4-1-1 平面汇交力系的合成结果.
- 格式:ppt
- 大小:160.00 KB
- 文档页数:6
第二章 平面汇交力系与平面力偶系§2.1平面汇交力系合成与平衡的几何法一、汇交力系合成与平衡的几何法 汇交力系:是指各力的作用线汇交于同一点的力系。
若汇交力系中各力的作用线位于同一平面内时,称为平面汇交力系,否则称为空间汇交力系。
1、平面汇交力系的合成先讨论3个汇交力系的合成。
设汇交力系1F ,2F ,3F汇交于O (图1),由静力学公理3:力的平行四边形法则(力的三角形)可作图2,说明)(),,(321F F F F=如图和图所示,其中321F F F F ++=F2F 3F OFO1F 2F 3F12F讨论:1)图2中的中间过程12F 可不必求,去掉12F 的图称为力多边形,由力多边形求合力大小和方向的方法称为合力多边形法则。
2)力多边形法则:各分力矢依一定次序首尾相接,形成一力矢折线链,合力矢是封闭边,合力矢的方向是从第一个力矢的起点指向最后一个力矢的终点。
3)上述求合力矢的方法可推广到几个汇交力系的情况。
结论:汇交力系合成的结果是一个合力,合力作用线通过汇交点,合力的大小和方向即:∑=i F F用力多边形法则求合力的大小和方向的方法称为合成的几何法。
2.平面汇交力系的平衡1F 2F iF 2-n F 1-n F n F设作用在刚体上的汇交力系),,(21n F F F 为平衡力系,即 0),,(21≡n F F F先将121,,-n F F F 由力多边形法合成为一个力1-N F,(∑-=-=111n i i N F F )0),(),,(121≡≡-n N n F F F F F由静力公理1,作用在刚体上二力平衡的必要充分条件是:1-N F 与n F等值,反向,共线,即n N F F =-1, 可得01=+-n N F F,或0=∑i F结论:平面汇交力系平衡的必要与充分条件是:力系中各力的乖量和为零,用几何法表示的平衡条件是0=∑i F,力多边形自行封闭。
例1. 已知:简支梁AB ,在中点作用力F,方向如图,求反力FA B C45F AF BACα 45FF BF α解:1。
平面力系的合成与平衡4.1 平面汇交力系的合成与平衡当力系中各力处于同一平面时,该力系成为平面力系。
平面力系又可分为平面汇互力系、平面力偶系、平面平行力系和平面一般力系等。
平面汇互力系是研究平面一般力系的基础。
工程实际中经常遇到平面汇互力系问题。
如图4.1(a)所示,用挂钩吊起重物,挂钩受到向上的拉力F1和吊绳对它的拉力F2和F3,不计挂钩自重,这三个力在同一平面内,且汇互于一点,组成一个平面汇互力系〔图4.1(b)〕。
图4.1下面将采用几何法和解析法来研究平面汇互力系的合成和平衡问题。
1)平面汇交力系合成的几何法第2章已经介绍了用平行四边形法则或三角形法则求两个汇互于一点的力的合力,这种方法称为几何法。
当求更多的汇互于一点的力的合力时,也可以用几何法,下面举例说明。
刚体受一平面汇互力系F1,F2,F3和F4作用,力的大小及方向如图4.2(a)所示,现求该力系的合力。
为此,可连续使用力的三角形法则,即先求F1与F2的合力FR1,再求FR1与F3的合力FR2,最后求FR2与F4的合力FR,FR便是此平面汇互力系的合力,如图4.2(b)所示。
由图4.2(b)可见,在作图过程中,力FR1,FR2可不必画出。
更简便的合成方法是:各分力矢首尾相接,则画出一条矢量折线A—B—C—D—E,如图4.2(c)所示,然后从第一个力矢F1的起点A向最后一个力矢F4的终点E作一个矢量,以使折线封闭而成为一个多边形,则由A点指向E点的封闭边AE就代表了该力系的合力矢FR 的大小和方向,合力的作用线通过原力系的汇互点。
该多边形称为已知力系的力多边形。
这种求合力的方法称为力多边形法则。
图4.2在利用力多边形法则求平面汇互力系的合力时,根据矢量相加的互换律,任意变换各分力矢的作图次序,可得到形状不同的力多边形,但其合力矢仍然不变,如图4.2(d)所示。
综上所述,可得如下结论:平面汇互力系合成的结果是一个合力,其大小和方向由力多边形的封闭边来表示,其作用线通过各力的汇互点,即合力等于各分力的矢量和。