //,21=.……3分∵,AB PE ⊥∴BP BM EM 21==. ∴21,∠=∠=EM DN .∴12213∠=∠+∠=∠.…4分 同理,524,//DM FN MD PC =∠=∠.∴四边形MDNP 为平行四边形.……5分∴67∠=∠ ∵,41∠=∠∴35∠=∠. ∴EMD DNF ∠=∠.……6分∴△EMD ≌△DNF . ∴DE =DF .……7分3.(海淀25.)在矩形ABCD 中, 点F 在AD 延长线上,且DF = DC , M 为AB 边上一点, N 为MD 的中点, 点E 在直线CF 上(点E 、C 不重合).(1)如图1, 若AB =BC , 点M 、A 重合, E为CF 的中点,试探究BN 与NE 的位置关系及BM CE 的值, 并证明你的结论;(2)如图2,且若AB =BC , 点M 、A 不重合,7654321N M C D B P F E ABN =NE ,你在(1)中得到的两个结论是否成立,若成立,加以证明; 若不成立, 请说明理由;(3)如图3,若点M 、A 不重合,BN =NE ,你在(1)中得到的结论两个是否成立, 请直接写出你的结论.图 1 图 2 图325. 解:(1)BN 与NE 的位置关系是BN ⊥NE ;CE BM 2 证明:如图,过点E 作EG ⊥AF 于G , 则∠EGN =90°.∵ 矩形ABCD 中, AB =BC ,∴ 矩形ABCD 为正方形.∴ AB =AD =CD , ∠A =∠ADC =∠DCB =90°.∴ EG//CD , ∠EGN =∠A , ∠CDF =90°.……………1分∵ E 为CF , F A ( M ) D N D A C E N M B F E C BF N M E C B∴ GF =DG =11.22DF CD = ∴ 1.2GE CD = ∵ N 为MD (AD )的中点,∴ AN =ND =11.22AD CD = ∴ GE =AN ,NG=ND+DG=ND+AN=AD=AB . ………2分∴ △NGE ≌△BAN .∴ ∠1=∠2.∵ ∠2+∠3=90°,∴ ∠1+∠3=90°.∴ ∠BNE =90°.∴ BN ⊥NE . ……………………………3分∵ ∠CDF =90°, CD =DF ,可得 ∠F =∠FCD =45°, 2.CF CD =. 于是122CF CE CE CE BM BA CD CD ==== …………4分(2)在(1)中得到的两个结论均成立.证明:如图,延长BN 交CD 的延长线于点G ,连结BE 、GE ,过E 作EH ⊥CE ,交CD 于点H .H B C E M∵四边形ABCD是矩形,∴AB∥CG.∴∠MBN=∠DGN,∠BMN=∠GDN.∵N为MD的中点,∴MN=DN.∴△BMN≌△GDN.∴MB=DG,BN=GN.∵BN=NE,∴BN=NE=GN.∴∠BEG=90°. (5)分∵EH⊥CE,∴∠CEH =90°.∴∠BEG=∠CEH.∴∠BEC=∠GEH.由(1)得∠DCF =45°.∴∠CHE=∠HCE =45°.∴EC=EH,∠EHG =135°.∵∠ECB=∠DCB+∠HCE =135°,∴∠ECB =∠EHG.∴△ECB≌△EHG.∴EB=EG,CB=HG.∵BN=NG,∴BN⊥NE. ……………………6分∵BM =DG= HG-HD= BC-HD =CD-2CE,∴2. ……………………7分CEBM不一定等于(3)BN⊥NE;CEBM2. ……………………8分密云25.已知菱形ABCD的边长为1,60ADC∠=o,等边△AEF两边分别交DC、CB于点E、F.(1)特殊发现:如图1,若点E、F分别是边DC、CB的中点,求证:菱形ABCD对角线AC、BD的交点O即为等边△AEF的外心;(2)若点E、F始终分别在边DC、CB上移动,记等边△AEF的外心为P.①猜想验证:如图2,猜想△AEF的外心P落在哪一直线上,并加以证明;②拓展运用:如图3,当E 、F 分别是边DC 、CB 的中点时,过点P 任作一直线,分别交DA 边于点M ,BC 边于点G ,DC 边的延长线于点N ,请你直接写出11DM DN+的值.25.(本小题满分8分)证明:(1)如图1:分别连结OE 、OF .∵四边形ABCD 是菱形,∴AD DC CB ==,AC BD ⊥,DO BO =, 且112302ADC ∠=∠=∠=o . ∴在Rt △AOD 中,有12AO AD =. 又 E 、F 分别是边DC 、CB 的中点,∴1122EO CB DC OF ===.∴AO EO FO ==.∴点O 即为等边△AEF 的外心. ------------------------- 3分(2)①猜想:△AEF 的外心P 落在对角线DB 所在的直线上.证明:如图2:分别连结PE 、PA ,作PQ DC ⊥于Q ,PH AD⊥于H .则90PQE PHD ∠=∠=o∵60ADC ∠=o, ∴在四边形QDHP 中,120QPH ∠=o.又 ∵点P 是等边△AEF 的外心,60EFA ∠=o,∴PE PA =,2260120EPA EFA ∠=∠=⨯=oo. ∴αβ∠=∠.∴△PQE ≌△PHA (AAS ).∴PQ=PH . ∴点P 在ADC ∠的角平分线上.∵菱形ABCD 的对角线DB 平分ADC ∠, ∴ 点P 落在对角线DB 所在直线上--- 6分 ②112DM DN+=. ---------------------- 8分 旋转变换在几何证明应用延庆24. (1)如图1:在△ABC 中,AB=AC ,当∠ABD =∠ACD=60°时,猜想AB 与BD+CD 数量关系,请直接写出结果 ;(2)如图2:在△ABC 中,AB=AC ,当∠ABD =∠ACD=45°时,猜想AB 与BD+CD 数量关系并证明你的结论; (3)如图3:在△ABC 中,AB=AC ,当∠ABD =∠ACD=β(20°≤β≤70°)时,直接写出AB 与BD+CD 数量关系(用含β的式子表示)。
2012年北京市中考数学模拟试卷(二)2012年北京市中考数学模拟试卷(二)一、选择题(在下列各题的四个选项中,只有一项是符合题意的.请在答题卡中填涂符合题意的选项.本题共l0个小题,每小题3分,共30分)D..4.(3分)(2011•长沙)如图,在平面直角坐标系中,点P(﹣1,2)向右平移3个单位长度后的坐标是()6.(3分)(2011•长沙)若是关于x、y的二元一次方程ax﹣3y=1的解,则a的值为()7.(3分)(2011•长沙)如图,关于抛物线y=(x﹣1)2﹣2,下列说法错误的是()8.(3分)(2012•西藏)如图是每个面上都有一个汉字的正方体的一种展开图,那么在原正方体的表面上,与汉字“美“相对的面上的汉字是()9.(3分)(2011•长沙)谢老师对班上某次数学模拟考试成绩进行统计,绘制了如图所示的统计图,根据图中给出的信息,这次考试成绩达到A等级的人数占总人数的()10.(3分)(2011•长沙)如图,等腰梯形ABCD中,AD∥BC,∠B=45°,AD=2,BC=4,则梯形的面积为()二、填空题(本题共8个小题,每小题3分,共24分)11.(3分)(2013•海南)因式分解:a2﹣b2=_________.12.(3分)(2011•盘锦)反比例函数y=的图象经过点(﹣2,3),则k的值为_________.13.(3分)(2011•长沙)如图,CD是△ABC的外角∠ACE的平分线,AB∥CD,∠ACE=100°,则∠A=_________.15.(3分)(2011•长沙)在某批次的100件产品中,有3件是不合格产品,从中任意抽取一件检验,则抽到不合格产品的概率是_________.16.(3分)菱形的对角线长分别是6cm和8cm,则菱形的周长是_________.17.(3分)(2011•长沙)已知a﹣3b=3,则8﹣a+3b的值是_________.18.(3分)(2011•长沙)如图,P是⊙O的直径AB延长线上的一点,PC与⊙O相切于点C,若∠P=20°,则∠A= _________°.三、解答题(本题共2个小题,每小题6分,共12分)19.(6分)(2011•长沙)已知a=,b=2011°,c=﹣(﹣2),求a﹣b+c的值.20.(6分)(2011•长沙)解不等式2(x﹣2)≤6﹣3x,并写出它的正整数解.21.(8分)(2011•长沙)“珍惜能源从我做起,节约用电人人有责”.为了解某小区居民节约用电情况,物业公司随(2)已知去年同一天这10户居民的平均日用电量为7.8度,请你估计,这天与去年同日相比,该小区200户居民这一天共节约了多少度电?22.(8分)(2011•长沙)如图,在⊙O中,直径AB与弦CD相交于点P,∠CAB=40°,∠APD=65°.(1)求∠B的大小;(2)已知圆心0到BD的距离为3,求AD的长.23.(9分)(2011•长沙)某工程队承包了某标段全长1755米的过江隧道施工任务,甲、乙两个班组分别从东、西两端同时掘进.已知甲组比乙组平均每天多掘进0.6米,经过5天施工,两组共掘进了45米.(1)求甲、乙两个班组平均每天各掘进多少米?(2)为加快工程进度,通过改进施工技术,在剩余的工程中,甲组平均每天能比原来多掘进0.2米,乙组平均每天能比原来多掘进0.3米.按此施工进度,能够比原来少用多少天完成任务?24.(9分)(2011•长沙)如图是一座人行天桥的引桥部分的示意图,上桥通道由两段互相平行并且与地面成37°角的楼梯AD、BE和一段水平平台DE构成.已知天桥高度BC=4.8米,引桥水平跨度AC=8米.(1)求水平平台DE的长度;(2)若与地面垂直的平台立枉MN的高度为3米,求两段楼梯AD与BE的长度之比.(参考数据:取sin37°=0.60,cos37°=0.80,tan37°=0.75.)25.(10分)(2011•长沙)使得函数值为零的自变量的值称为函数的零点.例如,对于函数y=x﹣1,令y=0,可得x=1,我们就说1是函数y=x﹣1的零点.己知函数y=x2﹣2mx﹣2(m+3)(m为常数).(1)当m=0时,求该函数的零点;(2)证明:无论m取何值,该函数总有两个零点;(3)设函数的两个零点分别为x1和x2,且,此时函数图象与x轴的交点分别为A、B(点A在点B 左侧),点M在直线y=x﹣10上,当MA+MB最小时,求直线AM的函数解析式.26.(10分)(2011•长沙)如图,在平面直角坐标系中,已知点A(0,2),点P是x轴上一动点,以线段AP为一边,在其一侧作等边三角形APQ.当点P运动到原点O处时,记Q的位置为B.(1)求点B的坐标;(2)求证:当点P在x轴上运动(P不与O重合)时,∠ABQ为定值;(3)是否存在点P,使得以A、O、Q、B为顶点的四边形是梯形?若存在,请求出P点的坐标;若不存在,请说明理由.2012年北京市中考数学模拟试卷(二)参考答案与试题解析一、选择题(在下列各题的四个选项中,只有一项是符合题意的.请在答题卡中填涂符合题意的选项.本题共l0个小题,每小题3分,共30分)D..,故本选项错误;,故本选项正确;4.(3分)(2011•长沙)如图,在平面直角坐标系中,点P(﹣1,2)向右平移3个单位长度后的坐标是()6.(3分)(2011•长沙)若是关于x、y的二元一次方程ax﹣3y=1的解,则a的值为()根据题意得,只要把代入7.(3分)(2011•长沙)如图,关于抛物线y=(x﹣1)2﹣2,下列说法错误的是()8.(3分)(2012•西藏)如图是每个面上都有一个汉字的正方体的一种展开图,那么在原正方体的表面上,与汉字“美“相对的面上的汉字是()9.(3分)(2011•长沙)谢老师对班上某次数学模拟考试成绩进行统计,绘制了如图所示的统计图,根据图中给出的信息,这次考试成绩达到A等级的人数占总人数的()10.(3分)(2011•长沙)如图,等腰梯形ABCD中,AD∥BC,∠B=45°,AD=2,BC=4,则梯形的面积为()∴梯形的面积为:二、填空题(本题共8个小题,每小题3分,共24分)11.(3分)(2013•海南)因式分解:a2﹣b2=(a+b)(a﹣b).12.(3分)(2011•盘锦)反比例函数y=的图象经过点(﹣2,3),则k的值为﹣6.y=3=y=13.(3分)(2011•长沙)如图,CD是△ABC的外角∠ACE的平分线,AB∥CD,∠ACE=100°,则∠A=50°.ACD=ACD=∠15.(3分)(2011•长沙)在某批次的100件产品中,有3件是不合格产品,从中任意抽取一件检验,则抽到不合格产品的概率是3%.解:从中任意抽取一件检验,则抽到不合格产品的概率是16.(3分)菱形的对角线长分别是6cm和8cm,则菱形的周长是20cm.17.(3分)(2011•长沙)已知a﹣3b=3,则8﹣a+3b的值是5.18.(3分)(2011•长沙)如图,P是⊙O的直径AB延长线上的一点,PC与⊙O相切于点C,若∠P=20°,则∠A= 35°.三、解答题(本题共2个小题,每小题6分,共12分)19.(6分)(2011•长沙)已知a=,b=2011°,c=﹣(﹣2),求a﹣b+c的值.b+c=20.(6分)(2011•长沙)解不等式2(x﹣2)≤6﹣3x,并写出它的正整数解.21.(8分)(2011•长沙)“珍惜能源从我做起,节约用电人人有责”.为了解某小区居民节约用电情况,物业公司随(2)已知去年同一天这10户居民的平均日用电量为7.8度,请你估计,这天与去年同日相比,该小区200户居民这一天共节约了多少度电?22.(8分)(2011•长沙)如图,在⊙O中,直径AB与弦CD相交于点P,∠CAB=40°,∠APD=65°.(1)求∠B的大小;(2)已知圆心0到BD的距离为3,求AD的长.23.(9分)(2011•长沙)某工程队承包了某标段全长1755米的过江隧道施工任务,甲、乙两个班组分别从东、西两端同时掘进.已知甲组比乙组平均每天多掘进0.6米,经过5天施工,两组共掘进了45米.(1)求甲、乙两个班组平均每天各掘进多少米?(2)为加快工程进度,通过改进施工技术,在剩余的工程中,甲组平均每天能比原来多掘进0.2米,乙组平均每天能比原来多掘进0.3米.按此施工进度,能够比原来少用多少天完成任务?.24.(9分)(2011•长沙)如图是一座人行天桥的引桥部分的示意图,上桥通道由两段互相平行并且与地面成37°角的楼梯AD、BE和一段水平平台DE构成.已知天桥高度BC=4.8米,引桥水平跨度AC=8米.(1)求水平平台DE的长度;(2)若与地面垂直的平台立枉MN的高度为3米,求两段楼梯AD与BE的长度之比.(参考数据:取sin37°=0.60,cos37°=0.80,tan37°=0.75.)=6.4EF==5=25.(10分)(2011•长沙)使得函数值为零的自变量的值称为函数的零点.例如,对于函数y=x﹣1,令y=0,可得x=1,我们就说1是函数y=x﹣1的零点.己知函数y=x2﹣2mx﹣2(m+3)(m为常数).(1)当m=0时,求该函数的零点;(2)证明:无论m取何值,该函数总有两个零点;(3)设函数的两个零点分别为x1和x2,且,此时函数图象与x轴的交点分别为A、B(点A在点B 左侧),点M在直线y=x﹣10上,当MA+MB最小时,求直线AM的函数解析式.和,﹣′的解析式为的解析式为26.(10分)(2011•长沙)如图,在平面直角坐标系中,已知点A(0,2),点P是x轴上一动点,以线段AP为一边,在其一侧作等边三角形APQ.当点P运动到原点O处时,记Q的位置为B.(1)求点B的坐标;(2)求证:当点P在x轴上运动(P不与O重合)时,∠ABQ为定值;(3)是否存在点P,使得以A、O、Q、B为顶点的四边形是梯形?若存在,请求出P点的坐标;若不存在,请说明理由.(BQ=的坐标为(参与本试卷答题和审题的老师有:leikun;HLing;dbz1018;lbz;yangwy;bjf;冯延鹏;马兴田;sd2011;lk;wangjc3;zcx;王岑;蓝月梦;ZHAOJJ;nhx600;HJJ;xiawei;CJX;zjx111(排名不分先后)菁优网2014年2月27日。
北京2012年中考二模试题分类汇编:代几综合题2012年北京市中考数学二模分类汇编――代几综合题图像信息+几何最值 1. (延庆)已知:在如图1所示的平面直角坐标系xOy中,A、C两点的坐标分别为A(4,2),C(n,-2)(其中n>0),点B在x轴的正半轴上.动点P从点O出发,在四边形OABC的边上依次沿O―A―B―C的顺序向点C移动,当点P与点C重合时停止运动.设点P移动的路径的长为l,△POC的面积为S,S与l的函数关系的图象如图2所示,其中四边形ODEF是等腰梯形.(1)结合以上信息及图2填空:图2中的m= ;(2)求B、C两点的坐标及图2中OF 的长;(3)若OM是∠AOB的角平分线,且点G与点H分别是线段AO 与射线OM上的两个动点,直接写出HG+AH的最小值,请在图3中画出示意图并简述理由。
图3 25. (1)m= …………..1分(2)∵四边形ODEF是等腰梯形∴可知四边形OABC是平行四边形……..2分由已知可得:S△AOC=8,连接AC交x轴于R点又∵A(4,2),C(n,-2) ∴S△AOC=S△AOR+S△ROC=0.5×RO×2+0.5×RO×2=2RO=8∴OR=4…………….……….3分∴OB=2RO=8,AR⊥OB ∴B(8,0) ,C(4,-2)且四边形OABC是菱形………….4分∴OF=3AO= …………..5分(3) 如图3,在OB上找一点N使ON=OG, 连接NH ………….6分∵OM 平分∠AOB ∴∠AOM=∠BOM ∵OH=OH ∴△GOH≌△NOH∴GH=NH………….………….7分∴GH+AH=AH+HN 根据垂线度最短可知,当AN是点A到OB的垂线段时,且H点是AN与OM的交点∴GH+AH 的最小值=A N=2………….8分动点+面积问题 1. (门头沟)如图,在直角坐标系中,梯形ABCD的底边AB在x轴上,底边CD的端点D 在y轴上.直线CB的表达式为,点A、D的坐标分别为(-4,0),(0,4). 动点P从A点出发,在AB边上匀速运动. 动点Q从点B 出发,在折线BCD上匀速运动,速度均为每秒1个单位长度. 当其中一个动点到达终点时,另一动点也停止运动. 设点P运动t(秒)时,△OPQ的面积为S(不能构成△OPQ的动点除外). (1)求出点C的坐标;(2)求S随t变化的函数关系式;(3)当t为何值时,S 有最大值?并求出这个最大值.25. 解:(1)把y=4代入y=- x+,得x=1. ∴C点的坐标为(1,4). ……………………………………….1分(2)当y=0时,-x+=0,∴x=4.∴点B坐标为(4,0). 过点C作CM⊥AB于M,则CM=4,BM=3. ∴BC===5. ∴sin∠ABC==. ① 0<t<4时,过Q作QN⊥OB于N,则QN=BQ•sin∠ABC=t. ∴S=OP•QN=(4-t)× t =- t2+ t(0<t<4)..........2分②当4<t≤5时,连接QO,QP,过点Q作QN⊥OB于N. 同理可得QN=t. ∴S=OP•QN=×(t-4)× t. = t2- t(4<t≤5). (3)分③当5<t≤6时,连接QO,QP. S=×OP×OD=(t-4)×4. =2t-8(5<t≤6)....................4分 S随t变化的函数关系式是 . (3)①当0<t<4时,∵- <0 当t==2时, S最大==. (5)分②当4<t≤5时, S= t2- t,对称轴为t=-=2,∵ >0∴在4<t≤5时,S随t的增大而增大. ∴当t=5时,S最大=×52-×5=2. …………………………..6分③当5<t≤6时,在S=2t-8中,∵2>0,∴S随t的增大而增大. ∴当t=6时,S最大=2×6-8=4………7分∴综合三种情况,当t=6时,S取得最大值,最大值是4.………8分动点+面积+特殊四边形问题 2.(昌平24)如图所示,在平面直角坐标系xOy中,正方形OABC的边长为2cm,点A、C分别在y轴和x轴的正半轴上,抛物线y=ax2+bx+c经过点A、B和D(4, ).(1)求抛物线的解析式;(2)在抛物线的对称轴上找到点M,使得M到D、B的距离之和最小,求出点M的坐标;(3)如果点P由点A出发沿线段AB以2cm/s的速度向点B运动,同时点Q由点B出发沿线段BC以1cm/s的速度向点C运动,当其中一点到达终点时,另一点也随之停止运动.设S=PQ2(cm2).①求出S与运动时间t之间的函数关系式,并写出t的取值范围;②当S= 时,在抛物线上存在点R,使得以P、B、Q、R为顶点的四边形是平行四边形, 求出点R的坐标.24.解:(1)据题意,A(0,2),B(2,2), C(2,0) .∵ 抛物线y=ax2+bx+c经过点A、B和D(4, ),∴ ∴ ∴ .…………………… 2分(2)点B关于抛物线的对称轴x=1的对称点为A.连接AD,与对称轴的交点即为M.∵ A(0,2)、 D(4,),∴ 直线AD的解析式为:.当x=1时,,∴ M (1,).………………………………… 4分(3)① AP=2t, PB=2-2t, BQ=t.在Rt△PBQ中,∠B=90°,∴ .∴ .∴ ,(0≤t≤1).②当,.∴ , >1(舍).∴ P(1,2),Q(2,).∴ PB = 1.根据分析,以点P、B、Q、R为顶点的平行四边形只能是□PQRB.∴ R (3,).此时,点R(3,)在抛物线上.……… 8分动点+直角三角形 3.(石景山)已知:抛物线y=-x2+2x+m-2交y轴于点A(0,2m-7).与直线y= x交于点B、C(B在右、C在左).(1)求抛物线的解析式;(2)设抛物线的顶点为E,在抛物线的对称轴上是否存在一点F,使得,若存在,求出点F的坐标,若不存在,说明理由;(3)射线OC上有两个动点P、Q同时从原点出发,分别以每秒个单位长度、每秒2 个单位长度的速度沿射线OC运动,以PQ为斜边在直线BC的上方作直角三角形PMQ(直角边分别平行于坐标轴),设运动时间为t秒,若△PMQ与抛物线y=-x2+2x+m-2有公共点,求t的取值范围.解:25.解:(1)点A(0,2m-7)代入y=-x2+2x+m-2,得m=5 ∴抛物线的解析式为y=-x2+2x+3 ………………………2分(2)由得,∴B(),C() B()关于抛物线对称轴的对称点为可得直线的解析式为,由,可得∴ ………………………5分(3)当在抛物线上时,可得,,当在抛物线上时,可得,,舍去负值,所以t的取值范围是.………………8分等腰+动点与图形面积 4.(平谷25)如图,抛物线与x轴交于点A(-2,0)和B(4,0)、与y轴交于点C. (1)求抛物线的解析式; (2)T是抛物线对称轴上的一点,且△ACT是以AC为底的等腰三角形,求点T的坐标;(3)点M、Q分别从点A、B以每秒1个单位长度的速度沿x轴同时出发相向而行.当点M 到达原点时,点Q立刻掉头并以每秒 3 2个单位长度的速度向点B方向移动,当点M到达抛物线的对称轴时,两点停止运动.过点M的直线l⊥x轴,交AC或BC于点P.求点M的运动时间t(秒)与△APQ的面积S的函数关系式.25.解:(1)∵抛物线过点A(-2,0)和B(4,0) ∴ 解得∴ 抛物线的解析式为…………1分(2)抛物线的对称轴为令x=0,得y=4,∴ 设T点的坐标为,对称轴交x轴于点D,过C作CE⊥TD于点E 在Rt△ATD中,∵TD=h,AD=3∴ ………………………………………………………………2分在Rt△CET中,∵E ∴ET= ,CE=1 ∴ ∵AT=CT ∴ , (3)分解得 .∴ . ...............….………………………………………………………………………4分(3)当时,AM=BQ=t,∴AQ= ∵PQ⊥AQ ∴△APM∽△ACO ∴ ∴PM=2t ∴ ………………6分当时,AM=t ∴BM= .由OC=OB=4,可证BM=PM= . ∵BQ= ∴AQ= ∴ .…………..8分综上所述,抛物线与图形面积 5.(大兴25)已知抛物线y = x2 + bx ,且在x 轴的正半轴上截得的线段长为4,对称轴为直线x = c.过点A的直线绕点A (c ,0 ) 旋转,交抛物线于点B ( x ,y ),交y轴负半轴于点C,过点C且平行于x轴的直线与直线x = c交于点D,设△AOB 的面积为S1,△ABD的面积为S2. (1) 求这条抛物线的顶点的坐标;(2) 判断S1与S2的大小关系,并说明理由. 25.解:(1)∵ 抛物线y=x2+bx,在x轴的正半轴上截得的线段的长为4,∴ A(2,0),图象与x轴的另一个交点E的坐标为 (4,0),对称轴为直线x=2.∴ 抛物线为 y = x2 +b x经过点E (4,0) .∴ b= -4,∴ y = x2 -4x .∴ 顶点坐标为(2,-4).………… 2分 (2) S1与S2的大小关系是:S1 = S2 ………… 3分理由如下:设经过点A(2,0)的直线为y=kx+b (k≠0).∴ 0 =2k+b.∴ k = b.∴ y= .∴ 点B 的坐标为(x1 ,),点B 的坐标为(x2 ,).当交点为B1时,,..……………………………………… 5分当交点为B2时, = .∴ S1 = S2.综上所述,S1 = S2.……………… 8分6.(通州24)如图,在平面直角坐标系中,二次函数的图象与x轴交于A、B两点, A点在原点的左侧,B点的坐标为(3,0),与y轴交于C(0,-3)点,点P是直线BC下方的抛物线上一动点.(1)求这个二次函数的表达式.(2)连结PO、PC,并把△POC沿CO翻折,得到四边形POP′C,那么是否存在点P′使四边形POP′C为菱形?若存在,请求出此时点P的坐标;若不存在,请说明理由.(3)当点P运动到什么位置时,四边形ABPC的面积最大,并求出此时P 点的坐标和四边形ABPC的最大面积. 24. 解:(1)将B、C两点的坐标代入得…….(1分) 解得:…………….(2分)所以二次函数的表达式为:……….(3分) (2)存在点P,使四边形POP C为菱形.设P点坐标为(x,), PP 交CO于E 若四边形POP C是菱形,则有PC=PO.连结PP 则PE⊥CO于E,…………………….(4分) ∴OE=EC= ∴ = 解得 = , = (不合题意,舍去)∴P点的坐标为(,)……………….(5分) (3)过点P作轴的平行线与BC交于点Q,与OB交于点F….(6分) 设P (x,),易得,直线BC的解析式为则Q点的坐标为(x,x-3). 当时,四边形ABPC的面积最大= 此时P点的坐标为,四边形ABPC 的面积.抛物线+图形变换+几何最值 7.(丰台25)如图,将矩形OABC置于平面直角坐标系xOy中,A(,0),C(0,2). (1) 抛物线经过点B、C,求该抛物线的解析式;(2)将矩形OABC绕原点顺时针旋转一个角度(0°< <90°),在旋转过程中,当矩形的顶点落在(1)中的抛物线的对称轴上时,求此时这个顶点的坐标;(3)如图(2),将矩形OABC绕原点顺时针旋转一个角度(0°< <180°),将得到矩形OA’B’C’,设A’C’的中点为点E,联结CE,当°时,线段CE的长度最大,最大值为.25.解:(1)∵矩形OABC,A(,0),C(0,2),∴B(,2).∴抛物线的对称轴为x= .∴b= .……1分∴二次函数的解析式为:.……2分(2)①当顶点A落在对称轴上时,设点A的对应点为点A’,联结OA’,设对称轴x= 与x轴交于点D,∴OD= .∴OA’ = OA= .在Rt△OA’D中,根据勾股定理A’D =3.∴A’( ,-3) .……4分②当顶点落C对称轴上时(图略),设点C的对应点为点C’,联结OC’,在Rt△OC’D中,根据勾股定理C’D=1.∴C’( ,1).……6分(3) 120°,4.……8分抛物线+特殊四边形 8.(顺义25)如图,在平面直角坐标系xOy中,二次函数的图象经过点A(-3,6),并与x轴交于点B(-1,0)和点C,顶点为P.(1)求二次函数的解析式;(2)设D为线段OC上的一点,若,求点D的坐标;(3)在(2)的条件下,若点M在抛物线上,点N在y轴上,要使以M、N、B、D为顶点的四边形是平行四边形,这样的点M、N是否存在,若存在,求出所有满足条件的点M的坐标;若不存在,说明理由.25.解:(1)将点A(-3,6),B(-1,0)代入中,得解得∴二次函数的解析式为.…………………………… 2分(2)令,得,解得,.∴点C的坐标为(3,0).∵ ,∴顶点P的坐标为(1,-2).…………………………………………… 3分过点A作AE⊥x 轴,过点P作PF⊥x轴,垂足分别为E,F.易得.,.又,∴△ACB∽△PCD.…………………… 4分∴ .∵ ,∴ .∴ .∴点D的坐标为.………… 5分(3)当BD为一边时,由于,∴点M的坐标为或…………… 7分当BD为对角线时,点M的坐标为…………… 8分 9.(海淀24)如图, 在平面直角坐标系xOy 中,抛物线与x轴负半轴交于点A, 顶点为B, 且对称轴与x轴交于点C. (1)求点B的坐标 (用含m的代数式表示);(2)D为BO中点,直线AD交y轴于E,若点E的坐标为(0, 2), 求抛物线的解析式;(3)在(2)的条件下,点M在直线BO上,且使得△AMC的周长最小,P在抛物线上, Q在直线 BC上,若以A、M、P、Q为顶点的四边形是平行四边形,求点P的坐标.备用图 24.解:(1)∵ ,∴抛物线的顶点B的坐标为. (1)分(2)令,解得, . ∵ 抛物线与x轴负半轴交于点A,∴ A (m, 0), 且m<0. ........................2分过点D作轴于F. 由 D为BO中点,DF//BC, 可得CF=FO= ∴ DF = 由抛物线的对称性得 AC = OC. ∴ AF : AO=3 : 4. ∵ DF //EO, ∴ △AFD∽△AOE. ∴ 由E (0, 2),B ,得OE=2, DF= . ∴∴ m = -6. ∴ 抛物线的解析式为 (3)分(3)依题意,得A(-6,0)、B (-3, 3)、C (-3, 0).可得直线OB 的解析式为 , 直线BC为 . 作点C关于直线BO的对称点,3),连接交BO 于M,则M即为所求. 由A(-6,0),,可得直线的解析式为 . 由解得∴ 点M的坐标为(-2,2). ……………4分由点P在抛物线上,设P (t, ). (��)当AM为所求平行四边形的一边时如右图,过M作轴于G, 过P1作于H, 则xG= xM =-2, xH= xB =-3. 由四边形AM P1Q1为平行四边形,可证△AMG≌△P1Q1H . 可得P1H= AG=4. ∴ t-(-3)=4. ∴ t=1. ∴ .………………5分如右图,同方法可得P2H=AG=4. ∴ -3- t =4. ∴ t=-7. ∴ . …………6分 (��)当AM 为所求平行四边形的对角线时, 如右图,过M作于H, 过P3作轴于G, 则xH= xB =-3,xG= =t. 由四边形AP3MQ3为平行四边形,可证△A P3G≌△MQ3H . 可得AG= MH =1. ∴ t -(-6)=1. ∴ t=-5. ∴ . …………………7分综上,点P的坐标为、、 . 抛物线+圆+特殊四边形 10.(密云24)如图,在直角坐标系中,以轴为对称轴的抛物线经过直线与轴的交点和点 ( ,0).(1)求这条抛物线所对应的二次函数的解析式;(2)将这条抛物线沿轴向右平移,使其经过坐标原点.①在题目所给的直角坐标系中,画出平移后的抛物线的示意图;②设平移后的抛物线的对称轴与直线(B是直线与轴的交点)相交于点,判断以为圆心、为半径的圆与直线的位置关系,并说明理由;(3)点是平移后的抛物线的对称轴上的点,求点的坐标,使得以、、、四点为顶点的四边形是平行四边形. 24.(本小题满分7分)(1)设,则. A(0,2).设这条抛物线所对应的二次函数的解析式为:.∵过点 ( ,0),有.解得.所求抛物线解析式为 -----2分(2)①平移后的抛物线如图所示: --------------------------3分②相切.理由:由题意和平移性质可知,平移后的抛物线的对称轴为直线.∵ 点是对称轴与直线的相交,易求得点的坐标为(,).由勾股定理,可求得.设原点O到直线AB的距离为d,则有.∵点A为(0,2),点B为(,0),...这说明,圆心O到直线AB的距离d与⊙O的半径OC相等.以为圆心、为半径的圆与直线相切. -------------------5分(3)设点的坐标为(,p).∵抛物线的对称轴与轴互相平行,即AO∥PC.只需,即可使以,,,为顶点的四边形是平行四边形.由(2)知,点的坐标为(,),..解得,.点的坐标为(,)或(,).-----------7分因特殊情况产生相似 11.(朝阳25)在平面直角坐标系中,抛物线经过A(-3,0)、B(4,0)两点,且与y轴交于点C,点D在x轴的负半轴上,且BD=BC,有一动点P从点A出发,沿线段AB以每秒1个单位长度的速度向点B移动,同时另一个动点Q从点C出发,沿线段CA以某一速度向点A移动. (1)求该抛物线的解析式;(2)若经过t秒的移动,线段PQ被CD垂直平分,求此时t的值;(3)该抛物线的对称轴上是否存在一点M,使MQ+MA的值最小?若存在,求出点M的坐标;若不存在,请说明理由.25. 解:(1)∵抛物线经过A(-3,0),B(4,0)两点,∴ 解得∴所求抛物线的解析式为. .................................2分(2)如图,依题意知AP=t,连接DQ,由A(-3,0),B(4,0),C(0,4),可得AC=5,BC=,AB=7. ∵BD=BC,∴ . (3)分∵CD垂直平分PQ,∴QD=DP,∠CDQ= ∠CDP. ∵BD=BC,∴∠ DCB= ∠CDB. ∴∠CDQ= ∠DCB. ∴DQ∥BC. ∴△ADQ∽△ABC. ∴ . ∴ . ∴ . 解得.…………………4分∴ .…………………………5分∴线段PQ被CD垂直平分时,t的值为 .(3)设抛物线的对称轴与x轴交于点E. 点A、B关于对称轴对称,连接BQ交该对称轴于点M. 则,即. …………6分当BQ⊥AC 时,BQ最小. ………………7分此时,∠EBM= ∠ACO. ∴ . ∴ .∴ ,解得. ∴M(,). ………………………8分即在抛物线的对称轴上存在一点M(,),使得 MQ+MA的值最小.抛物线+等分面积 12.(东城区25)如图,在平面直角坐标系中,已知二次函数的图像与轴交于点,与轴交于A、B两点,点B的坐标为(1)求二次函数的解析式及顶点D的坐标;(2)点M是第二象限内抛物线上的一动点,若直线OM把四边形ACDB分成面积为1:2的两部分,求出此时点的坐标;(3)点P是第二象限内抛物线上的一动点,问:点P在何处时△ 的面积最大?最大面积是多少?并求出此时点P的坐标.25.解:(1)由题意,得:解得:所以,所求二次函数的解析式为:……2分顶点D的坐标为(-1,4).……3分(2)易求四边形ACDB的面积为9. 可得直线BD的解析式为y=2x+6 设直线OM与直线BD 交于点E,则△OBE的面积可以为3或6. ① 当时,易得E 点坐标(-2,-2),直线OE的解析式为y=-x. 设M 点坐标(x,-x),∴ ……4分② 当时,同理可得M点坐标.∴ M 点坐标为(-1,4)……5分(3)连接,设P点的坐标为,因为点P在抛物线上,所以,所以……6分……7分因为,所以当时,. △ 的面积有最大值……8分所以当点P的坐标为时,△ 的面积有最大值,且最大值为抛物线+几何定值 13.(房山25)如图,在平面直角坐标系中,点P 从原点O出发,沿x轴向右以每秒1个单位长的速度运动t(t>0)秒,抛物线y=x2+bx+c经过点O和点P.已知矩形ABCD的三个顶点为A(1,0)、B(1,-5)、D(4,0).⑴求c、b(可以用含t的代数式表示);⑵当t>1时,抛物线与线段AB交于点M.在点P的运动过程中,你认为∠AMP的大小是否会变化?若变化,说明理由;若不变,求出∠AMP的值;⑶在矩形ABCD的内部(不含边界),把横、纵坐标都是整数的点称为“好点”.若抛物线将这些“好点”分成数量相等的两部分,请直接写出t的取值范围.25.解:解:⑴把x=0,y=0代入y=x2+bx+c,得c=0,------------------------1分再把x=t,y=0代入y=x2+bx,得t2+bt=0,∵t>0,∴b=-t;-----------------------------------------------3分⑵不变.当x=1时,y=1-t,故M(1,1-t),∵tan∠AMP=1,∴∠AMP=45°-----------------------------------------------5分⑶ <t<.-----------------------------------------------7分抛物线+相似 14.(怀柔25)如图,已知抛物线过点D(0, ),且在x 轴上截得线段AB长为6,若顶点C的横坐标为4. (1) 求二次函数的解析式; (2) 在该抛物线的对称轴上找一点P,使PA+PD最小,求出点P的坐标; (3) 在抛物线上是否存在点Q,使△QAB与△ABC相似?如果存在,求出点Q的坐标;如果不存在,请说明理由.25.解:(1) ∵抛物线对称轴为x=4,且在x轴上截得的线段长为6,∴ A( 1 , 0 )、B( 7 , 0 ); .........1分设抛物线解析式为:y=a(x -h)2+k,∵顶点C的横坐标为4,且过点D(0, ),∴ 解得,, . ∴ 二次函数的解析式为:y= (x-4)2-,或y= x -x+ (2)分(2)∵点A、B关于直线x=4对称,∴PA=PB,∴PA+PD=PB+PD≥DB,∴当点P在线段DB上时,PA+PD取得最小值,……………3分∴DB 与对称轴的交点即为所求点P. 设直线x=4与x轴交于点M,∵PM∥OD,∴∠BPM=∠BDO,又∠PBM=∠DBO,∴△BPM∽△BDO,∴ ,∴ ,∴点P的坐标为(4,)………………………4分(3)由⑴可知,C(4, ),又∵AM=3,∴在Rt△AMC中,cot∠ACM= ,∴∠ACM=60o,∵AC=BC,∴∠ACB=120o ① 当点Q在x轴上方时,过Q作QN⊥x轴于N,如果AB=BQ,由△ABC∽△ABQ有BQ=6,∠ABQ=120o,则∠QBN=60o,∴QN=3 ,BN=3,ON=10,此时点Q(10, ),…………………………………………………5分如果AB=AQ,由对称性可知Q(-2,)………………………6分② 当点Q 在x轴下方时,△QAB就是△ACB,此时点Q的坐标是(4, ),………………………………………7分经检验,点(10, )与(-2, )都在抛物线上,综上所述,存在这样的点Q,使△QAB∽△ABC,点Q的坐标为(10, )或(-2, )或(4, ).…………………………8分。
北京2012年中考数学二模试题分类汇编:代数综合题2012年北京市中考数学二模分类汇编――代数综合题整数根、系数是整数问题 1.(昌平23.)已知m为整数,方程 =0的两个根都大于-1且小于,当方程的两个根均为有理数时,求m的值. 23.解:设.....................................1分∵ 的两根都在和之间,∴ 当时,,即:.............2分当时,,即:. (3)分∴ .…………………4分∵ 为整数,∴ ...............................5分① 当时,方程,∴ 此时方程的根为无理数,不合题意.② 当时,方程,符合题意.③ 当时,方程,,不符合题意.综合①②③可知,. (6)分 2.(房山)23.)已知:关于x的方程mx2-3(m-1)x+2m-3=0.⑴当m取何整数值时,关于x的方程mx2-3(m-1)x+2m-3=0的根都是整数;⑵若抛物线向左平移一个单位后,过反比例函数上的一点(-1,3),①求抛物线的解析式;②利用函数图象求不等式的解集. 解:⑴⑵① ②23.解:⑴当m=0时,x=1----------------------------1分当m≠0,可解得x1=1,x2= -----------------2分∴ 时,x均有整数根--------------------------------------3分综上可得时,x均有整数根⑵①抛物线向左平移一个单位后得到y= m(x+1)2-3(m-1)(x+1)+2m-3-------------4分过点(-1,3)代入解得m=3 ∴抛物线解析式为y= 3x2-6x+3----------5分②k=-1×3=-3-----------------------6分∴x>1或-1<x<0-----------------------7分3.(平谷23)已知抛物线.(1)求证此抛物线与轴有两个不同的交点;(2)若是整数,抛物线与轴交于整数点,求的值;(3)在(2)的条件下,设抛物线顶点为,抛物线与轴的两个交点中右侧交点为.若为坐标轴上一点,且,求点的坐标. 23.解:(1)证明:令,则.因为, 1分所以此抛物线与轴有两个不同的交点. 2分(2)因为关于的方程的根为,由为整数,当为完全平方数时,此抛物线与轴才有可能交于整数点.设(其中为整数), 3分所以.因为与的奇偶性相同,所以或解得.经检验,当时,关于的方程有整数根.所以 ...................................5分(3)当时,此二次函数解析式为,则顶点的坐标为().抛物线与轴的交点为、.设抛物线的对称轴与轴交于,则.在直角三角形中,由勾股定理,得,由抛物线的对称性可得,.又,即.所以△ 为等腰直角三角形.且.所以为所求的点. 6分若满足条件的点在轴上时,设坐标为.过作轴于,连结、.则.由勾股定理,有;.即.解得.所以为所求的点. 7分综上所述满足条件的点的坐标为()或(). 4.(门头沟23)已知抛物线y=ax2+x+2. (1)当a=-1时,求此抛物线的顶点坐标和对称轴; (2)若代数式-x2+x+2的值为正整数,求x的值; (3)若a是负数时,当a=a1时,抛物线y=ax2+x+2与x轴的正半轴相交于点M(m,0);当a=a2时,抛物线y=ax2+x+2与x轴的正半轴相交于点N(n,0). 若点M在点N的左边,试比较a1与a2的大小.23. 当a=-1时,y=-x2+x+2,∴a=-1,b=1,c=2. ∴抛物线的顶点坐标为( , ),对称轴为直线x= .……2分(2)∵代数式-x2+x+2的值为正整数,∴函数y=-x2+x+2的值为正整数. 又因为函数的最大值为,∴y的正整数值只能为1或2. 当y=1时,-x2+x+2=1,解得,…………3分当y=2时,-x2+x+2=2,解得x3=0,x4=1.……………4分∴x的值为,,0或1. (3)当a<0时,即a1<0,a2<0. 经过点M的抛物线y=a1x2+x+2的对称轴为 , 经过点N的抛物线y=a2x2+x+2的对称轴为 (5)分∵点M在点N的左边,且抛物线经过点(0,2) ∴直线在直线的左侧……………6分∴ <. ∴a1<a2.…………………………………7分 5.(怀柔23)已知抛物线 (m为常数) .(1)若抛物线与轴交于两个不同的整数点,求m的整数值;(2)在(1)问条件下,若抛物线顶点在第三象限,试确定抛物线的解析式;(3)若点M(x1,y1)与点N(x1+k,y2)在(2)中抛物线上 (点M、N不重合), 且y1=y2. 求代数式的值. 23.解:(1)由题意可知,△= =5-4m>0,.…………………1分又抛物线与轴交于两个不同的整数点,∴5-4m为平方数,设k2 =5-4m,则满足要求的m值为1,-1,-5,-11,-19…… ∴满足题意的m 整数值的代数式为 (n为正整数). …………………………3分(2)∵抛物线顶点在第三象限,∴只有m=1符合题意,抛物线的解析式为.…………………4分(3)∵点M 与N 在抛物线上,∴ ,∵ ∴ 整理,得∵点M、N不重合,∴k≠0. ∴2x1 =-k-1.……………………………………6分∴ = =6.………7分6.在平面直角坐标系xOy中,抛物线的顶点为M,直线,点为轴上的一个动点,过点P作轴的垂线分别交抛物线和直线于点A,点B. ⑴直接写出A,B两点的坐标(用含的代数式表示);⑵设线段AB的长为,求关于的函数关系式及的最小值,并直接写出此时线段OB与线段PM的位置关系和数量关系; (3)已知二次函数(,,为整数且),对一切实数恒有≤ ≤ ,求,,的值. 25.解:(1) , .�l�l�l�l�l�l�l�l�l2分(2) =AB= = . ∴ == .�l�l3分∴ 当时,取得最小值 . �l�l 4分当取最小值时,线段OB与线段PM的位置关系和数量关系是OB⊥PM且OB=PM. (如图10) �l�l�l�l�l 5分(3) ∵ 对一切实数恒有≤ ≤ ,∴ 对一切实数,≤ ≤ 都成立. ( ) ① 当时,①式化为0≤ ≤ . ∴ 整数的值为0.�l�l�l�l�l 6分此时,对一切实数,≤ ≤ 都成立.( ) 即对一切实数均成立. 由②得≥0 ( ) 对一切实数均成立. ∴ 由⑤得整数的值为1.�l�l�l�l�l�l�l�l�l7分此时由③式得,≤ 对一切实数均成立. ( ) 即≥0对一切实数均成立. ( ) 当a=2时,此不等式化为≥0,不满足对一切实数均成立. 当a≠2时,∵ ≥0对一切实数均成立,( ) ∴ ∴ 由④,⑥,⑦得0 < ≤1. ∴ 整数的值为1.�l�l�l�l�l�l�l�l�l�l8分∴ 整数,,的值分别为,, . 利用数形结合研究交点、方程的根 1.(东城23.)已知关于的方程.(1)若方程有两个不相等的实数根,求的取值范围;(2)若正整数满足,设二次函数的图象与轴交于两点,将此图象在x轴下方的部分沿x轴翻折,图象的其余部分保持不变,得到一个新的图象.请你结合这个新的图象回答:当直线与此图象恰好有三个公共点时,求出的值(只需要求出两个满足题意的k值即可). 23.解:(1).......2分由题意得,>0且.∴ 符合题意的m的取值范围是的一切实数.......3分(2)∵ 正整数满足,∴ m可取的值为1和2 .又∵ 二次函数,∴ =2. (4)分∴ 二次函数为.∴ A点、B点的坐标分别为(-1,0)、(3,0).依题意翻折后的图象如图所示.由图象可知符合题意的直线经过点A、B.可求出此时k的值分别为3或-1.……7分注:若学生利用直线与抛物线相切求出k=2也是符合题意的答案. 2.(海淀23)已知抛物线与x轴交于A、B两点.(1)求m的取值范围;(2)若m>1, 且点A在点B的左侧,OA : OB=1 : 3, 试确定抛物线的解析式;(3)设(2)中抛物线与y轴的交点为C,过点C作直线l //x轴, 将抛物线在y轴左侧的部分沿直线 l翻折, 抛物线的其余部分保持不变,得到一个新图象. 请你结合新图象回答: 当直线与新图象只有一个公共点P(x0, y0)且时, 求b的取值范围.23. 解:(1)∵ 抛物线与x轴交于A、B两点,∴ 由①得,由②得,∴ m的取值范围是且.…………2分(2)∵ 点A、B 是抛物线与x轴的交点,∴ 令,即.解得,.∵ ,∴ ∵ 点A在点B左侧,∴ 点A的坐标为,点B的坐标为. …………………………3分∴ OA=1,OB= .∵ OA : OB=1 : 3,∴ . ∴ .∴ 抛物线的解析式为.………………………………………4分(3)∵ 点C是抛物线与y轴的交点,∴ 点C的坐标为 . 依题意翻折后的图象如图所示.令,即.解得 , .∴ 新图象经过点D . 当直线经过D点时,可得 . 当直线经过C点时,可得.当直线与函数的图象仅有一个公共点P(x0, y0)时,得 . 整理得由,得.结合图象可知,符合题意的b的取值范围为或.……………7分通州22.已知关于的方程(1)求证:无论取任何实数时,方程恒有实数根. (2)若关于的二次函数的图象经过坐标原点(0,0),求抛物线的解析式. (3)在直角坐标系中,画出(2)中的函数图象,结合图象回答问题:当直线与(2)中的函数图象只有两个交点时,求的取值范围. 22. . 解:(1)分两种情况讨论. ① 当时,方程为,方程有实数根,………………………………………….(1分) ②当,则一元二次方程的根的判别式=不论为何实数,成立,方程恒有实数根………………………………………….(2分) 综合①、②可知取任何实数,方程恒有实数根………………….(3分) (2)二次函数的图象与经过(0,0)………………………………………….(4分) 二次函数解析式为:………………………….(5分) (3)在(2)条件下,直线与二次函数图象只有两个交点,结合图象可知当时,得由得………………………….(6分) 综上所述可知:当时,直线与(2)中的图象有两个交点. ………….(7分)23.(延庆)已知:关于x的一元二次方程 (1)若此方程有实根,求m 的取值范围; (2)在(1)的条件下,且m取最小的整数,求此时方程的两个根; (3)在(2)的前提下,二次函数与x轴有两个交点,连接这两点间的线段,并以这条线段为直径在x轴的上方作半圆P,设直线l的解析式为y=x+b,若直线l与半圆P只有两个交点时,求出b的取值范围.23. (1)解:∵关于x的一元二次方程有实根∴m≠0,且△≥0 (1)分∴△=(2m+2)2-4m(m-1)=12m+4≥0 解得m≥ ∴当m≥ ,且m≠0时此方程有实根,……..2分(2)解:∵在(1)的条件下,当m取最小的整数, ∴m=1…………..3分∴原方程化为:x2-4x=0 x(x-4)=0 x1=0,x2=4 ………….. …………..4分(3)解:如图所示:①当直线l经过原点O时与半圆P有两个交点,即b=0………5分②当直线l与半圆P相切于D点时有一个交点,如图由题意可得Rt△EDP、Rt△ECO是等腰直角三角形,∵DP=2 ∴EP= ………….6分∴OC= 即b= ∴当0≤b<时,直线l与半圆P只有两个交点。
北京市东城区 2011--2012 学年第二学期初三综合练习(二)一、选择题(本题共 32 分,每小题 4 分) 下面各题均有四个选项,其中只有一个是符合题意的. 1. 1 2的绝对值是1 2A.B. 1 2C. 2D.-22. 下列运算中,正确的是 A. a a a B. a a a C. a a a D. 4 a a 3 a 3.一个不透明的袋中装有除颜色外均相同的 5 个红球和 3 个黄球,从中随机摸出一个,摸到黄球的概率 是2 3 5 3 4 12632A.1 8B.1 3C.3 8D.3 54.下列图形中,既是轴对称图形又是中心对称图形的是 .. ..D B C A 5. 若一个正多边形的一个内角等于 150° ,则这个正多边形的边数是 A.9 B.10 C.11 D.12 6. 在“我为震灾献爱心”的捐赠活动中,某班 40 位同学捐款金额统计如下: 金额(元) 学生数(人) 20 3 30 7 35 5 50 15 100 10 D.15,502 2y则在这次活动中,该班同学捐款金额的众数和中位数是 A.30,35 B.50,35 C.50,50 7.已知反比例函数 y A.没有实根 C.有两个相等实根k2 xOx的图象如图所示,则一元二次方程 x ( 2 k 1) x k 1 0 根的情况是 B. 有两个不等实根 D.无法确定2 28.用 min{a,b}表示 a,b 两数中的最小数,若函数 y min{ x 1, 1 x } ,则 y 的图象为y1 1 xy1y1y1 1 x -1-1 0-1 01 x-1 001 xA B 二、填空题(本题共 16 分,每小题 4 分)CD9. 反比例函数 y k x的图象经过点(-2,1) ,则 k 的值为_______. .主视图 俯视图 左视图10. 已知一个几何体的三视图如图所示,则该几何体是 11. 如图,将三角板的直角顶点放置在直线 AB 上的点 O 处. 使斜边 CD∥AB,则∠a 的余弦值为__________.12. 如图, R t △ A B C 中, A C B 9 0 , C A B 3 0 , B C 2 ,O, H 分别为边 A B, A C 的中点,将 △ A B C 绕点 B 顺时针旋A1转 1 2 0 到 △ A1 B C 1 的位置,则整个旋转过程中线段 O H 所扫过 部分的面积(即阴影部分面积)为 三、解答题(本题共 30 分,每小题 5 分)2 13. 先化简,再求值: (2 x 1) ( x 2)( x 2) 4 x ( x 1) ,其中 x H A OC B.O1H1 C13 3 2.14. 解分式方程:x 1 x 21 2 x 3.15. 如图, A、 、 的坐标分别为 点 B C (3, 、 3) (2, 、 1) (5, , 1) 将△ABC 先向下平移 4 个单位, 得△A1B1C1; 再将△A1B1C1 沿 y 轴翻折,得△A2B2C2. (1)画出△A1B1C1 和△A2B2C2; A (2)求线段 B2C 长. B O C x y16. 如图,点 D 在 A B 上, D F 交 A C 于点 E , C F ∥ A B , A E E C . 求证: A D C F . A D B E FC17. 列方程或方程组解应用题 为了配合学校开展的“爱护地球母亲”主题活动,初三(1)班提出“我骑车我快乐”的口号. “五一”之后小 明不用父母开车送,坚持自己骑车上学. 五月底他对自己家的用车情况进行了统计,5 月份所走的总路程 比 4 月份的4 5还少 100 千米,且这两个月共消耗 93 号汽油 260 升. 若小明家的汽车平均油耗为 0.1 升/千米,求他家 4、5 两月各行驶了多少千米.18.如图,矩形 ABCD 的边 AB 在 x 轴上,AB 的中点与原点 O 重合,AB=2,AD=1,点 Q 的坐标为(0,2). (1)求直线 QC 的解析式; (2)点 P(a,0)在边 AB 上运动,若过点 P、Q 的直线将矩形 ABCD 的周长分成 3∶1 两部分,求出此时 a 的值.四、解答题(本题共 20 分,每小题 5 分) 19. 如图,在梯形 ABCD 中,AD//BC,BD 是∠ABC 的平分线. (1)求证:AB=AD;A D(2)若∠ABC=60° ,BC=3AB,求∠C 的度数BC20. 如图,四边形 ABCD 是平行四边形,以 AB 为直径的⊙O 经过点 D,E 是⊙O 上一点,且AED=45. (1) 试判断 CD 与⊙O 的位置关系,并证明你的结论; (2) 若⊙O 的半径为 3,sinADE=5 6,求 AE 的值.21.某商店在四个月的试销期内,只销售 A,B 两个品牌的电视机,共售出 400 台.试销结束后,将决定 经销其中的一个品牌.为作出决定,经销人员正在绘制两幅统计图,如图 l 和图 2. (1)第四个月销量占总销量的百分比是_______; (2)在图 2 中补全表示 B 品牌电视机月销量的折线图; (3)经计算,两个品牌电视机月销量的平均水平相同,请你结合折线的走势进行简要分析,判断该商店 应经销哪个品牌的电视机.图1图222. 如图 1 是一个三棱柱包装盒, 它的底面是边长为 10cm 的正三角形, 三个侧面都是矩形. 现将宽为 15cm 的彩色矩形纸带 AMCN 裁剪成一个平行四边形 ABCD(如图 2) ,然后用这条平行四边形纸带按如图 3 的方式把这个三棱柱包装盒的侧面进行包贴(要求包贴时没有重叠部分) ,纸带在侧面缠绕三圈,正好将这个三棱柱包装盒的侧面全部包贴满.在图 3 中,将三棱柱沿过点 A 的侧棱剪开,得到如图 4 的 侧面展开图.为了得到裁剪的角度,我们可以根据展开图拼接出符合条件的平行四边形进行研究. (1)请在图 4 中画出拼接后符合条件的平行四边形; (2)请在图 2 中,计算裁剪的角度(即∠ABM 的度数).A MDNB图2C图1D F A图4C E B五、解答题(本题共 22 分,第 23 题 7 分,第 24 题 7 分,第 25 题 8 分) 23. 已知关于 x 的一元二次方程 x 2 ax b 0 , a 0 , b 0 .2 2(1)若方程有实数根,试确定 a,b 之间的大小关系;(2)若 a∶b=2∶ 3 ,且 2 x1 x 2 2 ,求 a,b 的值; (3)在(2)的条件下,二次函数 y x 2 a x b 的图象与 x 轴的交点为 A、C(点 A 在点 C 的左侧) ,2 2与 y 轴的交点为 B,顶点为 D.若点 P(x,y)是四边形 ABCD 边上的点,试求 3x-y 的最大值.24. 如图 1,在△ ABC 中,AB=BC=5,AC=6. △ ECD 是△ ABC 沿 CB 方向平移得到的,连结 AE,AC 和 BE 相交于点 O. (1)判断四边形 ABCE 是怎样的四边形,并证明你的结论; (2) 如图 2, 是线段 BC 上一动点 P (不与点 B、C 重合) 连接 PO 并延长交线段 AE 于点 Q, , QR⊥BD, 垂足为点 R.①四边形 PQED 的面积是否随点 P 的运动而发生变化?若变化,请说明理由;若不变,求出四边 形 PQED 的面积; ②当线段 BP 的长为何值时,以点 P、Q、R 为顶点的三角形与△ BOC 相似?E Q AEAOODC 图1BDC R 图2PB25. 如图,已知在平面直角坐标系 xOy 中,直角梯形 OABC 的边 OA 在 y 轴的正半轴上,OC 在 x 轴的正半 轴上,OA=AB=2,OC=3,过点 B 作 BD⊥BC,交 OA 于点 D.将∠DBC 绕点 B 按顺时针方向旋转, 角的两边分别交 y 轴的正半轴、x 轴的正半轴于点 E 和 F. (1)求经过 A、B、C 三点的抛物线的解析式; (2)当 BE 经过(1)中抛物线的顶点时,求 CF 的长; (3)在抛物线的对称轴上取两点 P、Q(点 Q 在点 P 的上方) ,且 PQ=1,要使四边形 BCPQ 的周长最 小,求出 P、Q 两点的坐标. y E A D O F C x B北京市东城区 2010--2011 学年第二学期初三综合练习(二) 数学试卷参考答案一、选择题(本题共 32 分,每小题 4 分)题 号 答 案 题 号 答 案1 A 9 -22 D3 C 10 圆柱4 B5 D 111 26 C7 A 12 π8 A二、填空题(本题共 16 分,每小题 4 分)三、解答题: (本题共 30 分,每小题 5 分) 13. (本小题满分 5 分) 解: 原式 4 x 4 x 1 x 4 4 x 4 x2 2 2„„„„„„3 分 „„„„„„4 分 x 3 .2当x 3 3 2时 , 27 15 3 . 3 4 4 23 3 原式 2 „„„„„„5 分14. (本小题满分 5 分) 解:x 1 x2 1 x2 3„„„„„„1 分去分母得 x-1+1=3(x-2) 解得 x=3. 经检验:x=3 是原方程的根. 所以原方程的根为 x=3.„„„„„„4 分 „„„„„„5 分15. (本小题满分 5 分) 解: (1)A1 点的坐标为(3,-1) 1 点的坐标为(2,-3) 1 点的坐标为(5,-3) ,B ,C ; A2 点的坐标为(-3,-1) 2 点的坐标为(-2,-3) ,B , C2 点的坐标为(-5,-3). 图略,每正确画出一个三角形给 2 分. (2)利用勾股定理可求 B2C= 16. (本小题满分 5 分) 证明:∵ C F ∥ A B , ∴ ∠A=∠ACF, ∠ADE=∠CFE. 在△ADE 和△CFE 中, ∠A=∠ACF, ∠ADE=∠CFE, AE EC , ∴ △ADE≌△CFE. ∴ AD CF . -------2 分 A D --------4 分 ------5 分 B E F65 .„„„„„„5 分C17. (本小题满分 5 分) 解:设小刚家 4、5 两月各行驶了 x、y 千米.--------------------------1 分4 y x 100 , 依题意,得 5 0 . 1 x 0 . 1 y 260 . ----------------------------3 分解得, x 1 5 0 0 . y 1100-------------------------------4 分答:小刚家 4 月份行驶 1500 千米,5 月份行驶了 1100 千米. -----------5 分18. (本小题满分 5 分) 解: (1)由题意可知 点 C 的坐标为(1,1) . „„„„„„„„„„„„„1 分 设直线 QC 的解析式为 y kx b . ∵ 点 Q 的坐标为(0,2), ∴ 可求直线 QC 的解析式为 y x 2 .„„„„„„„„„„„„„2 分 (2)如图,当点 P 在 OB 上时,设 PQ 交 CD 于点 E,可求点 E 的坐标为( 则 AP AD DE 2 由题意可得 2 5 2 5 2 a 3(3 3 2 a) . a ,CE BC BP 3 3 2 a.a 2,1) .∴ a 1. „„„„„„„„„„„„„4 分 由对称性可求当点 P 在 OA 上时, a 1 ∴ 满足题意的 a 的值为 1 或-1. „„„„„„„„„„„„„5 分四、解答题(本题共 20 分,每小题 5 分) 19.(本小题满分 5 分) 解: (1)证明:∵BD 是∠ABC 的平分线, ∴ ∠1=∠2. ∵ AD//BC,∴∠2=∠3. ∴ ∠1=∠3. ∴AB=AD. ---------------------2 分1AD3B2EFC(2)作 AE⊥BC 于 E,DF⊥BC 于 F. ∴ EF=AD=AB. ∵ ∠ABC=60° ,BC=3AB, ∴ ∠BAE=30° . ∴ BE=1 2AB.BA∴ BF =23AB=21BC .∴ BD=DC . ∴ ∠C =∠2.∵ BD 是∠ABD 的平分线, ∴ ∠1=∠2=30°.∴ ∠C =30°. -------------------------5分20.(本小题满分5分)解:(1)CD 与圆O 相切. …………………1分 证明:连接OD ,则∠AOD =2∠AED =2⨯45︒=90︒. …………………2分 ∵四边形ABCD 是平行四边形,∴AB //DC .∴∠CDO =∠AOD =90︒.∴OD ⊥CD . …………………3分 ∴CD 与圆O 相切.(2)连接BE ,则∠ADE =∠ABE .∴sin ∠ADE =sin ∠ABE =65. …………………4分∵AB 是圆O 的直径,∴∠AEB =90︒,AB =2⨯3=6. 在Rt △ABE 中,sin ∠ABE =ABAE =65.∴AE =5 .21.(本小题满分5分)解:(1)30%; ……………………2分 (2)如图所示. ……………………4分(3)由于月销量的平均水平相同,从折线的走势看,A 品牌的月销量呈下降趋势,而B 品牌的月销量呈上升趋势.所以该商店应经销B 品牌电视机. …………………5分 22.(本小题满分5分)解:(1)将图4中的△ABE 向左平移30cm ,△CDF 向右平移30cm ,拼成如图下中的平行四边形,此平行四边形即为图2中的□ABCD .…………………2分(2)由图2的包贴方法知:AB 的长等于三棱柱的底边周长,∴AB =30.∵ 纸带宽为15,∴ sin ∠ABM =151302A M A B==.∴∠AMB =30°. …………………5分五、解答题:(本题共22分,第23题7分,第24题7分,第25题8分)23.(本小题满分7分) 解:(1) ∵ 关于x 的一元二次方程2220x ax b ++=有实数根,∴ Δ=,04)2(22≥-b a 有a 2-b 2≥0,(a+b )(a-b )≥0. ∵ 0,0>>b a , ∴ a+b >0,a-b ≥0.∴ b a ≥. …………………………2分(2) ∵ a ∶b =2,∴ 设2,a k b ==.解关于x 的一元二次方程22430x kx k ++=,得 -3x k k =-或.当12,= -3x k x k =-时,由1222x x -=得2k =. 当123,= -x k x k =-时,由1222x x -=得25k =-(不合题意,舍去).∴ 4,a b ==. …………………………5分(3) 当4,a b ==时,二次函数2812y x x =++与x 轴的交点为、C 的交点坐标分别为A (-6,0)、(-2,0),与y 轴交点坐标为(0,12),顶点坐标D 为(-4,-4). 设z =3x -y ,则3y x z =-.画出函数2812y x x =++和3y x =的图象,若直线3y x =平行移动时,可以发现当直线经过点C 时符合题意,此时最大z 的值等于-6 ……………7分 24. (本小题满分7分)解:(1)四边形ABCE 是菱形.证明:∵ △ECD 是△ABC 沿BC 方向平移得到的,∴ EC ∥AB ,EC =AB .∴ 四边形ABCE 是平行四边形. 又∵ AB =BC ,∴四边形ABCE 是菱形. ……………2分(2)①四边形PQED 的面积不发生变化,理由如下: 由菱形的对称性知,△PBO ≌△QEO , ∴ S △PBO = S △QEO321GRQPOEDC BA∵ △ECD 是由△ABC 平移得到的, ∴ ED ∥AC ,ED =AC =6. 又∵ BE ⊥AC , ∴BE ⊥ED∴S 四边形PQED =S △QEO +S 四边形POED =S △PBO +S 四边形POED =S △BED=12×BE ×ED =12×8×6=24. ……………4分②如图,当点P 在BC 上运动,使以点P 、Q 、R 为顶点的三角形与△COB 相似. ∵∠2是△OBP 的外角, ∴∠2>∠3.∴∠2不与∠3对应 . ∴∠2与∠1对应 .即∠2=∠1,∴OP =OC =3 .过O 作OG ⊥BC 于G ,则G 为PC 的中点 . 可证 △OGC ∽△BOC . ∴ CG :CO =CO :BC . 即 CG :3=3:5 . ∴ CG =95.∴ PB =BC -PC =BC -2CG =5-2×95=75 .∴ BD =PB +PR +RF +DF =x +185+x +185=10.∴ x =75∴ BP =75. ……………7分25.(本小题满分8分) 解:(1)由题意得A (0,2)、B (2,2)、C (3,0).设经过A ,B ,C 三点的抛物线的解析式为y=ax 2+bx +2. 则⎩⎨⎧=++=++02390224b a b a解得 ⎪⎪⎩⎪⎪⎨⎧=-=3432b aH∴ 224233y x x =-++.……………2分(2)由224233y x x =-++=228(1)33x --+.∴ 顶点坐标为G (1,83).过G 作GH ⊥AB ,垂足为H . 则AH =BH =1,GH =83-2=23.∵ EA ⊥AB ,GH ⊥AB ,∴ EA ∥GH .∴GH 是△BEA 的中位线 . ∴EA =3GH =43.过B 作BM ⊥OC ,垂足为M . 则MB =OA =AB .∵ ∠EBF =∠ABM =90°,∴ ∠EBA =∠FBM =90°-∠ABF . ∴ R t △EBA ≌R t △FBM . ∴ FM =EA =43.∵ CM =OC -OM =3-2=1, ∴ CF =FM +CM =73.……………5分(3)要使四边形BCGH 的周长最小,可将点C 向上 平移一个单位,再做关于对称轴对称的对称点C 1,得点C 1的坐标为(-1,1). 可求出直线BC 1的解析式为1433y x =+.直线1433y x =+与对称轴x =1的交点即为点H ,坐标为(1,53).点G 的坐标为(1,23).……………8分海淀区九年级第二学期期末练习数 学 2012. 6一、选择题(本题共32分,每小题4分)下面各题均有四个选项,其中只有一个..是符合题意的. 1. -5的倒数是A .15B .15- C .5- D .52. 2012年4月22日是第43个世界地球日,中国国土资源报社联合腾讯网发起“世界地球日”微话题,共有18 891 511人次参与了这次活动,将18 891 511用科学记数法表示(保 留三个有效数字)约为A. 18.9⨯106B. 0.189⨯108C. 1.89⨯107D. 18.8⨯106 3. 把2x 2− 4x + 2分解因式,结果正确的是A .2(x − 1)2B .2x (x − 2)C .2(x 2− 2x + 1) D .(2x −2)24. 右图是由七个相同的小正方体堆砌而成的几何体, 则这个几何体的俯视图是A BCD 5.从1, -2, 3这三个数中,随机抽取两个数相乘,积为正数的概率是A .0B .13C.23D .16. 如图,在△ABC 中,∠C =90°,BC =3,D ,E 分别在 AB 、AC 上,将△ADE 沿DE翻折后,点A 落在点A ′处,若A ′为CE 的中点,则折痕DE 的长为 A.21 B. 3C. 2D. 1A'EDABCA. 极差是40B. 平均数是60C. 中位数是51.5D. 众数是588.如图,在梯形ABCD 中,AD //BC ,∠ABC =60°,AB = DC =2, AD =1, R 、P 分别是BC 、CD 边上的动点(点R 、B 不重合, 点P 、C 不重合),E 、F 分别是AP 、RP 的中点,设BR=x ,EF=y ,则下列 图象中,能表示y 与x 的函数关系的图象大致是A B C D二、填空题(本题共16分,每小题4分)9. 若二次根式23-x 有意义,则 x 的取值范围是 .10.若一个多边形的内角和等于540︒,则这个多边形的边数是 .11. 如图,在平面直角坐标系xOy 中,已知点A 、B 、C 在双曲线xy 6=上,BD ⊥x 轴于D , CE ⊥ y 轴于E ,点F 在x 轴上,且AO =AF , 则图中阴影部分的面积之和为 .12.小东玩一种“挪珠子”游戏,根据挪动珠子的难度不同而得分不同,规定每次挪动珠子的颗数与所得分数的对应关系如下表所示:按表中规律,当所得分数为71分时,则挪动的珠子数为 颗; 当挪动n 颗 珠子时(n 为大于1的整数), 所得分数为 (用含n 的代数式表示).三、解答题(本题共30分,每小题5分) 1311|5|()3tan 604---+︒.14.解方程:6123x x x +=-+.15. 如图,AC //EG , BC //EF , 直线GE 分别交BC 、BA 于P 、D ,且AC=GE , BC=FE . 求证:∠A =∠G .FE R P B C DA GF E D CBAP16.已知2220a a --=,求代数式221111121a a a a a --÷--++的值.17. 如图,一次函数的图象与x 轴、y 轴分别交于点A (-2, 0)、B (0, 2). (1)求一次函数的解析式; (2)若点C 在x 轴上,且OC =23, 请直接写出∠ABC 的度数.18. 如图,在四边形ABCD 中,∠ADB =∠CBD =90︒,BE//CD 交AD 于E , 且EA=EB .若AB=54,DB =4,求四边形ABCD 的面积.四、解答题(本题共20分,第19题、第20题各5分,第21题6分,第22题4分) 19. 某街道办事处需印制主题为“做文明有礼的北京人,垃圾减量垃圾分类从我做起”的宣传单. 街道办事处附近的甲、乙两家图文社印制此种宣传单的收费标准如下: 甲图文社收费s (元)与印制数t (张)的函数关系如下表:乙图文社的收费方式为:印制2 000张以内(含2 000张),按每张0.13元收费;超过 2 000张,均按每张0.09元收费.(1)根据表中给出的对应规律,写出甲图文社收费s (元)与印制数t (张)的函数关系式; (2)由于马上要用宣传单,街道办事处同时在甲、乙两家图文社共印制了1 500张宣传单,印制费共179元,问街道办事处在甲、乙两家图文社各印制了多少张宣传单? (3)若在下周的宣传活动中,街道办事处还需要加印5 000张宣传单,在甲、乙两家EDA图文社中选择 图文社更省钱.20.如图,AC 、BC 是⊙O 的弦, BC //AO , AO 的延长线与过点C 的射线交于点D , 且∠D =90︒-2∠A .(1)求证:直线CD 是⊙O 的切线;(2)若BC=4,1tan 2D =,求CD 和AD 的长.21. 李老师为了了解所教班级学生完成数学课前预习的具体情况,对本班部分学生进行了 为期半个月的跟踪调查,他将调查结果分为四类,A :很好;B :较好;C :一般;D : 较差.并将调查结果绘制成以下两幅不完整的统计图,请你根据统计图解答下列问题:(1)李老师一共调查了多少名同学?(2)C 类女生有 名,D 类男生有 名,将上面条形统计图补充完整; (3)为了共同进步,李老师想从被调查的A 类和D 类学生中各随机选取一位同学进行“一帮一”互助学习,请用列表法或画树形图的方法求出所选两位同学恰好是一位男同学和一位女同学的概率.22.阅读下面材料:小明遇到这样一个问题:我们定义: 如果一个图形绕着某定点旋转一定的角度α (0︒ <α <360︒) 后所得的图形与原图形重合,则称此图形是旋转对称图形. 如等边三角形就是一个旋转角为120︒的旋转对称图形. 如图1,点O 是等边三角形△ABC 的中心, D 、E 、F 分别为AB 、BC 、 CA 的中点, 请你将△ABC 分割并拼补成一个与△ABC .图1 图2小明利用旋转解决了这个问题,图2中阴影部分所示的图形即是与△ABC 面积相等的新的旋转对E 3 E 1P 1 P 2 N 1N 2 AFH 类别50%25%15%D C B A称图形.请你参考小明同学解决问题的方法,利用图形变换解决下列问题: 如图3,在等边△ABC 中, E 1、E 2、E 3分别为AB 、 BC 、CA 的中点,P 1、P 2, M 1、M 2, N 1、N 2分别为 AB 、BC 、CA 的三等分点.(1)在图3中画出一个和△ABC 面积相等的新的旋转 对称图形,并用阴影表示(保留画图痕迹);(2)若△ABC 的面积为a ,则图3中△FGH 的面积为 .五、解答题(本题共22分,第23题7分,第24题7分,第25题8分) 23.已知抛物线 2(1)(2)1y m x m x =-+--与x 轴交于A 、B 两点.(1)求m 的取值范围;(2)若m >1, 且点A 在点B 的左侧,OA : OB =1 : 3, 试确定抛物线的解析式;(3)设(2)中抛物线与y 轴的交点为C ,过点C 作直线l //x 轴, 将抛物线在y 轴左侧的部分沿直线 l翻折, 抛物线的其余部分保持不变,得到一个新图象. 请你结合新图象回答: 当直线13y x b=+与新图象只有一个公共点P (x 0, y 0)且 y 0≤7时, 求b 的取值范围.24. 如图, 在平面直角坐标系xOy 中,抛物线xx m y 222-=与x 轴负半轴交于点A , 顶点为B , 且对称轴与x 轴交于点C .(1)求点B 的坐标 (用含m 的代数式表示);(2)D 为BO 中点,直线AD 交y 轴于E ,若点E 的坐标为(0, 2), 求抛物线的解析式; (3)在(2)的条件下,点M 在直线BO 上,且使得△AMC 的周长最小,P 在抛物线上,Q 在直线 BC 上,若以A 、M 、P 、Q 为顶点的四边形是平行四边形,求点P 的坐 标.备用图25. 在矩形ABCD 中, 点F 在AD 延长线上,且DF = DC , M 为AB 边上一点, N 为MD 的中点, 点E 在直线CF 上(点E 、C 不重合).(1)如图1, 若AB =BC , 点M 、A 重合, E 为CF 的中点,试探究BN 与NE 的位置关系及BMCE 的值, 并证明你的结论;(2)如图2,且若AB =BC , 点M 、A 不重合, BN =NE ,你在(1)中得到的两个结论是否成立, 若成立,加以证明; 若不成立, 请说明理由;(3)如图3,若点M 、A 不重合,BN =NE ,你在(1)中得到的结论两个是否成立, 请直接写出你的结论.图1 图2 图3海淀区九年级第二学期期末练习数学试卷答案及评分参考 2012. 6说明: 与参考答案不同, 但解答正确相应给分. 一、选择题(本题共32分,每小题4分)1. B2. C3. A4. C5. B6. D7. D8. C 二、填空题(本题共16分,每小题4分)9.23x ≥10. 5 11. 12 12.8; 21n n +- (每空各 2分)三、解答题(本题共30分,每小题5分) 13115()3tan 604---+︒=54-+ …………………………………………………4分=1. …………………………………………………5分14.解:去分母,得 ()()()()63223x x x x x ++-=-+. ………………………………2分2261826x x x x x ++-=+-. ……………………………………………………3分整理,得 324x =-.解得 8x =-. ………………………………………………………………4分F A ( M ) D N D C E N M B F E C B F NM E C B A经检验,8x =-是原方程的解.所以原方程的解是8x =-. ……………………………………………………5分15.证明:∵ AC //EG ,∴ C C PG ∠=∠. …………1分 ∵ BC //EF ,∴ C P G F E G ∠=∠.∴ C F E G ∠=∠. …………………………………………2分在△ABC 和△GFE 中,,,,AC G E C FEG BC FE =⎧⎪∠=∠⎨=⎪⎩∴ △ABC ≌△GFE . …………………………………………………4分∴A G ∠=∠. …………………………………………………5分 16. 解:原式=()()()21111111a a a a a +-⋅-+-- ……………………………………………2分=()21111a a a +--- …………………………………………………3分=22.(1)a -- …………………………………………………4分由2220a a --=,得 2(1)3a -=.∴ 原式=23-. …………………………………………………5分17.解:(1)依题意设一次函数解析式为2y kx =+. …………………………………1分 ∵ 点A (2,0-)在一次函数图象上, ∴022k =-+.∴ k =1. ……………………………………………………2分 ∴ 一次函数的解析式为2y x =+. …………………………………3分 (2)A B C ∠的度数为15︒或105︒. (每解各1分) ……………………5分 18.解: ∵∠ADB =∠CBD =90︒, ∴ DE ∥CB . ∵ BE ∥CD ,∴ 四边形BEDC 是平行四边形. ………1分 ∴ BC=DE . 在Rt △ABD 中,由勾股定理得8AD ===. ………2分设D E x =,则8EA x =-. ∴8EB EA x ==-.在Rt △BDE 中,由勾股定理得 222D E B D E B +=.∴ 22248x x +=-(). ……………………………………………………3分 ∴ 3x =.∴ 3BC D E ==. ……………………………………………………4分 ∴1116622.22ABD BD C ABCD S S S BD AD BD BC ∆∆=+=⋅+⋅=+=四边形 ………… 5分四、解答题(本题共20分,第19题、第20题各5分,第21题6分, 第22题4分) 19.解:(1)甲图文社收费s (元)与印制数t (张)的函数关系式为0.11s t =. ……1分GFE DCB AP D ECA(2)设在甲、乙两家图文社各印制了x 张、y 张宣传单, 依题意得{1500,0.110.13179.x y x y +=+= ………………………………………… 2分解得800,700.x y =⎧⎨=⎩ ……………………………………………… 3分答:在甲、乙两家图文社各印制了800张、700张宣传单. ………………4分 (3) 乙 . ……………………………………………………… 5分20.(1)证明:连结OC .∴ ∠DOC =2∠A . …………1分∵∠D = 90°2A -∠, ∴∠D +∠DOC =90°. ∴ ∠OCD =90°. ∵ OC 是⊙O 的半径,∴ 直线CD 是⊙O 的切线. ………………………………………………2分(2)解: 过点O 作OE ⊥BC 于E , 则∠OEC =90︒.∵ BC =4,∴ CE =12BC =2.∵ BC //AO , ∴ ∠OCE =∠DOC .∵∠COE +∠OCE =90︒, ∠D +∠DOC =90︒,∴ ∠COE =∠D . ……………………………………………………3分 ∵tan D =12,∴tan C O E ∠=12.∵∠OEC =90︒, CE =2, ∴4tan CE O E CO E==∠.在Rt △OEC 中, 由勾股定理可得O C ==在Rt △ODC 中, 由1tan 2O C D CD==,得CD =, ……………………4分由勾股定理可得10.O D =∴10.AD OA OD OC OD =+=+= …………………………………5分 21.解:(1)(64)50%20+÷=. 所以李老师一共调查了20名学生. …………………1分(2)C 类女生有 3 名,D 类男生有 1 名;补充条形统计图略.说明:其中每空1分,条形统计图1分. ……………………………………4分(3)解法一:由题意画树形图如下:………………………5分从树形图看出,所有可能出现的结果共有6种,且每种结果出现的可能性相等,所选 两位同学恰好是一位男同学和一位女同学的结果共有3种.从D 类中选取从A 类中选取女女男男女女男女男所以P (所选两位同学恰好是一位男同学和一位女同学)=3162=. ………………6分解法二:由题意列表如下:………………………5分由上表得出,所有可能出现的结果共有6种,且每种结果出现的可能性相等,所选 两位同学恰好是一位男同学和一位女同学的结果共有3种. 所以P (所选两位同学恰好是一位男同学和一位女同学)=3162=. ………………6分22.解:(1)画图如下:(答案不唯一) …………………………………2分图3(2)图3中△FGH 的面积为7a. …………………………………4分五、解答题(本题共22分,第23题7分,第24题7分,第25题8分) 23. 解:(1)∵ 抛物线2(1)(2)1y m x m x =-+--与x 轴交于A 、B 两点,∴210,(2)4(1)0.m m m ì- ïïíïD =-+->ïî由①得1m¹, 由②得0m ¹,∴ m 的取值范围是0m ¹且1m ¹. ……………………………………………2分 (2)∵ 点A 、B 是抛物线2(1)(2)1y m x m x =-+--与x 轴的交点,∴ 令0y =,即 2(1)(2)10m x m x -+--=. 解得 11x =-,211x m =-.∵1m >, ∴10 1.1m >>--∵ 点A 在点B 左侧,∴ 点A 的坐标为(1,0)-,点B 的坐标为1(,0)1m -. …………………………3分∴ OA=1,OB =11m -.∵ OA : OB =1 : 3,①② …………………………………………1分∴131m =-.∴ 43m =.∴ 抛物线的解析式为212133y x x =--. ………………………………………4分(3)∵ 点C 是抛物线212133y x x =--与y 轴的交点,∴ 点C 的坐标为(0,1)-.依题意翻折后的图象如图所示. 令7y =,即2121733x x --=.解得16x =, 24x =-.∴ 新图象经过点D (6,7). 当直线13y x b =+经过D 点时,可得5b =. 当直线13y x b =+经过C 点时,可得1b =-. 当直线1(1)3y x b b =+<-与函数2121(33y x x x =-->的图象仅有一个公共点P (x 0, y 0)时,得20001121333x b x x +=--.整理得 2003330.x x b ---=由2(3)4(33)12210b b D =----=+=,得74b =-结合图象可知,符合题意的b 的取值范围为15b -<≤或4b <-. ……………7分24.解:(1)∵22222221212112()()4422y x x x m x m m x m m mmm m=-=-+-⋅=--,∴抛物线的顶点B 的坐标为11(,)22m m -. ……………………………1分(2)令2220x x m-=,解得10x =, 2x m =.∵ 抛物线xx m y 222-=与x 轴负半轴交于点A ,∴ A (m , 0), 且m <0. …………………………………………………2分 过点D 作DF ⊥x 轴于F .由 D 为BO 中点,DF //BC , 可得CF =FO =1.2C O ∴ DF =1.2BC由抛物线的对称性得 AC = OC .∴ AF : AO =3 : 4. ∵ DF //EO ,∴ △AFD ∽△AOE . ∴.FD AF O EAO=由E (0, 2),B 11(,)22m m -,得OE =2, DF =14m -.∴134.24m -=∴ m = -6.∴ 抛物线的解析式为2123y x x =--. ………………………………………3分(3)依题意,得A (-6,0)、B (-3, 3)、C (-3, 0).可得直线OB 的解析式为x y -=,直线BC 为3x =-. 作点C 关于直线BO 的对称点C '(0,3),连接AC '交BO 于M ,则M 即为所求. 由A (-6,0),C ' (0, 3),可得 直线AC '的解析式为321+=x y .由13,2y x y x⎧=+⎪⎨⎪=-⎩解得2,2.x y =-⎧⎨=⎩ ∴ 点M 的坐标为(-2, 2). ……………4分由点P 在抛物线2123y x x =--上,设P (t ,213t - (ⅰ)当AM 为所求平行四边形的一边时. 如右图,过M 作MG ⊥ x 轴于G , 过P 1作P1H ⊥ BC 于H , 则x G = x M =-2, x H = x B =-3.由四边形AM P 1Q 1为平行四边形, 可证△AMG ≌△P 1Q 1H . 可得P 1H = AG =4. ∴ t -(-3)=4. ∴ t =1.∴17(1,)3P -. ……………………5分如右图,同 方法可得 P 2H=AG =4. ∴ -3- t =4. ∴ t =-7.∴27(7,)3P --. ……………………6分(ⅱ)当AM 为所求平行四边形的对角线时, 如右图,过M 作MH ⊥BC 于H , 过P 3作P 3G ⊥ x 轴于G , 则x H = x B =-3,x G =3P x =t .由四边形AP 3MQ 3为平行四边形, 可证△A P 3G ≌△MQ 3H . 可得AG = MH =1. ∴ t -(-6)=1. ∴ t =-5. ∴35(5,)3P -. ……………………………………………………7分综上,点P 的坐标为17(1,)3P -、27(7,)3P --、35(5,)3P -.25. 解:(1)BN 与NE 的位置关系是BN ⊥NE ;C E B M2证明:如图,过点E 作EG ⊥AF 于G , 则∠EGN =90°.∵ 矩形ABCD 中, AB =BC ,∴ 矩形ABCD 为正方形.∴ AB =AD =CD , ∠A =∠ADC =∠DCB =90°.∴ EG//CD , ∠EGN =∠A , ∠CDF =90°. ………………………………1分 ∵ E 为CF 的中点,EG//CD , ∴ GF =DG =11.22DF CD =∴ 1.2G E CD =∵ N 为MD (AD )的中点, ∴ AN =ND =11.22AD CD =∴ GE =AN , NG=ND+DG=ND+AN=AD=AB . ……………………………2分 ∴ △NGE ≌△BAN . ∴ ∠1=∠2. ∵ ∠2+∠3=90°, ∴ ∠1+∠3=90°. ∴ ∠BNE =90°.∴ BN ⊥NE . ……………………………………………………………3分 ∵ ∠CDF =90°, CD =DF , 可得 ∠F =∠FCD =45°,CF CD=.于是122CFCECECEBM BA CD CD ====……………………………………4分(2)在(1)中得到的两个结论均成立.证明:如图,延长BN 交CD 的延长线于点G ,连结BE 、GE ,过E 作EH ⊥CE ,交CD 于点H .∵ 四边形ABCD 是矩形, ∴ AB ∥CG .∴ ∠MBN =∠DGN ,∠BMN =∠GDN . ∵ N 为MD 的中点, ∴ MN =DN .∴ △BMN ≌△GDN . ∴ MB =DG ,BN =GN .HGABCDEMNF321GFEA (M )CDNB∵ BN =NE ,∴ BN =NE =GN .∴ ∠BEG =90°. ……………………………………………5分 ∵ EH ⊥CE , ∴ ∠CEH =90°. ∴ ∠BEG =∠CEH . ∴ ∠BEC =∠GEH . 由(1)得∠DCF =45°. ∴ ∠CHE =∠HCE =45°. ∴ EC=EH , ∠EHG =135°. ∵∠ECB =∠DCB +∠HCE =135°, ∴ ∠ECB =∠EHG . ∴ △ECB ≌△EHG . ∴ EB =EG ,CB =HG . ∵ BN =NG ,∴ BN ⊥NE. ……………………………………………6分∵ BM =DG= HG -HD= BC -HD =CD -HD =CH=CE ,∴CE BM=2……………………………………………7分(3)BN ⊥NE ;CE BM2.………………………………………………8分北京市西城区2012年初三二模试卷数 学 2011. 6一、选择题(本题共32分,每小题4分)下面各题均有四个选项,其中只有一个..是符合题意的. 1.3-的倒数是A .3B .13-C .3-D .132.2010年,我国国内生产总值(GDP )为58 786亿美元,超过日本,成为世界第二大经济体.58 786用科学记数法表示为 A .45.878610⨯ B .55.878610⨯ C .358.78610⨯ D .50.5878610⨯ 3.⊙O 1的半径为3cm ,⊙O 2的半径为5cm ,若圆心距O 1O 2=2 cm ,则这两圆的位置关系是A .内含B .外切C .相交D .内切 4.若一个多边形的内角和是它的外角和的2倍,则这个多边形是A .四边形B .五边形C .六边形D .八边形 5.某鞋店试销一种新款女鞋,销售情况如下表所示:鞋店经理最关心的是哪种型号的鞋销量最大.对他来说,下列统计量中最重要的是A .平均数B .众数C .中位数D .方差6.小明的爷爷每天坚持体育锻炼,一天他步行到离家较远的公园,打了一会儿太极拳后跑步回家.下面的四个函数图象中,能大致反映当天小明的爷爷离家的距离y 与时间x 的函数关系的是7.下图的长方体是由A ,B ,C ,D 四个选项中所示的四个几何体拼接而成的,而且这四个几何体都是由4个同样大小的小正方体组成的,那么长方体中,第四部分所对应的几何体应是8.在平面直角坐标系xOy 中,点P 在由直线3+-=x y,直线4y =和直线1x =所围成的区域内或其边界上,点Q 在x 轴上,若点R 的坐标为(2,2)R ,则QP QR +的最小值为A .B .25+C .D .4 二、填空题(本题共16分,每小题4分) 9.分解因式 m 3 – 4m = . 10.函数21-=x y 中,自变量x 的取值范围是 .11.如图,两同心圆的圆心为O ,大圆的弦AB 与小圆相切,切点为P .若两圆的半径分别为2和1,则弦长AB =;若用阴影部分围成一个圆锥(OA 与OB 重合),则该圆锥的底面半径长为 . 12.对于每个正整数n ,抛物线2211(1)(1)n n n n n yx x +++=-+与x 轴交于A n ,B n 两点,若n n A B 表示这两点间的距离,则n n A B = (用含n 的代数式表示);11222011A B A B A B +++ 的值为 .三、解答题(本题共30分,每小题5分) 13.计算:2273181---⎪⎭⎫ ⎝⎛--- .14.已知:如图,直线AB 同侧两点C ,D 满足CAD DBC ∠=∠, AC =BD ,BC 与AD 相交于点E .求证:AE =BE .15.已知:关于x 的一元二次方程2420x x k ++=有两个不相等的实数根. (1)求k 的取值范围;(2)当k 取最大整数值时,用公式法求该方程的解.16.已知 122=+xy x ,215xy y +=,求代数式()22()x y y x y +-+的值.17.如图,一次函数y kx b =+()0≠k 的图象与反比例函数m y x=()0≠m 的图象交于(3,1)A -,(2,)B n 两点.(1)求反比例函数和一次函数的解析式;(2)求△AOB 的面积.18.今年3月12日,某校九年级部分学生参加植树节活动,以下是根据本次植树活动的有关数据制作的统计图的一部分.请根据统计图所提供的有关信息,完成下列问题:(1)参加植树的学生共有 人; (2)请将该条形统计图补充完整;(3)参加植树的学生平均每人植树 棵.(保留整数)四、解答题(本题共20分,每小题5分)19.某汽车运输公司根据实际需要计划购买大、中型两种客车共20辆,已知大型客车每辆62万元,中型客车每辆40万元,设购买大型客车x(辆),购车总费用为y(万元).(1)求y与x的函数关系式(不要求写出自变量x的取值范围);(2)若购买中型客车的数量少于大型客车的数量,请你给出一种费用最省的方案,并求出该方案所需费用.20.如图,在梯形ABC D中,AB∥D C,5AB=,4C D=,连结并延长BD到E,使==,10AD BC=,作EF AB⊥,交BA的延长线于点F.DE BD(1)求tan ABD∠的值;(2)求AF的长.21.已知:如图,BD为⊙O的直径,点A是劣弧BC的中点,AD交BC于点E,连结AB.(1)求证:2=⋅;A B A E A D(2)过点D作⊙O的切线,与BC的延长线交于点F,若AE=2,ED=4,求EF的长.22.如图1,若将△AOB绕点O逆时针旋转180°得到△COD,则△AOB≌△COD.此时,我们称△AOB 与△COD为“8字全等型”.借助“8字全等型”我们可以解决一些图形的分割与拼接问题.例如:图2中,△ABC是锐角三角形且AC>AB,E为AC的中点,F为BC上一点且BF≠FC(F不与B,C 重合),沿EF将其剪开,得到的两块图形恰能拼成一个梯形.请分别按下列要求用直线将图2中的△ABC重新进行分割,画出分割线及拼接后的图形.(1)在图3中将△ABC沿分割线剪开,使得到的两块图形恰能拼成一个平行四边形;(2)在图4中将△ABC沿分割线剪开,使得到的三块图形恰能拼成一个矩形,且其中的两块为直角三角形;(3)在图5中将△ABC沿分割线剪开,使得到的三块图形恰能拼成一个矩形,且其中的一块为钝角三角形.五、解答题(本题共22分,第23题7分,第24题7分,第25题8分)23.阅读下列材料:若关于x 的一元二次方程20ax bx c ++=()0≠a 的两个实数根分别为x 1,x 2,则12b x x a+=-,12c x x a⋅=.解决下列问题:已知:a ,b ,c 均为非零实数,且a >b >c ,关于x 的一元二次方程20ax bx c ++=有两个实数根,其中一根为2.(1)填空:42a b c ++ 0,a 0,c 0;(填“>”,“<”或“=”)(2)利用阅读材料中的结论直接写出方程20ax bx c ++=的另一个实数根(用含a ,c 的代数式表示); (3)若实数m 使代数式2am bm c ++的值小于0,问:当x =5m +时,代数式2ax bx c ++的值是否为正数?写出你的结论并说明理由.。
北京2012年数学中考二模试题汇编目录丰台区2012年初三统一练习石景山2012年初三统一练习顺义区2012年初三统一练习大兴区2012年初三统一练习通州区2012年初三统一练习门头沟2012年初三统一练习房山区2012年初三统一练习延庆县2012年初三统一练习密云县2012年初三统一练习海淀区2012年初三统一练习丰台区2012年初三统一练习(二)数学试卷学校姓名准考证号一、选择题(本题共32分,每小题4分)下面各题均有四个选项,其中只有一个..是符合题意的.1.2-的绝对值是A.12- B.12C.2 D.2-2.PM2.5是指大气中直径小于或等于2.5微米的颗粒物,2.5微米等于0.000 002 5米,把0.000 002 5用科学记数法表示为A .62.510⨯B .50.2510-⨯C . 62.510-⨯D .72510-⨯ 3.如图,在△ABC 中, DE ∥BC ,如果AD =1, BD =2,那么DEBC的值为 A .12 B .13 C .14 D .194.在4张完全相同的卡片上分别画有等边三角形、矩形、菱形和圆,在看不见图形的情况下随机抽取1张,卡片上的图形是中心对称图形的概率是 A .14 B .12C .34D .1 5.若20x +=则 y x 的值为A .-8B .-6C .6D .8 6.下列运算正确的是 A .222()a b a b +=+ B .235a b ab +=C .632a a a ÷=D .325a a a ⋅=7.小张每天骑自行车或步行上学,他上学的路程为2 800米,骑自行车的平均速度是步行 的平均速度的4倍,骑自行车上学比步行上学少用30分钟.设步行的平均速度为x 米/分.根据题意,下面列出的方程正确的是A .30428002800=-xx B .30280042800=-x xC .30528002800=-x xD .30280052800=-xx8.如图1是一个小正方体的侧面展开图,小正方体从图2所示的位置依次翻到第1格、第2格、第3格、第4格,这时小正方体朝上..一面的字是 A .北 B .京C .精D .神二、填空题(本题共16分,每小题4分)9x 的取值范围是 .DOCBA EDCBA10.分解因式:=+-b ab b a 25102.11.如图, ⊙O 的半径为2,点A 为⊙O 上一点,OD ⊥弦BC 于点D ,如果1OD =,那么BAC ∠=________︒.12.符号“f ”表示一种运算,它对一些数的运算如下:2(1)11f =+,2(2)12f =+,2(3)13f =+, 2(4)14f =+,…,利用以上运算的规律写出()f n = (n 为正整数) ;(1)(2)(3)(100)f f f f ⋅⋅⋅= .三、解答题(本题共30分,每小题5分)13.计算: ()︒⎪⎭⎫ ⎝⎛+45sin 4-211-3-272-03 .14.已知2230a a --=,求代数式2(1)(2)(2)a a a a --+-的值.15.解分式方程:21124x x x -=--.16.如图,在△ABC 与△ABD 中, BC 与AD 相交于点O ,∠1=∠2,CO = DO .求证:∠C =∠D .17.已知:如图,在平面直角坐标系xOy 中,一次函数y =-x 的图象与反比例函数ky x=的图象交于A 、B 两点. (1)求k 的值;(2)如果点P 在y 轴上,且满足以点A 、B 、P 为顶点的三角形是直角三角形,直接写出点P 的坐标.18.为了增强居民的节约用电意识,某市拟出台居民阶梯电价政策:每户每月用电量不超过230千瓦时的部分为第一档,按每千瓦时0.49元收费;超过230千瓦时且不超过400千瓦时的部分为第二档,超过的部分按每千瓦时0.54元收费;超过400千瓦时的部分为第三档,超过的部分按每千瓦时0.79元收费.(1)将按阶梯电价计算得以下各家4月份应交的电费填入下表:21DOCBA(2)设一户家庭某月用电量为x 千瓦时,写出该户此月应缴电费y (元)与用电量x (千瓦时)之间的函数关系式.四、解答题(本题共20分,每小题5分)19.已知:如图,菱形ABCD 中,过AD 的中点E 作AC 的垂线EF ,交AB 于点M ,交CB 的延长线于点F .如果FB 的长是2,求菱形ABCD 的周长.20.已知:如图,点A 、B 在⊙O 上,直线AC 是⊙O 的切线,联结AB 交O C 于点D ,AC =CD . (1)求证:OC ⊥OB ;MFEBCDA(2)可以估计这所学校八年级的学生中,每学期参加社会实践活动的时间不少于8小时的学生大约有多少人?22.小杰遇到这样一个问题:如图1,在□ABCD 中,AE ⊥BC 于点E ,AF ⊥CD 于点F ,连结EF ,△AEF的三条高线交于点H ,如果AC =4,EF =3,求AH 的长.小杰是这样思考的:要想解决这个问题,应想办法将题目中的已知线段与所求线段尽可能集中到同一个三角形中.他先后尝试了翻折、旋转、平移的方法,发现可以通过将△AEH 平移至△GCF 的位置(如图2),可以解决这个问题.请你参考小杰同学的思路回答: (1)图2中AH 的长等于 .(2)如果AC =a ,EF =b ,那么AH 的长等于 .BA D CEFHG HFECDA B图1 图2五、解答题(本题共22分,第23题7分,第24题7分,第25题8分) 23.已知关于x 的一元二次方程242(1)0x x k -+-=有两个不相等的实数根. (1)求k 的取值范围;(2)如果抛物线242(1)y x x k =-+-与x 轴的两个交点的横坐标为整数,求正整数k 的值;(3)直线y =x 与(2)中的抛物线在第一象限内的交点为点C ,点P 是射线OC 上的一个动点(点P 不与点O 、点C 重合),过点P 作垂直于x 轴的直线,交抛物线于点M ,点Q 在直线PC 上,距离点P 个单位长度,设点P 的横坐标为t ,△PMQ 的面积为S ,求出S 与t 之间的函数关系式.24.在△ABC 中,D 为BC 边的中点,在三角形内部取一点P ,使得∠ABP =∠ACP .过点P 作PE ⊥AC 于点E ,PF ⊥AB 于点F .(1)如图1,当AB =AC 时,判断的DE 与DF 的数量关系,直接写出你的结论;(2)如图2,当AB ≠AC ,其它条件不变时,(1)中的结论是否发生改变?请说明理由.图1 图225.如图,将矩形OABC 置于平面直角坐标系xOy 中,A (32,0),C (0,2). (1) 抛物线2y x bx c =-++经过点B 、C ,求该抛物线的解析式;(2)将矩形OABC 绕原点顺时针旋转一个角度α(0°<α<90°),在旋转过程中,当矩形的顶点落在(1)中的抛物线的对称轴上时,求此时这个顶点的坐标; (3)如图(2),将矩形OABC 绕原点顺时针旋转一个角度θ(0°<θ<180°),将得到矩形OA’B’C’,设A’C’的中点为点E ,联结CE ,当θ= °时,线段CE 的长度最大,最大值为 .AEFPD E BAD F P北京市丰台区2011_2012学年第二学期初三综合练习(二)参考答案13.解:原式=3-1+4-422⨯……4分 =6-22….5分14.解:2(1)(2)(2)a a a a --+-=22224a a a --+……1分. =224a a -+. ……2分2230a a --=, ∴223a a -=.…3分∴原式=224347a a -+=+=.….….5分 15.21124x x x -=-- 解:2(2)(4)1x x x +--=.……1分 22241x x x +-+=.……2分23x =-.…… 3分32x =-.…….4分 检验:经检验,32x =-是原方程的解.∴原方程的解是32x =-.……5分16.证明:∠1=∠2, ∴OA=OB .…1分在△COA 和△DOB 中 ,OA=OB ,∠AOC =∠BOD ,CO=DO .∴△COA ≌△DOB .……….4分∴∠C =∠D . …………….5分 17.解: (1)反比例函数ky x=的图象经过点A (-1,1) , ∴-11-1k =⨯=.…………1分(2)P 1(0)、 P 2(0,)、P 3(0,2)、 P 4(0,-2) ……5分18.解:(1)……2分(2)当0230x ≤≤时,0.49y x =;……3分 当230400x <≤时,0.54-11.5y x =;……4分当400x >时,0.79-111.5y x =.……5分 四、解答题(本题共20分,每小题5分)19.解:联结BD . ∵在菱形ABCD 中,∴AD ∥BC ,AC ⊥BD .……1分 又∵EF ⊥AC , ∴BD ∥EF .∴四边形EFBD 为平行四边形.……2分 ∴FB = ED =2.……3分 ∵E 是AD 的中点. ∴AD =2ED =4.……4分 ∴菱形ABCD 的周长为4416⨯=.……5分(2)700⨯(1-0.04)=672.……5分答:这所学校每学期参加社会实践活动的时间不少于23.解:(1)由题意得△>0. ∴△=2(4)4[2(1)]8240k k ---=-+>.……1分 ∴解得3<k .……2分(2)∵3<k 且k 为正整数,∴1=k 或2.……3分当1=k 时,x x y 42-=,与x 轴交于点(0,0)、(4,0),符合题意; 当2=k 时,242+-=x x y ,与x 轴的交点不是整数点,故舍去. 综上所述,1=k .……4分(3)∵2,4y x y x x =⎧⎨=-⎩,∴点C 的坐标是(5,5).∴OC 与x 轴的夹角为45°.过点Q 作QN ⊥PM 于点N ,(注:点Q 在射线PC 上时,结果一样,所以只写一种情况即可)∴∠NQP =45°,NQ PM S ⋅=21.∵PQ ,∴NQ =1.∵P (t t ,),则M (t t t 4,2-),∴PM =t t t t t 5)4(22+-=--.……5分 ∴t t S 5212+-=. ∴当50<<t 时,t t S 25212+-=;……6分 当5>t 时,t t S 25212-=.……7分24.解:(1)DE =DF .……1分(2)DE =DF 不发生改变.……2分理由如下:分别取BP 、CP 的中点M 、N ,联结EM 、DM 、FN 、DN .∵D 为BC 的中点,∴BP DN BP DN //,21=.……3分∵,AB PE ⊥∴BP BM EM 21==.∴21,∠=∠=EM DN .∴12213∠=∠+∠=∠.…4分同理,524,//DM FN MD PC =∠=∠. ∴四边形MDNP 为平行四边形.……5分∴67∠=∠.∵,41∠=∠∴35∠=∠. ∴EMD DNF ∠=∠.……6分 ∴△EMD ≌△DNF . ∴DE =DF .……7分25.解:(1)∵矩形OABC ,A (32,0),C (0,2),∴B (32,2).∴抛物线的对称轴为x =3.∴b =3.……1分∴二次函数的解析式为:22y x =-++.……2分(2)①当顶点A 落在对称轴上时,设点A 的对应点为点A ’,联结OA ’,设对称轴x =3与x 轴交于点D ,∴OD =3. ∴OA ’ = OA =32.在Rt △OA ’D 中,根据勾股定理A ’D =3. ∴A ’(3,-3) . ……4分 ②当顶点落C 对称轴上时(图略),设点C 的对应点为点C ’,联结OC ’, 在Rt △OC ’D 中,根据勾股定理C ’D =1. ∴C ’(3, 1).……6分 (3) 120°,4.……8分石景山区2012年初三第二次统一练习数 学 试 卷7654321NMCD BPFEA第Ⅰ卷(共32分)一、选择题(本题共32分,每小题4分)在每个小题给出的四个备选答案中,只有一个是正确的,请将所选答案前的字母填在题后的括号内.1.2的算术平方根是( ) A .21B .2C .2-D .2±2.2012年2月,国务院同意发布新修订的《环境空气质量标准》增加了PM2.5监测指标.PM2.5是指大气中直径小于或等于2.5微米的颗粒物,也称为可入肺颗粒物.如果1微米=0.000 001 米,那么数据0.000 002 5用科学记数法可以表示为( ) A .6105.2-⨯ B .5105.2-⨯ C .5105.2⨯- D .6105.2-⨯-3.如图,把一个长方形的纸片对折两次,然后剪下一个角,为了得到一个钝角为120︒ 的菱形,剪口与折痕所成的角α 的度数应为( )A .15︒或30︒B .30︒或45︒C .45︒或60︒D .30︒或60︒ 4年星级饭店客房出租率(%A .61、62B .62、62C .61.5、62D .60.5、625.如图,有6张形状、大小、质地均相同的卡片,正面分别印有北京精神——“爱国、创新、包容、厚德”的字样.背面完全相同,现将这6张卡片洗匀后正面向下放在桌子上,从中随机抽取一张,抽出的卡片恰好是“创新”的概率是( ) A .31 B .32 C .61 D .41 6.若一个多边形的内角和是900°,则这个多边形的边数是( )第3题图A .5B .6C .7D .87.将二次函数2x y =的图象如何平移可得到342++=x x y 的图象( )A .向右平移2个单位,向上平移一个单位B .向右平移2个单位,向下平移一个单位C .向左平移2个单位,向下平移一个单位D .向左平移2个单位,向上平移一个单位8.已知正方形纸片的边长为18,若将它按下图所示方法折成一个正方体纸盒,则纸盒的边(棱)长是( ) A .6B .23C .29D .32第Ⅱ卷(共88分)二、填空题(本题共16分,每小题4分) 9.分式3-x x有意义的条件为 . 10.分解因式:=-339ab b a ______ ________. 11.已知:如图是斜边为10的一个等腰直角三角形与两个半径为5的扇形的重叠情形,其中等腰直角三角形顶角平分线与两扇形相切,则图中阴影部分面积的和是 .12.如图所示,圆圈内分别标有1,2,…,12,这12个数字,电子跳蚤每跳一步,可以从一个圆圈逆时针跳到相邻的圆圈,若电子跳蚤所在圆圈的数字为n ,则电子跳蚤连续跳(2-3n )步作为一次跳跃,例如:电子跳蚤从标有数字1的圆圈需跳12-13=⨯步到标有数字2的圆圈内,完成一次跳跃,第二次则要连续跳42-23=⨯步到达标有数字6的圆圈,…依此规律,若电子跳蚤从①开始,那么第3次能跳到的圆圈内所标的数字为 ;第2012次电子跳蚤能跳到的圆圈内所标的数字为 .三、解答题(本题共30分,每小题5分)第8题图 111210987654321第12题图13.()22145cos 314.38-⎪⎭⎫⎝⎛+︒---π.解:14.解分式方程123482---=-xxx .解:15.已知,如图,点D 在边BC 上,点E 在△ABC 外部,DE 交AC 于F ,若AD =AB ,∠1=∠2=∠3. 求证:BC=DE . 证明:16.已知:0162=-+x x ,求代数式()()()()3312122+-+--+x x x x x 的值.解:17.已知一次函数y kx b =+的图象与直线y =平行且经过点()3,2-,与x 轴、y轴分别交于 A 、 B 两点. (1)求此一次函数的解析式;(2)点C 是坐标轴上一点,若△ABC 是底角为︒30的等腰三角形,求点C 的坐标. 解:18.列方程(组)解应用题:如图是一块长、宽分别为60 m 、50 m 的矩形草坪,草坪中有宽度均为x m 的一横两纵的甬道.(1)用含x 的代数式表示草坪的总面积S ;(2)当甬道总面积为矩形总面积的4.10%时,求甬道的宽. 解:四、解答题(本题共20分,每小题5分)19.如图,梯形纸片ABCD 中,AD //BC ,∠B =30º.折叠纸片使BC 经过点A ,点B 落在点B’处,EF 是折痕,且BE =EF =4,AF ∥CD . (1)求∠BAF 的度数; (2)当梯形的上底AD 多长时,线段DF 恰为该梯形的高? 解:20.以下是根据全国 2011年国民经济和社会发展统计公报中的相关数据,绘制的统计图的一部分. 请根据以上信息,解答下列问题:(产量相关数据精确到1万吨)(1)请补全扇形统计图;(2)通过计算说明全国的粮食产量与上一年相比,增长最多的是 年; (3)2011年早稻的产量为 万吨;(4)2008-2011这三年间,比上一年增长的粮食产量的平均数为多少万吨,若按此平均数增长,请你估计2012年的粮食产量为多少万吨.(结果保留到整数位) 解:21.已知:如图,M 是⊙O 的直径AB 上任意一点,过点M 作AB 的垂线MP ,D 是MPA BD E C B 'F 6%22%%早稻夏粮秋粮2011年各类粮食占全体 粮食的百分比分组统计图的延长线上一点,联结AD 交⊙O 于点C ,且PC PD =. (1)判断直线PC 与⊙O 的位置关系,并证明你的结论; (2)若22tan =D ,3=OA ,过点A 作PC 的平行线AN 交⊙O 于点N .求弦AN 的长.解:22.阅读下面材料:小阳遇到这样一个问题:如图(1),O 为等边△ABC 内部一点,且3:2:1::=OC OB OA ,求AOB ∠的度数.小阳是这样思考的:图(1)中有一个等边三角形,若将图形中一部分绕着等边三角形的某个顶点旋转60°,会得到新的等边三角形,且能达到转移线段的目的.他的作法是:如图(2),把△CO A 绕点A 逆时针旋转60°,使点C 与点B 重合,得到△O AB ',连结O O '. 则△O AO '是等边三角形,故OA O O =',至此,通过旋转将线段OA 、OB 、OC 转移到同一个三角形B O O '中. (1)请你回答:︒=∠AOB . (2)参考小阳思考问题的方法,解决下列问题: 已知:如图(3),四边形ABCD 中,AB=AD ,∠DAB =60°,∠DCB =30°,AC =5,CD =4.求四边形ABCD 的面积. 解:五、解答题(本题满分22分,第23题7分,第24题7分,第25题8分) 23.已知:直线122y x =+分别与 x 轴、y 轴交于点A 、点B ,点P (a ,b )在直线AB 上,点P 关于y 轴的对称点P ′ 在反比例函数xky =图象上.(1) 当a =1时,求反比例函数xky =的解析式;DCBA图⑴ 图⑵ 图⑶OCBA(2) 设直线AB 与线段P'O 的交点为C .当P'C =2CO 时,求b 的值;(3) 过点A 作AD //y 轴交反比例函数图象于点D ,若AD =2b,求△P ’DO 的面积.解:24.在△ABC 中,AC AB =,D 是底边BC 上一点,E 是线段AD 上一点,且∠BAC CED BED ∠=∠=2.(1) 如图1,若∠︒=90BAC ,猜想DB 与DC 的数量关系为 ; (2) 如图2,若∠︒=60BAC ,猜想DB 与DC 的数量关系,并证明你的结论; (3)若∠︒=αBAC ,请直接写出DB 与DC 的数量关系.A B C D E AE B C D图1 图2备用图解:25.已知:抛物线y=-x2+2x+m-2交y轴于点A(0,2m-7).与直线y=2x交于点B、C(B在右、C在左).(1)求抛物线的解析式;∠=∠,(2)设抛物线的顶点为E,在抛物线的对称轴上是否存在一点F,使得BFE CFE 若存在,求出点F的坐标,若不存在,说明理由;(3)射线OC上有两个动点P、Q同时从原点出发,分别以每秒5个单位长度、每秒25个单位长度的速度沿射线OC运动,以PQ为斜边在直线BC的上方作直角三角形PMQ (直角边分别平行于坐标轴),设运动时间为t秒,若△PMQ与抛物线y=-x2+2x+m-2有公共点,求t的取值范围.解:备用图草稿纸石景山区2012初三第二次统一练习数学参考答案阅卷须知:1.一律用红钢笔或红圆珠笔批阅.2.为了阅卷方便,解答题中的推导步骤写得较为详细,考生只要写明主要过程即可.若考生的解法与本解法不同,正确者可参照评分参考给分,解答右端所注分数,表示考生正确做到这一步应得的累加分数.一、选择题(本题共8道小题,每小题4分,共32分)9.3≠x ; 10.()()b a b a ab 33-+; 11.225-225π; 12.10;6. 三、解答题(本题共6道小题,每小题5分,共30分)13.解:()22145cos 3--14.38-⎪⎭⎫⎝⎛+︒-π=4223122+⨯-- ……………………………4分 =322+…………………………………………………5分 14. 123482---=-xxx解:()()123228---=-+x x x x ……………………………1分 ()()()42382--+-=x x x ……………………………3分46822+---=x x x ……………………………4分∴10-=x经检验:10-=x 是原方程的根.………………………5分15.证明:∵∠1=∠2=∠3∴DAE BAC ∠=∠…………………………… 1分 又∵AFE DFC ∠=∠∴E C ∠=∠ …………………………… 2分 在△ABC 和△ADE 中⎪⎩⎪⎨⎧=∠=∠∠=∠AD AB EC DAE BAC (3)分 ∴△ABC ≌△ADE ……………………………………………………… 4分∴BC=DE . ……………………………………………………… 5分16.解:原式222922144x x x x x -++-++= …………………………………2分1062++=x x ………………………………… 3分当0162=-+x x 时,162=+x x ………………………………… 4分 原式11=. …………………………………5分17.解:(1)∵一次函数y kx b =+的图象与直线y =平行且经过点()3,2-∴⎩⎨⎧-=+-=323b k k 解得⎩⎨⎧=-=33b k∴一次函数解析式为33+-=x y …………………………………1分(2)令0=y ,则1=x ;令0=x 则3=y∴()()3,0,0,1B A∵1=OA ,3=OB …………………………2分 ∴2=AB ∴︒=∠30ABO若AC AB =,可求得点C 的坐标为()0,31C 或()3,02-C ………………………4分 若CA CB =如图︒=︒-︒=∠3030603OAC ,3330tan 3=︒=OA OC ∴⎪⎪⎭⎫ ⎝⎛33,03C …………………………………………5分 ∴()0,31C ,()3,02-C ,⎪⎪⎭⎫ ⎝⎛33,03C 18.解:(1)S = 6050⨯-(60 x + 2×50 x -2×x 2 )=3000 + 2x 2-160x .………2分(2)由题意得:-2x 2+160x =60501000104⨯⨯, ………………3分解得 x = 2 或 x = 78. …………………………………4分 又0<x <50,所以x = 2,答:甬道的宽是2米. ……………………………………5分 19. 解:(1)∵BE =EF ∴∠EFB =∠B ,由题意,△EF B '≌△BEF∴∠EFB ’ =∠EFB =∠B=30° ∴△BFA 中,︒=︒-︒-︒-︒=∠90303030180BAF ……………………………………2分 (2)联结DF ,∵AD //BC ,AF ∥CD∴四边形AFCD 是平行四边形 ……………………………………3分 ∴∠C =∠A FB =60°∴CD =AF =3230cos =︒EF ……………………………………4分 若BC DF ⊥,则360cos =︒=CD FC此时3=AD . ……………………………………5分 20.(1)72%;(2)2011;(3)3427; ……………………每空1分,共3分(4)(57121-52871)÷3≈=1417 ………………………………………4分57121+1417=58538. ………………………………………5分21.(1)联结CO , … …………………………………1分∵DM ⊥AB∴∠D+∠A=90° ∵PC PD = ∴∠D=∠PCD ∵OC=OA ∴∠A=∠OCA∴∠OCA+∠PCD=90° ∴PC ⊥OC∴直线PC 是⊙O 的切线 …………………………………2分 (2)过点A 作PC 的平行线AN 交⊙O 于点N . ∴∠NAC=∠PCD=∠D, AN ⊥OC,设垂足是Q ∴Rt △CQA 中 ∴22tanD QAC tan ==∠ ∴设CQ=x ,AQ=x 2 ∴OQ=x -3∵222AQ OQ OA +=∴222)3()2(3x x -+=解得2=x …………………………………4分 ∴22=AQ∴242==AQ AN …………………………………5分22. 解:(1)150° ………………………1分(2) 如图,将△ADC 绕点A 顺时针旋转60°,使点D 与点B 重合,………2分 得到△O AB ',连结O C '. 则△O AC '是等边三角形,可知4,5'===='DC BO CA O C ,ADC ABO ∠=∠'……………………3分在四边形ABCD 中,︒=∠-∠-︒=∠+∠270360DCB DAB ABC ADC ,)(360''ABO ABC BC O ∠+∠-︒=∠∴︒=︒-︒=90270360. ……………………4分34522=-=∴BC 6432543215432''-=⨯⨯-⨯=-=∴∆∆BCO ACO ABCD S S S 四边形.………………5分23.(1)∵点P 在直线AB 上, 1=a 时,2121+⨯=b =25………………………1分 ∴)25,1(P ,∴)25,1(-'P ,代入x k y = 得25-=k ,∴x y 25-= …………………………2分 (2)联结'PP∵点P 和点P '关于y 轴对称 ∴'PP ∥x 轴 ∴OCA C PP ∽△△'O 'DCBA∴'PP ∶=OA C P '∶CO …………3分 ∵CO C P 2'= ∴'PP =OA 2∵221+=x y 与x 轴交于点A 、点B ∴)0,4(-A ,)2,0(B 可得4=OA∴8'=PP ∴a =4∴42421=+⨯=b ………………………5分 (3)当点P 在第一象限时:∵点P 和点P '关于y 轴对称且),(b a P∴),('b a P -∵y AD ∥∴)24-(b D , ∵D P 、点点'在xk y =上 ∴b a b⨯-=⨯-24 ∴2=a∴32221=+⨯=b ∵),23,4(-D )3,2('-P∴29'=DO P S △ …………6分当点P 在第二象限时:)24-(bD -,∴b a b⨯-=-⨯-24∴2-=a∴12)2(21=+-⨯=b∵),21,4(--D )1,2('P∴23'=DO P S △ …………7分24.解:(1)DC DB 2= (2) DC DB 2=证明:过点C 作CF ∥BE 交AD 的延长线于点F , 在 AD 上取点G 使得CF CG = ∴76∠=∠=∠F7654321AEBCG D∵︒=∠=∠=∠602BAC CED BED ∴︒=∠=∠606F ,︒=∠30CED ∴41205∠=︒=∠∵︒=∠+∠=∠=∠+∠6021713 ∴23∠=∠ ∵AC AB = ∴△ABE ≌△CAG ∴AG BE AE CG ==, ∵︒=∠-∠=∠306CED GCE ∴EG CG =∴BE AG CG CF 2121=== 由△DBE ∽△DCF 得2==FCBEDC BD∴DC DB 2=(3) 结论:DC DB 2=.25.解:(1)点A (0,2m -7)代入y =-x 2+2x +m -2,得m =5∴抛物线的解析式为y =-x 2+2x +3 ………………………2分(2)由⎩⎨⎧=++-=x y x x y 2322得⎪⎩⎪⎨⎧==323y x ,⎪⎩⎪⎨⎧=-=323y x∴B (32,3),C (32,3--)B (32,3)关于抛物线对称轴1=x 的对称点为)32,32('-B可得直线C B '的解析式为32632-+=x y , 由⎩⎨⎧=-+=132632y x y ,可得⎩⎨⎧==61y x∴)6,1(F ………………………5分(3)当)2,2(t t M --在抛物线上时,可得03242=-+t t ,4131±-=t , 当)2,(t t P --在抛物线上时,可得32=t ,3±=t ,舍去负值,所以t 的取值范围是34131≤≤+-t .………………8分顺义区2012届初三第二次统一练习F图(2)F E B AO 数学试卷一、选择题(本题共32分,每小题4分) 下面各题均有四个选项,其中只有一个..是符合题意的. 1.9的平方根是A .3B .-3C .3±D .132.据人民网报道,“十一五”我国铁路营业里程达9.1万公里.请把9.1万用科学记数法表示应为A .59.110⨯B .49.110⨯C .49110⨯D . 39.110⨯ 3.如图,下列选项中不是..正六棱柱三视图的是( )A B C D4.把2416a b b -分解因式,结果正确的是A .2(24)b a - B . (22)(22)b a a +-C .24(2)b a -D .4(2)(2)b a a +-5.北京是严重缺水的城市,市政府号召居民节约用水,为了解居民用水情况,小敏在某小区随机抽查了10户家庭的5月份用水量,结果如下(单位:立方米):5,6,6,2,5,6,7,10,7,6,则关于这10户家庭的5月份用水量,下列说法错误的是 A.众数是6 B.极差是8C.平均数是6D.方差是46.如图,小华同学设计了一个圆直径的测量器,把标有刻度的尺子OA 、OB 在O 点钉在一起,并使它们保持互相垂直.在测直径时,把O 点靠在圆周上,读得刻度OE=4个单位, OF=3个单位,则圆的直径为A .7个单位B .6个单位C .5个单位D .4个单位7.从1,-2, 3,-4四个数中,随机抽取两个数相乘,积是正数的概率是A .14 B .13 C .12D .238.将一正方形纸片按下列顺序折叠,然后将最后折叠的纸片沿虚线剪去右上方的小三角形.将纸片展开,得到的图形是DC BA二、填空题(本题共16分,每小题4分) 9.若分式261x x --的值为0,则x 的值等于 . 10.如图,□ABCD 中,E 是边BC 上一点,AE 交BD 于F ,若2BE =,3EC =,则BFDF的值为 . 11.将方程2410x x --=化为2()x m n -=的形式,其中m ,n 是常数,则m n += . 12.如图,△ABC 中,AB =AC=2 ,若P 为BC的中点,则2AP BP PC +的值为 ; 若BC 边上有100个不同的点1P ,2P ,…,100P , 记i i i i m AP BP PC =+(1i =,2,…,100), 则12m m ++…100m +的值为 .三、解答题(本题共30分,每小题5分)13.计算:101()2sin 45(34---+︒-.14.解不等式2(2)x +≤4(1)6x -+,并把它的解集在数轴上表示出来. 15.已知:如图,E ,F 在BC 上,且AE ∥DF ,AB ∥CD ,AB =CD .求证:BF = CE .F EDCBAP iPCBAFEDCBA16.解分式方程:32322x x x -=+-.17.已知2x -3=0,求代数式5(2)(2)(4)1x x x x ---++的值.18.某市实施“限塑令”后,2008年大约减少塑料消耗约4万吨.调查分析结果显示,从2008年开始,五年内该市因实施“限塑令”而减少的塑料消耗量y (万吨)随着时间x (年)逐年成直线上升,y 与x 之间的关系如图所示.(1)求y 与x 之间的关系式;(2)请你估计,该市2011年因实施“限塑令”而减少的塑料消耗量为多少?四、解答题(本题共20分,每小题5分) 19.如图,在矩形ABCD 中,E 是边CB 延长线上的点,且EB=AB ,DE 与AB 相交于点F ,AD=2,CD=1,求AE 及DF 的长.20.已知:如图,P 是⊙O 外一点,PA 切⊙O 于点A ,AB 是⊙O 的直径,BC ∥OP 交⊙O 于点C .(1)判断直线PC 与⊙O 的位置关系,并证明你的结论; (2)若BC=2,11sin23APC ∠=,求PC 的长及点C 到PA 的距离.21.阅读对人成长的影响是巨大的,一本好书往往能改变人的一生,每年的4月23日被联合国教科文组织确定为“世界读书日”.某校倡导学生读书,下面的表格是学生阅读课外书籍情况统计表,图1是该校初中三个年级学生人数分布的扇形统计图,其中八年级FEDC B AOCBAP学生人数为204人,请你根据图表中提供的信息,解答下列问题:(1)求该校八年级学生的人数占全校学生总人数的百分比; (2)求表中a ,b 的值;(3)求该校学生平均每人读多少本课外书?22.阅读下列材料:问题:如图1,P 为正方形ABCD 内一点,且PA ∶PB ∶PC =1∶2∶3,求∠APB 的度数.小娜同学的想法是:不妨设PA=1, PB=2,PC=3,设法把PA 、PB 、PC 相对集中,于是他将△BCP 绕点B 顺时针旋转90°得到△BAE (如图2),然后连结PE ,问题得以解决.请你回答:图2中∠APB 的度数为 . 请你参考小娜同学的思路,解决下列问题:如图3,P 是等边三角形ABC 内一点,已知∠APB=115°,∠BPC=125°.(1)在图3中画出并指明以PA 、PB 、PC 的长度为三边长的一个三角形(保留画图痕迹);(2)求出以PA 、PB 、PC 的长度为三边长的三角形的各内角的度数分别等于 .EDDPPPCCCBBBAAA图1 图2 图3五、解答题(本题共22分,第23题7分,第24题7分,第25题8分)23.如图,直线AB 经过第一象限,分别与x 轴、y 轴交于A 、B 两点,P为线段AB 上任意一点(不与A 、B 重合),过点P 分别向x 轴、y 轴作垂线,垂足分别为C 、D .设OC=x ,四边形OCPD 的面积为S .PyxB A DCO(1)若已知A (4,0),B (0,6),求S 与x 之间的函数关系式; (2)若已知A (a ,0),B (0,b ),且当x=34时,S 有最大值98,求直线AB 的解析式; (3)在(2)的条件下,在直线AB 上有一点M ,且点M 到x 轴、y 轴的距离相等,点N在过M 点的反比例函数图象上,且△OAN 是直角三角形,求点N 的坐标. 24.已知:如图,D 为线段AB 上一点(不与点A 、B 重合),CD ⊥AB ,且CD=AB ,AE ⊥AB ,BF ⊥AB ,且AE=BD ,BF=AD .(1)如图1,当点D 恰是AB 的中点时,请你猜想并证明∠ACE 与∠BCF 的数量关系; (2)如图2,当点D 不是AB 的中点时,你在(1)中所得的结论是否发生变化,写出你的猜想并证明;(3)若∠ACB=α,直接写出∠ECF 的度数(用含α的式子表示).图1 图225.如图,在平面直角坐标系xOy 中,二次函数212y x bx c =++的图象经过点A (-3,6),并与x 轴交于点B (-1,0)和点C ,顶点为P .(1)求二次函数的解析式;(2)设D 为线段OC 上的一点,若DPC BAC ∠=∠,求点D 的坐标;FED CBAFE D C B A(3)在(2)的条件下,若点M 在抛物线212y x bx c =++上,点N 在y 轴上,要使以M 、N 、B 、D 为顶点的四边形是平行四边形,这样的点M 、N 是否存在,若存在,求出所有满足条件的点M 的坐标;若不存在,说明理由.顺义区2012届初三第二次统一练习 数学学科参考答案及评分细则9.3; 10.25; 11.7; 12.4,400.三、解答题(本题共30分,每小题5分)13.解:101()2sin 45(34---+︒--4212=-⨯- …………………………………………………… 4分3=-…………………………………………………………………… 5分14.解:去括号,得 24x +≤446x -+.…………………………………………… 1分移项,得 24x x -≤464-+-.…………………………………………… 2分 合并,得 2x -≤-2 . ………………………………………… 3分 系数化为1,得 x ≥1 . ……………………………………………… 4分 不等式的解集在数轴上表示如下:……………………………………… 5分15.证明:∵AE ∥DF ,∴∠1=∠2. ………………………… 1分∵ AB ∥CD , ∴ ∠B =∠C .………………………… 2分 在△ABE 和 △DCF 中, 12,,,B C AB DC ∠=∠⎧⎪∠=∠⎨⎪=⎩∴ △ABE ≌△DCF .…………………………………………………… 4分∴ BE =CF .∴BE -EF =CF -EF .即BF =CE .……………………………………………………………… 5分16.解:去分母,得 3(2)2(2)3(2)(2)x x x x x --+=+-.…………………… 1分去括号,得 223624312x x x x ---=-. ………………………… 2分 整理,得 88x -=-.…………………………………………………… 3分解得 1x =. ……………………………………………………………… 4分经检验,1x =是原方程的解.……………………………………………… 5分 ∴ 原方程的解是1x =.17.解:5(2)(2)(4)1x x x x ---++ 22510(28)1x x x x =--+-+ ……………………………………………… 2分 22510281x x x x =---++24129x x =-+ ………………………………………………………………… 3分 (23)(23)x x =+- …………………………………………………………… 4分 当2x -3=0时,原式(23)(23)0x x =+-=.………………………………… 5分18.解:(1)设y 与x 之间的关系式为y=kx+b .……………………………………… 1分由题意,得20084,2010 6.k b k b +=⎧⎨+=⎩ 解得1,2004.k b =⎧⎨=-⎩…………………… 3分 21F EDC BA∴y 与x 之间的关系式为y =x -2004(2008≤x ≤2012). …………… 4分(2)当x =2012时,y =2012-2004=8.∴该市2012年因“限塑令”而减少的塑料消耗量约为8万吨.……… 5分19.解:∵四边形ABCD 是矩形,且AD=2,CD=1,∴BC=AD=2,AB=CD=1,∠ABC =∠C= 90°,AB ∥DC .∴EB=AB=1. ………………………………………………………………… 1分 在Rt △ABE中,AE =2分 在Rt △DCE 中,DE == 3分∵AB ∥DC , ∴12EF EB DF BC ==. …………………………………………………………… 4分设EF x =,则2DF x =. ∵EFDF DE +=,∴2x x +=.∴3x =. ∴2DF x == 5分 20.解:(1)直线PC 与⊙O 相切.证明:连结OC , ∵BC ∥OP ,∴∠1 =∠2,∠3=∠4. ∵OB=OC ,∴∠1=∠3.∴∠2=∠4.又∵OC=OA ,OP=OP ,∴△POC ≌△POA . ……………………………………………… 1分∴∠PCO =∠PAO .∵PA 切⊙O 于点A ,∴∠PAO =90°.∴∠PCO =90°. ∴PC 与⊙O 相切. ……………………………………………… 2分(2)解:∵△POC ≌△POA ,∴∠5=∠6=12APC ∠. ∴11sin 5sin 23APC ∠=∠=. ∵∠PCO =90°,∴∠2+∠5=90°. ∴1cos 2sin 53∠=∠=. ∵∠3=∠1 =∠2,∴1cos 33∠=. 4321O C B A P图3M P C B A D 85674321O C B A P 连结AC ,∵AB 是⊙O 的直径,∴∠ACB =90°. ∴261cos 33BC AB ===∠.………………………………………… 3分 ∴OA=OB=OC=3,AC ==.∴在Rt △POC 中,9sin 5OC OP ==∠.∴PC ==.…………………………………… 4分 过点C 作CD ⊥PA 于D ,∵∠ACB =∠PAO =90°,∴∠3+∠7 =90°,∠7+∠8 =90°.∴∠3=∠8. ∴1cos 8cos 33∠=∠=. 在Rt △CAD中,1cos 83AD AC =∠==∴163CD ==.……………………………………… 5分 21.解:(1)∵1-28%-38%=34%.∴该校八年级学生的人数占全校学生总人数的百分比为34%.……… 1分(2)∵1440.062400÷=,∴24000.25600a =⨯=, ……………………………………………… 2分 84024000.35b =÷=. ……………………………………………… 3分(3)∵八年级学生人数为204人,占全校学生总人数的百分比为34%,∴全校学生总人数为20434%600÷=. ……………………………… 4分 ∴该校学生平均每人读课外书:24006004÷=.答:该校学生平均每人读4本课外书. ………………………………… 5分22.解:图2中∠APB 的度数为 135° .……………… 1分(1)如图3,以PA 、PB 、PC 的长度为三边长的一个三角形是 △APM .(含画图)………… 2分(2)以PA 、PB 、PC 的长度为三边长的三角形的各内角的度数分别等于60°、65°、55° .……………… 5分 23.解:(1)设直线AB 的解析式为y kx b =+,由A (4,0),B (0,6),得40,6.k b b +=⎧⎨=⎩ 解得3,26.k b ⎧=-⎪⎨⎪=⎩ ∴直线AB 的解析式为362y x =-+.……………………………… 1分 ∵OC=x ,∴3(,6)2P x x -+. ∴3(6)2S x x =-+. 即2362S x x =-+(0< x <4). …………………………………… 2分 (2)设直线AB 的解析式为y mx n =+,∵OC=x ,∴(,)P x mx n +.∴2S mx nx =+.∵当x=34时,S 有最大值98, ∴3,24939.1648n m m n ⎧-=⎪⎪⎨⎪+=⎪⎩ 解得2,3.m n =-⎧⎨=⎩∴直线AB 的解析式为23y x =-+.………………………………… 3分∴A (32,0),B (0,3). 即32a =,3b =.……………………………………………………… 5分 (3)设点M 的坐标为(M x ,M y ), 由点M 在(2)中的直线AB 上,∴23M M y x =-+.∵点M 到x 轴、y 轴的距离相等,∴M M x y =或M M x y =-.当M M x y =时,M 点的坐标为(1,1).过M 点的反比例函数的解析式为1y x =. ∵点N 在1y x=的图象上,OA 在x 轴上,且△OAN 是直角三角形, ∴点N 的坐标为32,23⎛⎫⎪⎝⎭.……………………………………………… 6分 当M M x y =-时,M 点的坐标为(3,-3),B DC F E A 过M 点的反比例函数的解析式为9y x =-. ∵点N 在9y x=-的图象上,OA 在x 轴上,且△OAN 是直角三角形, ∴点N 的坐标为3,62⎛⎫- ⎪⎝⎭.……………………………………………… 7分 综上,点N 的坐标为32,23⎛⎫⎪⎝⎭或3,62⎛⎫- ⎪⎝⎭. 24.解:(1)猜想:∠ACE=∠BCF .证明:∵D 是AB 中点,∴AD=BD ,又∵AE=BD ,BF=AD ,∴AE=BF .∵CD ⊥AB ,AD=BD ,∴CA=CB .∴∠1 =∠2. ∵AE ⊥AB ,BF ⊥AB ,∴∠3 =∠4=90°.∴∠1+∠3 =∠2+∠4.即∠CAE=∠CBF .∴△CAE ≌△CBF .∴∠ACE=∠BCF .……………………………………………… 2分(2)∠ACE=∠BCF 仍然成立.证明:连结BE 、AF .∵CD ⊥AB ,AE ⊥AB ,∴∠CDB=∠BAE=90°.又∵BD = AE ,CD = AB ,△CDB ≌△BAE .……………… 3分 ∴CB=BE ,∠BCD=∠EBA .在Rt △CDB 中,∵∠CDB =90°, ∴∠BCD+∠CBD =90°.∴∠EBA+∠CBD =90°. 即∠CBE =90°.∴△BCE 是等腰直角三角形.∴∠BCE=45°. ……………………………………………… 4分 同理可证:△ACF 是等腰直角三角形.∴∠ACF=45°. ……………………………………………… 5分 ∴∠ACF=∠BCE .∴∠ACF -∠ECF =∠BCE -∠ECF .即∠ACE=∠BCF .……………………………………………… 6分(3)∠ECF 的度数为90°-α.……………………………………………… 7分4321F E D C B A25.解:(1)将点A (-3,6),B (-1,0)代入212y x bx c =++中,得 936,210.2b c b c ⎧-+=⎪⎪⎨⎪-+=⎪⎩ 解得 1,3.2b c =-⎧⎪⎨=-⎪⎩ ∴二次函数的解析式为21322y x x =--.…………………………… 2分 (2)令0y =,得213022x x --=,解得 11x =-,23x =. ∴点C 的坐标为(3,0). ∵22131(1)2222y x x x =--=--, ∴顶点P 的坐标为(1,-2).…………………………………………… 3分 过点A 作AE ⊥x 轴,过点P 作PF ⊥x 轴,垂足分别为E ,F .易得 45ACB PCD ∠=∠=︒.AC ==,PC ==.又DPC BAC ∠=∠,∴△ACB ∽△PCD .…………………… 4分 ∴BC AC CD PC=. ∵3(1)4BC =--=, ∴43BC PC CD AC ==. ∴45333OD OC CD =-=-=. ∴点D 的坐标为5(,0)3.……………………………………………… 5分 (3)当BD 为一边时,由于83BD =, ∴点M 的坐标为885(,)318-或811(,)318-. ………………………… 7分 当BD 为对角线时,点M 的坐标为235(,)318-. …………………… 8分大兴区2011~2012学年度第二学期模拟试卷(二)初三数学参考答案及评分标准第Ⅰ卷 (机读卷 共32分)一、选择题(共8道小题,每小题4分,共32分)第Ⅱ卷 (非机读卷 共88分)二、填空题(共4道小题,每小题4分,共16分)三、解答题(本题共30分,每小题5分)13.解:原式=412222441-⨯+--……………………4分 =2421-………………………………5分 14.解:方程的两边同乘)4(+x x ,得x x 54=+……………………2分解得:1=x ……………………3分检验:把1=x 代入)4(+x x 05≠= ……………………4分∴原方程的解为:1=x . ……………………5分15.证明:(1)BE CF =,∴BE EF +CF EF =+,BF CE =即.……………………………1分∠ABC=90°,DC ⊥BC∴∠ABC=∠DCE=90°………………3分在ABF △和DCE △中,⎪⎩⎪⎨⎧=∠=∠=CE BF DCE ABC DC ABABF DCE ∴△≌△.…………………………5分16.解:原式=2244(441)3x x x x x ---++………………………………………………2分=22444413x x x x x --+-+ (3)分=31x - (4)分 当13x =-时,原式=312x -=-.………………5分 17.解:(1)∵ 点A (1,)n -在一次函数2y x =-的图象上,∴ 2(1)2n =-⨯-=.∴ 点A 的坐标为12-(,).………………1分 ∵ 点A 在反比例函数k y x=的图象上, ∴ 2k =-. ∴反比例函数的解析式为2y x =-. ………………3分 (2)点P 的坐标为(2,0)(0,4)-或.………………5分18.解:设第一批购进水果x 千克,则第二批购进水果2.5x 千克,…………………………1分依据题意得:,12005.2550=-xx ……………………………………3分 解得x=20,经检验x=20是原方程的解,且符合题意……………………………4分答:第一批购进水果20千克;…………………………5分四、解答题(本题共20分,每小题5分)19.解:过A 作BC AD ⊥交BC 于D ,则︒=∠30BAD ,︒=∠45CAD∵BC AD ⊥∴︒=∠90ADB ,︒=∠90ADC∵︒=∠30BAD ,︒=∠90ADB ,6001060=⨯=AB ∴3006002121=⨯==AB BD ………………………………………………………2分 DAB AB AD ∠=cos ︒⨯=30cos 6003300=……………………………………3分∵︒=∠90ADC ,︒=∠45CAD ,3300=AD∴3300==AD CD …………………………………………………………………4分∵BD CD BC += ∴3003300+=BC …………………………………………………………………5分 答:甲乙两人之间的距离是)3003300(+米20.解:(1)50.9;…………………………….…………………………………………….2分(2)①……………………………………………………………………………….5分21. 解:(1)连接OD .∵OA=OD∴∠OAD =∠ODA .∵AD 平分∠BAC∴∠OAD =∠CAD ,∴∠ODA =∠CAD .∴OD ∥AC .………………………………………………1分∵DE ⊥AC ,∴∠DEA =∠FDO=90°∴EF ⊥OD .∴EF 是⊙O 的切线. ……………………………………2分(2)设BF 为x .∵OD ∥AE ,∴△ODF ∽△AEF . ……………………………………3分∴OD OF AE AF =,即2234x x +=+. 解得 x =2∴BF 的长为2. ……………………………………5分 22.(1)分割正确,且画出的相应图形正确……………………………………………………2分(2)证明:在辅助图中,连接OI 、NI .∵ON 是所作半圆的直径,∴∠OIN =90°.∵MI ⊥ON ,∴∠OMI =∠IMN =90°且∠OIM =∠INM .∴△OIM ∽△INM .∴OM IM =IM NM .即IM 2=OM ·NM .…………………………………………………3分 ∵OM=AB ,MN=BC∴IM 2 = AB ·BC∵AF=IM∴AF 2=AB ·BC=AB ·AD .∵四边形ABCD 是矩形,BE ⊥AF ,∴DC ∥AB ,∠ADF =∠BEA =90°.∴∠DFA =∠EAB .∴△DFA ∽△EAB .∴AD BE =AF AB .即AF ·BE =AB ·AD=AF 2.∴AF =BE .………………………………………………………………………4分∵AF=BH∴BH =BE .由操作方法知BE ∥GH ,BE =GH .∴四边形EBHG 是平行四边形.∵∠GEB =90°,∴四边形EBHG 是正方形.……………………………………………………5分 图⑤ 图⑥ 图⑦图⑧ 图⑨ 图① 图② 图③ 图④。
北京市2012年中考数学二模代数几何综合题分类汇编整理 北京市二十中学 王云松2012-6-7代几综合题,往往是在二次函数背景下的对动点、动直线的位置及数量关系以及常见几何图形的存在性的研究,对学生的思维水平提出了更高的要求,要求学生具有较强的运算能力、作图能力、方程思想、数形结合思想、分类讨论思想等综合能力。
其掌握程度的高低直接决定学生能否达优。
【海淀】24. 如图, 在平面直角坐标系xOy 中,抛物线x x my 222-=与x 轴负半轴交于点A , 顶点为B , 且对称轴与x 轴交于点C .(1)求点B 的坐标 (用含m 的代数式表示);(2)D 为BO 中点,直线AD 交y 轴于E ,若点E 的坐标为(0, 2), 求抛物线的解析式; (3)在(2)的条件下,点M 在直线BO 上,且使得△AMC 的周长最小,P 在抛物线上,Q 在直线 BC 上,若以A 、M 、P 、Q 为顶点的四边形是平行四边形,求点P 的坐 标.备用图【参考答案】24.解:(1)∵22222221212112()()4422y x x x mx m m x m m m m m m =-=-+-⋅=--,∴抛物线的顶点B 的坐标为11(,)22m m -. ……………………………1分(2)令2220x x m-=,解得10x =, 2x m =. ∵ 抛物线x x my 222-=与x 轴负半轴交于点A ,∴ A (m , 0), 且m <0. …………………………………………………2分过点D 作DF ⊥x 轴于F .由 D 为BO 中点,DF //BC , 可得CF =FO =1.2CO∴ DF =1.2BC由抛物线的对称性得 AC = OC . ∴ AF : AO =3 : 4. ∵ DF //EO , ∴ △AFD ∽△AOE . ∴.FD AFOE AO= 由E (0, 2),B 11(,)22m m -,得OE =2, DF =14m -.∴134.24m-=∴ m = -6.∴ 抛物线的解析式为2123y x x =--. ………………………………………3分(3)依题意,得A (-6,0)、B (-3, 3)、C (-3, 0).可得直线OB 的解析式为x y -=,直线BC 为3x =-. 作点C 关于直线BO 的对称点C '(0,3),连接AC '交BO 于M ,则M 即为所求. 由A (-6,0),C ' (0, 3),可得 直线AC '的解析式为321+=x y . 由13,2y x y x⎧=+⎪⎨⎪=-⎩ 解得2,2.x y =-⎧⎨=⎩ ∴ 点M 的坐标为(-2, 2). ……………4分由点P 在抛物线2123y x x =--上,设P (t ,213t - (ⅰ)当AM 为所求平行四边形的一边时. 如右图,过M 作MG ⊥ x 轴于G , 过P 1作P1H ⊥ BC 于H , 则x G = x M =-2, x H = x B =-3.由四边形AM P 1Q 1为平行四边形, 可证△AMG ≌△P 1Q 1H . 可得P 1H = AG =4. ∴ t -(-3)=4. ∴ t =1.∴17(1,)3P -. ……………………5分 如右图,同 方法可得 P 2H=AG =4. ∴ -3- t =4. ∴ t =-7.∴27(7,)3P --. ……………………6分 (ⅱ)当AM 为所求平行四边形的对角线时, 如右图,过M 作MH ⊥BC 于H , 过P 3作P 3G ⊥ x 轴于G , 则x H = x B =-3,x G =3P x =t . 由四边形AP 3MQ 3为平行四边形, 可证△A P 3G ≌△MQ 3H . 可得AG = MH =1. ∴ t -(-6)=1. ∴ t =-5. ∴35(5,)3P -. ……………………………………………………7分 综上,点P 的坐标为17(1,)3P -、27(7,)3P --、35(5,)3P-.[注]在确定平行四边形时,如果知一边的两点坐标,可以用平移的方法,得到其对边的点的坐标,可使解答简捷。
北京市西城区2012年初三二模试卷2012. 6一、选择题(本题共32分,每小题4分)下面各题均有四个选项,其中只有一个..是符合题意的. 1.8-的倒数是B.8-C.18D.18-2.在2012年4月25日至5月2日举办的2012(第十二届)北京国际汽车展览会上,约有800 000名观众到场参观,盛况空前.800 000用科学记数法表示应为 A.3810⨯B.48010⨯C.5810⨯D.60.810⨯3.若⊙1O 与⊙2O 内切,它们的半径分别为3和8,则以下关于这两圆的圆心距12O O 的结论正确的是 A.12O O =5 B.12O O =11 C.12O O >11 D. 5<12O O <11 4.如图,在△ABC 中,D 为AB 边上一点,DE ∥BC 交AC 于点E , 若35AD DB =,AE =6,则EC 的长为 A . 8 B. 10 C. 12 D. 165.甲、乙、丙、丁四人进行射击测试,每人10次射击成绩的平均数都是8.9环,方差分别是20.61S =甲,20.52S =乙,20.53S =丙,20.42S =丁,则射击成绩波动最小的是A. 甲B. 乙C. 丙D. 丁 6.如图,AB 为⊙O 的弦,半径OC ⊥AB 于点D ,若OB 长为10,3cos 5BOD ∠=, 则AB 的长是A . 20 B. 16 C. 12 D. 87.若某个多边形的内角和是外角和的3倍,则这个多边形的边数为 A . 4 B. 6 C. 8 D. 108.如图,在矩形ABCD 中,3=AB ,BC=1. 现将矩形ABCD绕点C 顺时针旋转90°得到矩形A B CD ''',则AD 边扫过的面积(阴影部分)为A . 21π B. 31π C.41π D. 51π二、填空题(本题共16分,每小题4分)9. 将代数式2610x x -+化为2()x m n -+的形式(其中m ,n 为常数),结果为 . 10.若菱形ABCD 的周长为8,∠BAD =60°,则BD = .11.如图,把一个半径为12cm 的圆形硬纸片等分成三个扇形,用其中一个扇形制作成一个圆锥形纸筒的侧面(衔接处无缝隙且不重叠),则圆锥底面半径等于 cm . 12.如图,在平面直角坐标系xOy 中,点1A ,2A ,3A ,…都在y 轴上,对应的纵坐标分别为1,2,3,….直线1l ,2l ,3l ,…分别经过点1A ,2A ,3A ,…,且都平行于x轴.以点O 为圆心,半径为2的圆与直线1l 在第一象限 交于点1B ,以点O 为圆心,半径为3的圆与直线2l 在第 一象限交于点2B ,…,依此规律得到一系列点n B (n 为正整数),则点1B 的坐标为 ,点n B 的坐标为 . 三、解答题(本题共30分,每小题5分) 13.计算:101()(π3)6cos4585---+︒-.14.已知2240x x +-=,求代数式22(2)(6)3x x x x ----的值.15.如图,点F ,G 分别在△ADE 的AD ,DE 边上,C ,B 依次为GF 延长线上两点,AB=AD ,∠BAF =∠CAE ,∠B=∠D . (1)求证:BC=DE ;(2)若∠B=35°,∠AFB =78°,直接写出∠DGB 的度数.16.已知关于x 的一元二次方程 (m +1)x 2 + 2mx + m ? 3 = 0 有两个不相等的实数根. (1)求m 的取值范围;(2)当m 取满足条件的最小奇数时,求方程的根. 17. 如图,在平行四边形ABCD 中,点E ,F 分别是 AB ,CD 的中点.(1)求证:四边形AEFD 是平行四边形; (2)若∠A =60°,AB =2AD =4,求BD 的长.18. 吸烟有害健康!你知道吗,即使被动吸烟也大大危害健康.为配合“禁烟”行动,某校组织同学们在某社区开展了“你支持哪种戒烟方式”的问卷调查,征求市民的意见,并将调查结果整理后制成了如下两个统计图:(图中信息不完整) 请根据以上信息回答下面问题: (1) 同学们一共随机调查了 人;(2) 如果在该社区随机咨询一位市民,那么该市民支持“强制戒烟”方式的概率是 ; (3) 如果该社区有5 000人,估计该社区支持“警示戒烟”方式的市民约有 人. 四、解答题(本题共20分,每小题5分)19.如图,某天然气公司的主输气管道途经A 小区,继续沿 A小区的北偏东60?方向往前铺设,测绘员在A 处测得另一个需要安装天然气的M 小区位于北偏东30?方向,测绘员从A 处出发,沿主输气管道步行2000米到达C 处,此时测得M 小区位于北偏西60?方向.现要在主输气管道AC 上选择一个支管道连接点N ,使从N 处到M 小区铺设的管道最短. (1)问:MN 与AC 满足什么位置关系时,从N 到M 小区 铺设的管道最短?(2)求∠AMC 的度数和AN 的长.20.如图,在平面直角坐标系xOy 中,直线483y x =-+与x 轴,y 轴分别交于点A ,点B ,点D 在y 轴的负半轴上,若将△DAB 沿直线AD 折叠,点B 恰好落在x 轴正 半轴上的点C 处.(1)求AB 的长和点C 的坐标; (2)求直线CD 的解析式.21.如图,BC 是⊙O 的直径,A 是⊙O 上一点,过点C 作⊙O 的切线,交BA 的延长线于点D ,取CD的中点E ,AE 的延长线与BC 的延长线交于点P . (1)求证:AP 是⊙O 的切线;(2)若OC =CP ,AB =33,求CD 的长. 22. 阅读下列材料小华在学习中发现如下结论:如图1,点A ,A 1,A 2在直线l 上,当直线l ∥BC 时,BC A BC A ABC S S S 21∆∆∆==.请你参考小华的学习经验画图(保留画图痕迹):(1)如图2,已知△ABC ,画出一个..等腰△DBC ,使其面积与△ABC 面积相等; (2)如图3,已知△ABC ,画出两个..Rt △DBC ,使其面积与△ABC 面积相等(要求:所画的两个三角形不全等...); (3)如图4,已知等腰△ABC 中,AB=AC ,画出一个..四边形ABDE ,使其面积与△ABC 面积相等,且一组对边DE=AB ,另一组对边BD ≠AE ,对角∠E =∠B .图2 图3图4 五、解答题(本题共22分,第23题7分,第24题7分,第25题8分)23. 在平面直角坐标系xOy 中,A 为第一象限内的双曲线1k y x=(10k >)上一点,点A 的横坐标为1,过点A 作平行于 y 轴的直线,与x 轴交于点B ,与双曲线2ky x=(20k <)交于点C . x 轴上一点(,0)D m 位于直线AC 右侧,AD 的中点为E .(1)当m=4时,求△ACD 的面积(用含1k ,2k 的代数式表示);(2)若点E 恰好在双曲线1k y x=(10k >)上,求m 的值; (3)设线段EB 的延长线与y 轴的负半轴交于点F ,当图1点D 的坐标为(2,0)D 时,若△BDF 的面积为1, 且CF ∥AD ,求1k 的值,并直接写出线段CF 的长.24.如图,在Rt △ABC 中,∠C =90°,AC=6,BC =8.动点P 从点A 开始沿折线AC -CB -BA 运动,点P 在AC ,CB ,BA 边上运动的速度分别为每秒3,4,5 个单位.直线l 从与AC 重合的位置开始,以每秒43个单位的速度沿CB 方向平行移动,即移动过程中 保持l ∥AC ,且分别与CB ,AB 边交于E ,F 两点,点P 与直线l 同时出发,设运动的 时间为t 秒,当点P 第一次回到点A 时,点P 和直线l 同时停止运动.(1)当t = 5秒时,点P 走过的路径长为 ;当t = 秒时,点P 与点E 重合;(2)当点P 在AC 边上运动时,将△PEF 绕点E 逆时针旋转,使得点P 的对应点M 落在EF 上,点F的对应点记为点N ,当EN ⊥AB 时,求t 的值;(3)当点P 在折线AC -CB -BA 上运动时,作点P 关于直线EF 的对称点,记为点Q .在点P 与直线l 运动的过程中,若形成的四边形PEQF 为菱形,请直接写出t 的值. 25.在平面直角坐标系xOy 中,抛物线21124y x =+的顶点为M ,直线2y x =,点()0P n ,为x 轴上的一个动点,过点P 作x 轴的垂线分别交抛物线21124y x =+和直线2y x =于点A ,点B .⑴直接写出A ,B 两点的坐标(用含n 的代数式表示);⑵设线段AB 的长为d ,求d 关于n 的函数关系式及d 的最小值,并直接写出此时线段OB 与线段PM 的位置关系和数量关系;(3)已知二次函数2y ax bx c =++(a ,b ,c 为整数且0a ≠),对一切实数x 恒有x ≤y ≤2124x +,求a ,b ,c 的值.北京市西城区2012年初三二模试卷数学答案及评分标准 2012. 6题号 1 2 3 4 5 6 7 8 答案DCABDBCC题号 910 11 12 答案24三、解答题(本题共30分,每小题5分)13.解:原式=251622-+⨯-…………………………………………………………4分 =42+.…………………………………………………………………… 5分14.解:原式=22(44)(6)3x x x x x -+---=32324463x x x x x -+-+-=2243x x +-.………………………..….….….….….…………………… 3分∵ 2240x x +-=,∴ 224x x +=. ………………………………………………………………… 4分∴ 原式=22(2)35x x +-=. ….……………………………………………………5分15.(1)证明:如图1.∵ ∠BAF =∠CAE ,∴ BAF CAF CAE CAF ∠-∠=∠-∠.∴ BAC DAE ∠=∠. ………………… 1分 在△ABC 和△ADE 中,∴ △A B C ≌△A D E. ……………………………………………………… 3分 ∴ B C =D E. ………………………………………………………………… 4分 (2)∠D G B 的度数为67︒.……………………………………………………………… 5分 16. 解:(1)∵关于x 的一元二次方程(m +1)x 2 + 2mx + m ? 3 = 0 有两个不相等的实数根,∴ 10m +≠且0∆>.∵ 2(2)4(1)(3)4(23)m m m m ∆=-+-=+,∴ 230m +>. ﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍1分 解得 m >23-. ﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍2分 ∴ m 的取值范围是 m >23-且m ? ?1. ﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍ 3分 (2)在m >23-且m ? ?1的范围内,最小奇数m 为1. ﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍4分 此时,方程化为210x x +-=.∵ 224141(1)5b ac ∆=-=-⨯⨯-=,∴ 1515x -±-±==图1 FGDC∴ 方程的根为 115x -+=, 215x --= .﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍5分 17. (1)证明:如图2.∵ 四边形ABCD 是平行四边形,∴ AB ∥CD 且AB=CD . ﹍﹍﹍﹍1分 ∵ 点E ,F 分别是AB ,CD 的中点, ∴ CD DF AB AE 21,21==. ∴ AE=DF . ﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍ 2分 ∴ 四边形AEFD 是平行四边形. ﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍3分(2)解:过点D 作DG ⊥AB 于点G . ∵ AB =2AD =4,∴ AD =2. ﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍4分在Rt △AGD 中,∵90,60,AGD A ∠=︒∠=︒ AD =2, ∴ .360sin ,160cos =︒⋅==︒⋅=AD DG AD AG ∴ 3BG AB AG =-=.在Rt △DGB 中,∵90,3,3,DGB DG BG ∠=︒== ∴.329322=+=+=BG DG DB ﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍5分18.解:(1)300; ﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍2分(2)52;﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍4分 (3)1750 . ﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍5分 四、解答题(本题共20分,每小题5分)19.解:(1)当MN ⊥AC 时,从N 到M 小区铺设的管道最短.(如图3)﹍﹍﹍﹍﹍﹍ 1分 (2) ∵ ?MAC =60??30?=30?,?ACM =30?+30?=60?,﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍2分 ∴ ?AMC =180??30??60?=90?. ﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍ 3分在Rt △AMC 中,∵?AMC =90?,?MAC =30?,A C =2000,∴ 3cos 200010003AM AC MAC =⋅∠==(米). ﹍﹍﹍﹍﹍﹍﹍﹍4分 在Rt △AMN 中,∵ ?ANM =90?,cos30?=AMAN , ∴ AN =AM ?cos30?=10003?23=1500(米).………………………………………… 5分答:∠AMC 等于90?,AN 的长为1500米. 20. 解:(1)根据题意得(6,0)A ,(0,8)B .(如图4)在Rt △OAB 中,?AOB =90?,OA =6,OB =8,X k b1 .c o m∴ 226810AB =+=.﹍﹍﹍﹍﹍﹍﹍ 1分∵ △DAB 沿直线AD 折叠后的对应三角形为△DAC , ∴ AC=AB=10.∴ 16OC OA AC OA AB =+=+=.图3北南西东北南东60°60°30°NMAC图2G FEDCBA∵ 点C 在x 轴的正半轴上,∴ 点C 的坐标为(16,0)C .﹍﹍﹍﹍﹍ 2分 (2)设点D 的坐标为(0,)D y .(y <0) 由题意可知CD=BD ,22CD BD =. 由勾股定理得22216(8)y y +=-. 解得12y =-.∴ 点D 的坐标为(0,12)D -.﹍﹍﹍﹍﹍3分 可设直线CD 的解析式为 12y kx =-.(k ? 0)∵ 点(16,0)C 在直线12y kx =-上,∴ 16120k -=. ﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍4分 解得34k =. ∴ 直线CD 的解析式为3124y x =-.﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍5分 21.(1)证明:连结AO ,AC .(如图5) ∵ BC 是⊙O 的直径,∴ 90BAC CAD ∠=∠=︒.﹍﹍﹍﹍﹍1分 ∵ E 是CD 的中点, ∴ AE DE CE ==. ∴ EAC ECA ∠=∠. ∵ OA =OC , ∴ OCA OAC ∠=∠. ∵ CD 是⊙O 的切线,∴ CD ⊥OC . ﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍2分 ∴ 90ECA OCA ∠+∠=︒.∴ 90EAC OAC ∠+∠=︒. ∴ OA ⊥AP .∵ A 是⊙O 上一点,∴ AP 是⊙O 的切线. ﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍3分(2) 解:由(1)知OA ⊥AP .在Rt △OAP 中,∵90OAP ∠=︒,OC=CP=OA ,即OP =2OA ,∴ sin P 21==OP OA . ∴ 30P ∠=︒. ﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍4分∴ 60AOP ∠=︒. ∵ OC=OA , ∴ 60ACO ∠=︒.在Rt △BAC 中,∵90BAC ∠=︒,AB =33,60ACO ∠=︒,∴ 333tan AB AC ACO ===∠.又∵ 在Rt △ACD 中,90CAD ∠=︒,9030ACD ACO ∠=︒-∠=︒,图5ED APOCBlD 5D 2D 4D 3D 1ACBNMEBC A ∴ 323cos cos30AC CD ACD ===∠︒. ﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍5分22.解:(1) 如图所示,答案不唯一. 画出△D 1BC ,△D 2BC ,△D 3BC ,△D 4BC ,△D 5BC 中的一个即可.(将BC 的平行线l 画在直线BC 下方对称位置所画出的三角形亦可) ﹍﹍﹍﹍﹍﹍﹍ 2分(2) 如图所示,答案不唯一. (在直线D 1D 2上取其他符合要求的点,或将BC 的平行线画在直线BC 下方对称位置所画出的三角形亦可)﹍﹍﹍﹍﹍﹍﹍﹍﹍4分(3) 如图所示(答案不唯一).﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍ 5分如上图所示的四边形ABDE 的画法说明:(1)在线段BC 上任取一点D (D 不为BC 的中点),连结AD ;(2)画出线段AD 的垂直平分线MN ;(3)画出点C 关于直线MN 的对称点E ,连结DE ,AE . 则四边形ABDE 即为所求. 五、解答题(本题共22分,第23题7分,第24题7分,第25题8分)23.解:(1)由题意得A ,C 两点的坐标分别为1(1,)A k ,2(1,)C k .(如图6)﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍1分∵ 10k >,20k <,∴ 点A 在第一象限,点C 在第四象限,12AC k k =-.当m=4时,1213()22ACD S AC BD k k ∆=⋅=-.﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍2分 (2) 作EG ⊥x 轴于点G .(如图7)∵ EG∥AB ,AD 的中点为E , ∴ △DEG ∽△DAB ,12EG DG DE AB DB DA===,G 为BD 的中点.∵ A ,B ,D 三点的坐标分别为1(1,)A k ,(1,0)B ,(,0)D m , ∴ 122k AB EG ==,122BD m BG -==,12m OG OB BG +=+=. ∴ 点E 的坐标为11(,)22k m E +. ∵ 点E 恰好在双曲线1ky x=上,∴ 11122k m k +⋅=.①﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍3分∵ 10k >,∴ 方程①可化为114m +=,解得3m =.﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍4分 (3)当点D 的坐标为(2,0)D 时,由(2)可知点E 的坐标为13(,)22kE .(如图8)∵ 1BDF S ∆=,图6x y C (1,k 2)A (1,k 1)y=k 2xy=k 1x DOB图7 x y C (1,k 2)A (1,k 1)y=k 2xy=k 1x G ED O B 图8 xyC (1,k 2)A (1,k 1)y=k 2xy=k 1x FE DO B∴ 11122BDF S BD OF OF ∆=⋅==. ∴ 2OF =. ﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍ 5分设直线BE 的解析式为y ax b =+(a ≠0). ∵ 点B ,点E 的坐标分别为(1,0)B ,13(,)22k E , ∴ 10,3.22a b k a b +=⎧⎪⎨+=⎪⎩解得 1a k =,1b k =-.∴ 直线BE 的解析式为11y k x k =-.∵ 线段EB 的延长线与y 轴的负半轴交于点F ,10k >, ∴ 点F 的坐标为1(0,)F k -,1OF k =.∴ 12k =.﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍ 6分 线段CF7分24.解:(1) 当t =5秒时,点P 走过的路径长为 19 ;当t = 3 秒时,点P 与点E 重合.﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍2分(2) 如图9,由点P 的对应点M 落在EF 上,点F 的对应点为点N ,可知∠PEF =∠MEN ,都等于△PEF 绕点E 旋转的旋转角,记为α. 设AP =3t (0< t <2),则CP =63t -,4CE t =. ∵ EF ∥AC ,∠C =90°,∴ ∠BEF =90°,∠CPE =∠PEF =α. ∵ EN ⊥AB , ∴ ∠B=∠MEN=α.∴ CPE B ∠=∠.﹍﹍﹍﹍﹍﹍﹍3分 ∵ tan CE CPE CP ∠=,3tan 4AC B BC ==, ∴ 43CP CE =. ∴ 446333t t -=⨯.﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍4分解得5443t =.﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍5分(3) t 的值为65(秒)或307(秒).﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍ 7分25.解:(1)21(2)4A n n +,,()B n n ,. ﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍2分 (2) d =AB =A B y y -=2124n n -+. A∴ d =2112()48n -+=2112()48n -+.﹍﹍3分 ∴ 当14n =时,d 取得最小值18. ﹍﹍ 4分 当d 取最小值时,线段OB 与线段PM 的位置 关系和数量关系是OB ⊥PM 且OB =PM . (如图10)﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍ 5分(3) ∵ 对一切实数x 恒有 x ≤y ≤2124x +, ∴ 对一切实数x ,x ≤2ax bx c ++≤2124x +都成立. (0a ≠) ① 当0x =时,①式化为 0≤c ≤14. ∴ 整数c 的值为0. ﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍ 6分此时,对一切实数x ,x ≤2ax bx +≤2124x +都成立.(0a ≠) 即 222,12.4x ax bx ax bx x ⎧≤+⎪⎨+≤+⎪⎩对一切实数x 均成立. 由②得 ()21ax b x +-≥0 (0a ≠) 对一切实数x 均成立.∴ ()210,10.a b >⎧⎪⎨∆=-≤⎪⎩ 由⑤得整数b 的值为1. ﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍7分此时由③式得,2ax x +≤2124x +对一切实数x 均成立. (0a ≠) 即21(2)4a x x --+≥0对一切实数x 均成立. (0a ≠) 当a =2时,此不等式化为14x -+≥0,不满足对一切实数x 均成立.当a ≠2时,∵ 21(2)4a x x --+≥0对一切实数x 均成立,(0a ≠)∴ 2220,1(1)4(2)0.4a a ->⎧⎪⎨∆=--⨯-⨯≤⎪⎩∴ 由④,⑥,⑦得 0 <a ≤1.∴ 整数a 的值为1. ﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍8分∴ 整数a ,b ,c 的值分别为1a =,1b =,0c =.④② ⑥。
北京市2012年中考数学二模代数几何综合题分类汇编整理 北京市二十中学 王云松2012-6-7代几综合题,往往是在二次函数背景下的对动点、动直线的位置及数量关系以及常见几何图形的存在性的研究,对学生的思维水平提出了更高的要求,要求学生具有较强的运算能力、作图能力、方程思想、数形结合思想、分类讨论思想等综合能力。
其掌握程度的高低直接决定学生能否达优。
【海淀】24. 如图, 在平面直角坐标系xOy 中,抛物线xx m y 222-=与x 轴负半轴交于点A , 顶点为B , 且对称轴与x 轴交于点C .(1)求点B 的坐标 (用含m 的代数式表示);(2)D 为BO 中点,直线AD 交y 轴于E ,若点E 的坐标为(0, 2), 求抛物线的解析式; (3)在(2)的条件下,点M 在直线BO 上,且使得△AMC 的周长最小,P 在抛物线上,Q 在直线 BC 上,若以A 、M 、P 、Q 为顶点的四边形是平行四边形,求点P 的坐 标.备用图【参考答案】24.解:(1)∵22222221212112()()4422y x x x m x m m x m m mmm m=-=-+-⋅=--,∴抛物线的顶点B 的坐标为11(,)22m m -. ……………………………1分(2)令2220x x m-=,解得10x =, 2x m =.∵ 抛物线xx m y 222-=与x 轴负半轴交于点A ,∴ A (m , 0), 且m <0. …………………………………………………2分 过点D 作DF ⊥x 轴于F .由 D 为BO 中点,DF //BC , 可得CF =FO =1.2C O∴ DF =1.2BC由抛物线的对称性得 AC = OC . ∴ AF : AO =3 : 4. ∵ DF //EO , ∴ △AFD ∽△AOE . ∴.FD AF O EAO=由E (0, 2),B 11(,)22m m -,得OE =2, DF =14m -.∴134.24m -=∴ m = -6.∴ 抛物线的解析式为2123y x x =--. ………………………………………3分(3)依题意,得A (-6,0)、B (-3, 3)、C (-3, 0).可得直线OB 的解析式为x y -=,直线BC 为3x =-. 作点C 关于直线BO 的对称点C '(0,3),连接AC '交BO 于M ,则M 即为所求. 由A (-6,0),C ' (0, 3),可得 直线AC '的解析式为321+=x y .由13,2y x y x⎧=+⎪⎨⎪=-⎩解得2,2.x y =-⎧⎨=⎩ ∴ 点M 的坐标为(-2, 2). ……………4分由点P 在抛物线2123y x x =--上,设P (t ,213t -- (ⅰ)当AM 为所求平行四边形的一边时. 如右图,过M 作MG ⊥ x 轴于G , 过P 1作P 1H ⊥ BC 于H ,则x G = x M =-2, x H = x B =-3.由四边形AM P 1Q 1为平行四边形, 可证△AMG ≌△P 1Q 1H . 可得P 1H = AG =4. ∴ t -(-3)=4. ∴ t =1.∴17(1,)3P -. ……………………5分如右图,同 方法可得 P 2H=AG =4. ∴ -3- t =4. ∴ t =-7.∴27(7,)3P --. ……………………6分(ⅱ)当AM 为所求平行四边形的对角线时, 如右图,过M 作MH ⊥BC 于H , 过P 3作P 3G ⊥ x 轴于G , 则x H = x B =-3,x G =3P x =t .由四边形AP 3MQ 3为平行四边形, 可证△A P 3G ≌△MQ 3H . 可得AG = MH =1. ∴ t -(-6)=1. ∴ t =-5. ∴35(5,)3P -. ……………………………………………………7分综上,点P 的坐标为17(1,)3P -、27(7,)3P --、35(5,)3P -.[注]在确定平行四边形时,如果知一边的两点坐标,可以用平移的方法,得到其对边的点的坐标,可使解答简捷。
【西城】25.在平面直角坐标系xOy 中,抛物线21124y x =+的顶点为M ,直线2y x =,点()0P n ,为x 轴上的一个动点,过点P 作x 轴的垂线分别交抛物线21124y x =+和直线2y x =于点A ,点B .⑴直接写出A ,B 两点的坐标(用含n 的代数式表示);⑵设线段AB 的长为d ,求d 关于n 的函数关系式及d 的最小值,并直接写出此时线段OB 与线段PM 的位置关系和数量关系;(3)已知二次函数2y ax bx c =++(a ,b ,c 为整数且0a ≠),对一切实数x 恒有x ≤y ≤2124x +,求a ,b ,c 的值.【参考答案】25.解:(1)21(2)4A n n+,,()B n n ,. ﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍2分(2) d =AB =A B y y -=2124n n -+.∴ d =2112()48n -+=2112()48n -+.﹍﹍3分∴ 当14n =时,d 取得最小值18. ﹍﹍ 4分当d 取最小值时,线段OB 与线段PM 的位置 关系和数量关系是OB ⊥PM 且OB =PM . (如图10)﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍ 5分(3) ∵ 对一切实数x 恒有 x ≤y ≤2124x +,∴ 对一切实数x ,x ≤2ax bx c ++≤2124x +都成立. (0a ≠) ①当0x =时,①式化为 0≤c ≤14.∴ 整数c 的值为0. ﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍ 6分此时,对一切实数x ,x ≤2ax bx +≤2124x +都成立.(0a ≠)即 222,12.4x ax bx ax bx x ⎧≤+⎪⎨+≤+⎪⎩ 对一切实数x 均成立. 由②得 ()21ax b x +-≥0 (0a ≠) 对一切实数x 均成立.∴ ()210,10.a b >⎧⎪⎨∆=-≤⎪⎩ 由⑤得整数b 的值为1. ﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍7分此时由③式得,2ax x +≤2124x +对一切实数x 均成立. (0a ≠)即21(2)4a x x --+≥0对一切实数x 均成立. (0a ≠)当a =2时,此不等式化为14x -+≥0,不满足对一切实数x 均成立.当a ≠2时,∵ 21(2)4a x x --+≥0对一切实数x 均成立,(0a ≠)∴ 2220,1(1)4(2)0.4a a ->⎧⎪⎨∆=--⨯-⨯≤⎪⎩∴ 由④,⑥,⑦得 0 <a ≤1.∴ 整数a 的值为1. ﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍8分∴ 整数a ,b ,c 的值分别为1a =,1b =,0c =.[注]本题在确定待定系数的值时,反复运用了抛物线与x 轴没有交点时,判别式小于0,体现解一元二次不等式的数形结合思想。
【东城】25.如图,在平面直角坐标系xOy 中,已知二次函数2+2y ax ax c =+的图像与y④⑤② ③⑥ ⑦轴交于点(0,3)C ,与x 轴交于A 、B 两点,点B 的坐标为(-3,0) (1) 求二次函数的解析式及顶点D 的坐标;(2) 点M 是第二象限内抛物线上的一动点,若直线OM 把四边形ACDB 分成面积为1:2的两部分,求出此时点M 的坐标;(3) 点P 是第二象限内抛物线上的一动点,问:点P 在何处时△C P B 的面积最大?最大面积是多少?并求出 此时点P 的坐标.【参考答案】25.解:(1)由题意,得:3,9-60.c a a c =⎧⎨+=⎩…解得:-1,3.a c =⎧⎨=⎩所以,所求二次函数的解析式为:2--23y x x =+……2分 顶点D 的坐标为(-1,4).……3分 (2)易求四边形ACDB 的面积为9. 可得直线BD 的解析式为y=2x+6设直线OM 与直线BD 交于点E ,则△OBE 的面积可以为3或6. ① 当1=9=33O BE S ∆⨯时,易得E 点坐标(-2,-2),直线OE 设M 点坐标(x ,-x ), 212---2 3.-122x x x x x =++==(舍),∴22M ……4分② 当1=9=63O BE S ∆⨯时,同理可得M 点坐标.∴ M 点坐标为(-1,4)……5分(3)连接O P ,设P 点的坐标为(),m n ,因为点P 232n m m =-+-,所以PB PO O PB O B S S S S =+-△C △C △△C ……6分111()222O C m O B n O C O B=⋅-+⋅-⋅()339332222m n n m =-+-=-- ()22333273.2228m m m ⎛⎫=-+=-++ ⎪⎝⎭ ……7分因为3<0m -<,所以当32m =-时,154n =. △C P B 的面积有最大值27.8……8分所以当点P 的坐标为315(,)24-时,△C P B 的面积有最大值,且最大值为27.8[注]第(3)问使用铅垂高的方法,也比较简捷:易得BC 解析式为y=x+3,设过P 与x 轴垂线交直线BC 于Q ,可得Q (m,m+3), 则铅垂高为m m 32--,水平宽为3,易得面积()22333273.2228m m m ⎛⎫=-+=-++ ⎪⎝⎭【朝阳】25. 在平面直角坐标系xOy 中,抛物线42++=bx ax y 经过A (-3,0)、B (4,0)两点,且与y 轴交于点C ,点D 在x 轴的负半轴上,且BD =BC ,有一动点P 从点A 出发,沿线段AB 以每秒1个单位长度的速度向点B 移动,同时另一个动点Q 从点C 出发,沿线段CA 以某一速度向点A 移动. (1)求该抛物线的解析式;(2)若经过t 秒的移动,线段PQ 被CD 垂直平分,求此时t 的值;(3)该抛物线的对称轴上是否存在一点M ,使MQ +MA 的值最小?若存在,求出点M的坐标;若不存在,请说明理由.【参考答案】25. 解:(1)∵抛物线42++=bx ax y 经过A (-3,0),B (4,0)两点,∴⎩⎨⎧=++=+-.04416,0439b a b a解得⎪⎩⎪⎨⎧=-=.31,31b a ∴所求抛物线的解析式为431312++-=x x y . ……………………………2分(2)如图,依题意知AP =t ,连接DQ ,由A (-3,0),B (4,0),C (0,4), 可得AC =5,BC =24,AB =7. ∵BD =BC ,∴247-=-=BD AB AD .∵CD 垂直平分PQ , ∴QD =DP ,∠CDQ = ∠CDP . ∵BD =BC , ∴∠DCB = ∠CDB . ∴∠CDQ = ∠DCB . ∴DQ ∥BC . ∴△ADQ ∽△ABC . ∴BC DQ AB AD =. ∴BCDP ABAD =.∴247247DP =-.解得 73224-=DP . ………………………………………………………4分 ∴717=+=DP AD AP .………………………………………………………5分∴线段PQ 被CD 垂直平分时,t 的值为717.(3)设抛物线431312++-=x x y 的对称轴21=x 与x 轴交于点E .点A 、B 关于对称轴21=x 对称,连接BQ 交该对称轴于点M .则MB MQ MA MQ +=+,即BQ MA MQ =+. …………………………6分 当BQ ⊥AC 时,BQ 最小. …………………………………………………7分 此时,∠EBM = ∠ACO . ∴43tan tan =∠=∠ACO EBM .∴43=BEME .∴4327=ME ,解得821=ME . ∴M (21,821).即在抛物线431312++-=x x yMQ +MA 的值最小.[注]本题应特别注意,由对称点所产生的角分线,加上BC=BD 可产生平行,即角分线、平行线、等腰知二求其一的基本模式。