平面汇交力系的合成与平衡的几何法和解析法
- 格式:ppt
- 大小:1008.00 KB
- 文档页数:27
第二章平面汇交力系的合成与平衡课题:第一节平面汇交力系的合成与平衡(一)[教学目标]一、知识目标:1、了解求解平面汇交力系的两种方法。
2、理解平面力系、平面汇交力系。
3、理解平面汇交力系平衡的几何条件。
二、能力目标:通过用几何法求解平面汇交力系的合力,提高学生运用平面几何知识解决力学问题的能力,提高对知识的理解运用能力。
三、素质目标:培养学生的分析问题能力[教学重点]平面汇交力系平衡的几何条件。
[难点分析]用几何法求解平面汇交力系的合力。
[学生分析]学生的数学基础知识需要强化补充。
[辅助教学手段]理论联系实际进行分析,围绕练习题展开讨论。
[课时安排]2课时[教学内容]一、导入新课我们在对力系进行研究时,为了方便,可以按照各力作用线的分布情况进行分类。
从讲实际结构的受力情况入题,一般结构所受的作用力不在同一个平面内,这种力系就属于空间力系;反之,如果所受的作用力都在同一个平面内,这种力系就属于平面力系。
那么在我们研究的力系中,也把它分为两类:空间力系和平面力系。
工程中许多结构所受的作用力虽是空间力系,但在一定条件下可以简化为平面力系,比如水坝、挡土墙的受力等。
平面力系是工程中最常见的力系,本章讨论的便是平面力系的合成和平衡问题,随之引出平面汇交力系的概念及其求解平面汇交力系的两种方法:几何法和解析法。
二、新课讲解1、平面汇交力系合成的几何法(1)导入:力是矢量,矢量的合成都可以遵循平行四边形法则,那么两个汇交力怎么合成呢:两个力的合力的作用点是原汇交点,大小和方向是以两个分力为邻边所构成的平行四边形的对角线。
(2)分析:在力的平行四边形法基础上,可以得到两个汇交力合成的三角形法和多个汇交力合成的力多边形法。
(3)概念:平面汇交力系合成的结果是一个合力,合力的大小和方向等于原力系中各力的矢量和,其作用点是原汇交力系的交点。
2、平面汇交力系平衡的几何条件(1)分析:如果某平面汇交力系的力多边形首尾相重合,即力多边形自行闭合,则力系的合力等于零,物体处于平衡状态,该力系为平衡力系。
单元02 平面力系平面汇交力系的合成与平衡一、平面汇交力系合成的几何法1.两个共点力合成的几何法可以由力的平行四边形法则作,也可用力的三角形来作。
由余弦定理求合力的大小;由正弦定理确定合力方向2.任意个共点力合成的几何法结论:平面汇交力系的合力等于各分力的矢量和,合力的作用线通过各力的汇交点。
二、平面汇交力系平衡的几何条件平面汇交力系平衡的充要条件是:力系的合力等于零。
特点:最后一个力矢的终点与第一个力矢的起点相重合,即封闭边为零。
合力为零意味着力多边形自行封闭。
例:解:三、力在坐标轴上的投影四、合力投影定理1)平面汇交力系的合力F R= F1+ F2+…+ F n = ∑F2)合力在坐标轴的投影等于各分力在同轴上投影的代数和合力投影定理:力系的合力在某轴上的投影,等于力系中各力在同一轴上投影的代数和。
五、平面汇交力系的平衡方程平面汇交力系的平衡条件平衡方程:例题1:求如图所示平面共点力系的合力。
其中:F1 = 200 N,F2 = 300 N,F3 = 100 N,F4 = 250 N。
解:根据合力投影定理,得合力在轴 x,y上的投影分别为:合力的大小:171.3N合力与轴x的夹角的正切为:8.343所以,合力与轴x的夹角为41°例题2:如图所示是汽车制动机构的一部分。
司机踩到制动蹬上的力F=212 N,方向与水平面成 = 45°角。
当平衡时,DA铅直,BC水平,试求拉杆BC所受的力。
已知EA=24cm,DE=6 cm(点E在铅直线DA上) ,又B ,C ,D都是光滑铰链,机构的自重不计。
例题3:利用铰车绕过定滑轮B的绳子吊起一货物重G = 20 kN,滑轮由两端铰接的水平刚杆AB和斜刚杆BC支持于点B 。
不计铰车的自重,试求杆AB和BC 所受的力。
解析法的符号法则:当由平衡方程求得某一未知力的值为负时,表示原先假定的该力指向和实际指向相反。
解题技巧及说明:1、一般地,对于只受三个力作用的物体,且角度特殊时用几何法(解力三角形)比较简便。
第二节 平面汇交力系合成与平衡的解析法求解平面汇交力系问题的几何法,具有直观简捷的优点,但是作图时的误差难以避免。
因此,工程中多用解析法来求解力系的合成和平衡问题。
解析法是以力在坐标轴上的投影为基础的。
一、在坐标轴上的投影如图2-5所示,设力F 作用于刚体上的A 点,在力作用的平面内建立坐标系oxy ,由力F 的起点和终点分别向x 轴作垂线,得垂足a 1和b 1,则线段a 1b 1冠以相应的正负号称为力F 在x 轴上的投影,用X 表示。
即X=±a 1b 1;同理,力F 在y 轴上的投影用Y 表示,即Y=±a 2b 2。
力在坐标轴上的投影是代数量,正负号规定:力的投影由始到末端与坐标轴正向一致其投影取正号,反之取负号。
投影与力的大小及方向有关,即⎭⎬⎫=±==±=βαcos cos F ab Y F ab X (2-3) 式中α、β分别为F 与X 、Y 轴正向所夹的锐角。
图2-5反之,若已知力F 在坐标轴上的投影X 、Y ,则该力的大小及方向余弦为⎪⎭⎪⎬⎫=+=F X Y X F αcos 22 (2-4) 应当注意,力的投影和力的分量是两个不同的概念。
投影是代数量,而分力是矢量;投影无所谓作用点,而分力作用点必须作用在原力的作用点上。
另外仅在直角坐标系中在坐标上的投影的绝对值和力沿该轴的分量的大小相等。
二、合力投影定理设一平面汇交力系由F 1、F 2、F 3和F 4作用于刚体上,其力的多边形abcde 如图2-6所示,封闭边ae 表示该力系的合力矢F R ,在力的多边形所在平面内取一坐标系oxy ,将所有的力矢都投影到x 轴和y 轴上。
得X=a 1e 1, X 1=a 1b 1, X 2=b 1c 1,X 3=c 1d 1 ,X 4=d 1e 1由图2-6可知a 1e 1=a 1b 1+b 1c 1+c 1d 1 +d 1e 1即 X=X 1+X 2+X 3+X 4同理 Y=Y 1+Y 2+Y 3+Y 4将上述关系式推广到任意平面汇交力系的情形,得⎭⎬⎫∑=+++=∑=+++=Y Yn Y Y Y X Xn X X X 2121 (2-5)图2-6即合力在任一轴上的投影,等于各分力在同一轴上投影的代数和,这就是合力投影定理。
第二章 平面汇交力系一、内容提要本章讲述了研究平面汇交力系的合成和平衡条件的两种方法:几何法和解析法。
1.求平面汇交力系的合力 (1) 几何法求合力。
根据力多边形法则求合力,即力多边形缺口的封闭边代表合力的大小和方向。
F R =ΣF合力的作用线通过原力系各力的汇交点。
(2) 解析法求合力。
根据合力投影定理,利用力系中各分力在两个正交轴上的投影的代数和,来确定合力的大小和方向为()()2Y 2X 2RY 2X R F F F F F R ∑+∑=+=XY XRY tan F F F F R ∑∑==αα为合力F R 与x 轴所夹的锐角。
合力F R 的指向由ΣF Y 和ΣF X 的正负号来确定,合力的作用线通过原力系各力的汇交点。
2.平面汇交力系的平衡条件(1) 平衡的必要和充分条件:平面汇交力系的合力为零,即F R =ΣF =0(2) 平衡的几何条件:平面汇交力系的力多边形自行封闭。
(3) 平衡的解析条件:平面汇交力系中所有各力在两个坐标轴上投影的代数和分别等于零。
即ΣF X =0 ΣF Y =0通过这两个独立的平衡方程,可求解出两个未知量。
3.力在坐标轴上的投影为F X =±F cosαF Y =±F sinα式中α为力F 与坐标轴x 所夹的锐角。
二、典型例题解析例 简易起重机如图2-1a 所示。
B 、C 为铰支座,钢丝绳的一端缠绕在卷扬机的点D 上。
杆件AB 、AC 及滑轮的自重不计,滑轮的半径也不计。
试求杆件AB 、AC 所受的力。
(空13行) 图2-1知识点:平面汇交力系的平衡条件及应用。
解 (1)取铰A 为研究对象。
杆AB 、AC 均为二力杆,可设为拉力。
由于A 处为定滑轮,故钢丝绳两端的拉力相等,都等于物体的重量W = 20kN 。
不计滑轮半径,则铰A 的受力图如图2-1b 所示。
(2)几何法求解作闭合的力多边形。
在选定比例尺后,先画已知力F T D 和W ,考虑到实际情况,F N C 应该为压力,所以应向上,且与水平成60°角。
第二章平面力系第1节平面汇交力系合成与平衡的几何法若作用在物体上的力,其作用线均分布在同一平面内,则该力系称为平面力系。
若作用在同一平面内的各力作用线均汇交于一点,则该力系称为平面汇交力系。
一、合成的几何法应用力多边形法则,合力矢即是力多边形的封闭边,合力作用线通过力系的汇交点。
如图2-1-1-1所示。
图2-1-1-1若有n个力,则合力矢可以表示为F R = F 1 + F 2 +⋯+ F n = ∑ i=1 n F i二、平衡的几何法平面汇交力系平衡的充要条件是:力多边形自行封闭。
如图2-1-1-2所示。
若矢量表示即为F R =0图2-1-1-2第2节平面汇交力系合成与平衡的解析法一、力在坐标轴上的投影力在坐标轴上的投影等于力的模乘以力与投影轴正向间夹角的余弦,如图2-2-1-1所示,它是一标量,即F x =Fcosθ; F y =Fcosβ力沿坐标轴的分力是一矢量,其合力与分力之间应满足力的平行四边形法则。
如图2-2-1-2所示。
当坐标轴为直角坐标轴时,力沿坐标轴分解的分力可以表示为F x = F x i; F y = F y i合力投影定理:合力在某轴上的投影等于各分力在同一轴上投影的代数和,即F x = ∑ i=1 n F xi ; F y = ∑ i=1 n F yi当投影轴x与y垂直时,其合力的大小与方向为F R = F x 2 + F y 2 , cos( F R ,i)= F x F R ; cos( F R ,j)= F y F R二、合成的解析法当为直角坐标轴时,可按以下方法来合成F R = F x 2 + F y 2 = ( ∑ F xi ) 2 + ( ∑ F yi ) 2cos( F R ,i)= F x F R = ∑ F xi F R ; cos( F R ,j)= F y F R = ∑ F yi F R三、平衡的解析法力系中各力在两个坐标轴上投影的代数和分别等于零,即∑ F x =0; ∑ F y =0上式称为平面汇交力系的平衡方程。
第2章平面汇交力系教学提示:本章主要介绍平面汇交力系的基本内容,包括平面汇交力系的基本概念以及平面汇交力系平衡与合成的几何法和解析法。
教学要求:本章让学生理解平面汇交力系的基本概念,掌握平面汇交力系平衡与合成的几何法和解析法。
平面汇交力系是平面任意力系的特殊情况,主要研究以下2个问题:(1) 平面汇交力系平衡与合成的几何法。
(2) 平面汇交力系平衡与合成的解析法。
2.1平面汇交力系合成与平衡的几何法1.概念汇交力系:是指各力的作用线汇交于同一点的力系。
平面汇交力系:汇交力系中各力的作用线位于同一平面内的力系,否则称为空间汇交力系。
2.平面汇交力系合成的几何法(1)两个汇交力的合成。
如图2.1所示,设在物体上作用有汇交于O点的两个力F1和F2,根据力的平行四边形法则,可知合力R的大小和方向以两力F1和F2为邻边的平行四边形的对角线来表示,合力R的作用点就是这两个力的汇交点O。
也可以取平行四边形的一半即利用力的三角形法则求合力如图2—1b所示。
图2.1(2)多个力汇交力的合成。
设作用于物体上O点的力F1、F2、F3、F4组成平面汇交力系,现求其合力,如图2.2a所示。
应用力的三角形法则,首先将F1与F2合成得R1,然后把R1与F3合成得R2,最后将R2与F4合成得R,力R就是原汇交力系F1、F2、F3、F4的合力,图2.2b所示即是此汇交力系合成的几何示意,矢量关系的数学表达式为R=F1+F2+F3+F4(2—1)实际作图时,可以不必画出图中虚线所示的中间合力R1和R2,只要按照一定的比例尺将表达各力矢的有向线段首尾相接,形成一个不封闭的多边形,如图2.2c 所示。
然后再画一条从起点指向终点的矢量R ,即为原汇交力系的合力,如图2.2d 所示。
把由各分力和合力构成的多边形abcde 称为力多边形,合力矢是力多边形的封闭边。
按照与各分力同样的比例,封闭边的长度表示合力的大小,合力的方位与封闭边的方位一致,指向则由力多边形的起点指向终点,合力的作用线通过汇交点。