传输矩阵法复习进程
- 格式:doc
- 大小:165.50 KB
- 文档页数:11
传递矩阵法matlab程序传递矩阵法是一种在数值计算中常用的方法,特别适用于处理大规模的线性方程组。
在Matlab中,我们可以利用矩阵运算的特性,通过编写一段简洁的程序来实现矩阵的传递。
矩阵传递的基本思想是将多个矩阵的运算结果传递给下一个矩阵,从而实现复杂的运算。
在Matlab中,我们可以利用矩阵乘法的特性,将矩阵的运算结果保存在一个中间变量中,并将该中间变量传递给下一个矩阵进行运算。
我们需要定义需要进行运算的矩阵。
在Matlab中,可以通过直接赋值或者从文件中读取的方式来定义矩阵。
例如,我们可以使用以下代码定义一个3x3的矩阵A:A = [1, 2, 3; 4, 5, 6; 7, 8, 9];接下来,我们可以定义一个中间变量B,并将矩阵A传递给B:B = A;这样,矩阵A的运算结果就被传递给了矩阵B。
我们可以通过对矩阵B进行进一步的运算,实现复杂的计算。
例如,我们可以定义一个矩阵C,并将矩阵B传递给C进行运算:C = B * B';在这个例子中,矩阵B的转置与矩阵B相乘的结果被传递给了矩阵C。
通过这样的传递,我们可以实现复杂的矩阵运算。
除了简单的矩阵乘法外,矩阵传递法还可以应用于其他形式的矩阵运算,例如矩阵的加法、减法、乘法等。
通过灵活地利用矩阵传递法,我们可以简化程序的编写过程,提高效率。
在编写矩阵传递法的程序时,我们应注意以下几点:1. 矩阵的维度要匹配。
在进行矩阵传递前,需要确保传递的矩阵维度是相同的,否则会导致运算错误。
2. 矩阵的类型要一致。
在进行矩阵传递时,需要确保传递的矩阵类型是一致的,例如都是实数矩阵或都是复数矩阵,否则会导致运算结果不正确。
3. 矩阵的运算顺序要正确。
在进行矩阵传递时,需要确保传递的顺序是正确的,例如先进行矩阵A的运算,再将结果传递给矩阵B进行运算,否则会导致运算结果不正确。
通过以上几点的注意,我们可以编写出一个高效、准确的矩阵传递法程序。
在实际应用中,矩阵传递法可以广泛应用于科学计算、工程建模等领域,帮助我们快速、准确地求解复杂的数值问题。
传递矩阵法matlab程序传递矩阵法是一种在MATLAB中进行矩阵运算和矩阵传递的有效方法。
在本文中,我将介绍传递矩阵法的原理和在MATLAB中的具体实现。
传递矩阵法是一种通过矩阵传递信息的方法,它可以用于解决一些复杂的问题,例如网络流、图论等。
在传递矩阵法中,我们将问题转化为矩阵运算的形式,通过对矩阵进行操作和传递,达到求解问题的目的。
在MATLAB中,我们可以使用矩阵运算和矩阵操作函数来实现传递矩阵法。
首先,我们需要定义问题的初始矩阵。
这个矩阵可以是问题的描述、条件或者初始状态。
然后,我们根据问题的要求,通过矩阵运算和矩阵操作函数来对初始矩阵进行操作和传递。
最后,我们可以得到问题的解或者结果。
在传递矩阵法中,矩阵的元素通常代表问题中的某种状态或者信息。
通过对矩阵进行运算和操作,我们可以传递信息并改变矩阵的状态。
例如,在网络流问题中,矩阵的元素可以表示节点之间的连接关系或者流量。
通过对矩阵进行运算,我们可以传递流量,计算最大流量或者最小割。
在MATLAB中,我们可以使用矩阵乘法、矩阵加法、矩阵转置等运算来操作矩阵。
此外,MATLAB还提供了一些专门用于矩阵操作的函数,例如矩阵求逆、矩阵特征值分解等。
通过这些运算和函数,我们可以对矩阵进行传递和操作,实现传递矩阵法。
下面,我将通过一个简单的例子来演示传递矩阵法在MATLAB中的应用。
假设我们有一个由节点和边组成的图,我们希望计算出图中任意两个节点之间的最短路径。
我们可以使用一个邻接矩阵来表示图中节点之间的连接关系。
邻接矩阵的元素可以是0或者1,分别表示两个节点之间是否有边连接。
接下来,我们可以通过矩阵乘法来计算出任意两个节点之间的距离。
在MATLAB中,我们可以使用函数graph和函数shortestpath来实现这个过程。
首先,我们可以使用函数graph来创建一个图对象,将邻接矩阵作为输入。
然后,我们可以使用函数shortestpath来计算任意两个节点之间的最短路径。
传递矩阵法matlab程序传递矩阵法是一种用于计算机程序中传递和操作矩阵的方法,在Matlab中,它被广泛应用于矩阵运算和数据处理等领域。
本文将介绍传递矩阵法的原理和在Matlab中的具体实现。
传递矩阵法是一种通过矩阵传递来操作数据的方法。
它的基本原理是将需要进行操作的数据存储在矩阵中,然后通过矩阵的传递,实现对数据的处理和计算。
这种方法的优势在于可以利用矩阵的高效运算能力,简化程序的编写和调试过程。
在Matlab中,可以使用矩阵操作函数来实现传递矩阵法。
例如,可以使用矩阵的乘法运算来实现矩阵的传递。
假设我们有两个矩阵A 和B,我们希望将矩阵A的数据传递给矩阵B,可以使用如下的Matlab代码实现:```B = A;```这样,矩阵B就完全复制了矩阵A的数据。
通过这种方式,我们可以在程序中传递矩阵,进行各种操作和计算。
除了简单的传递,传递矩阵法还可以实现更复杂的操作。
例如,可以通过传递矩阵进行矩阵的相加、相减、相乘等运算。
假设我们有两个矩阵A和B,我们希望将它们相加得到矩阵C,可以使用如下的Matlab代码实现:```C = A + B;```这样,矩阵C的每个元素都等于矩阵A和矩阵B对应元素的和。
通过传递矩阵法,我们可以很方便地实现这样的矩阵运算。
除了矩阵的运算,传递矩阵法还可以用于数据处理和分析。
例如,可以通过传递矩阵来实现数据的转置、截取、排序等操作。
假设我们有一个矩阵A,我们希望将它的每一列按照从大到小的顺序进行排序,可以使用如下的Matlab代码实现:```B = sort(A,'descend');```这样,矩阵B的每一列都按照从大到小的顺序进行了排序。
通过传递矩阵法,我们可以在Matlab中进行各种复杂的数据处理和分析。
传递矩阵法在Matlab中的应用非常广泛。
无论是矩阵运算、数据处理还是图像处理,都可以通过传递矩阵法来实现。
它不仅提高了程序的效率和可读性,还简化了程序的编写和调试过程。
光线传输矩阵推导过程光线传输矩阵是一种用于描述光线在光学系统中传输的数学工具。
它可以用来计算光线在光学系统中的传输路径和光强分布。
本文将介绍光线传输矩阵的推导过程。
我们需要了解一些基本概念。
在光学系统中,光线可以被描述为一条从一个点出发的矢量。
这个点可以是光源、物体或者像点。
光线的传输可以通过一系列的光学元件来实现,例如透镜、棱镜、反射镜等。
每个光学元件都有一个传输矩阵,它描述了光线在该元件中的传输过程。
假设我们有一个光学系统,由多个光学元件组成。
我们可以将整个系统看作是由多个小的光学元件组成的。
每个小的光学元件可以被描述为一个传输矩阵。
我们可以将这些小的传输矩阵组合起来,得到整个系统的传输矩阵。
现在,我们来推导一个光学元件的传输矩阵。
假设我们有一个光学元件,它将一个入射光线转换为一个出射光线。
我们可以将入射光线表示为一个列向量,出射光线表示为另一个列向量。
我们可以将这两个列向量组合成一个矩阵,称为传输矩阵。
传输矩阵的推导需要用到矩阵乘法的知识。
假设我们有一个光学元件,它将一个入射光线转换为一个出射光线。
我们可以将入射光线表示为一个列向量,出射光线表示为另一个列向量。
我们可以将这两个列向量组合成一个矩阵,称为传输矩阵。
假设我们有一个入射光线,它的方向向量为u,入射点为P1,出射点为P2。
我们可以将入射光线表示为一个列向量:u1 = [u1x, u1y, u1z, 0]T其中,T表示转置。
我们将最后一项设置为0,是因为我们只考虑光线的方向,而不考虑光线的位置。
同样地,我们可以将出射光线表示为一个列向量:u2 = [u2x, u2y, u2z, 0]T我们可以将光学元件的传输矩阵表示为一个4x4的矩阵M:M = [a, b, c, d;e, f, g, h;i, j, k, l;0, 0, 0, 1]其中,a、b、c、d、e、f、g、h、i、j、k、l都是实数。
我们可以将传输矩阵作用于入射光线上,得到出射光线:u2 = Mu1我们可以将这个式子展开,得到:u2x = au1x + bu1y + cu1z + du1wu2y = eu1x + fu1y + gu1z + hu1wu2z = iu1x + ju1y + ku1z + lu1wu2w = 0其中,w表示光线的强度。
光线传输矩阵推导过程光线传输矩阵(Ray Transfer Matrix)是描述光线在光学系统中传输的数学工具,也被称为 ABCD 矩阵。
在光学系统中,常常需要知道光线从一个位置传输到另一个位置,因此需要将光线传输过程用数学描述出来。
光线传输矩阵是一种简便的描述光线传输过程的方法,可以用于计算光学系统的成像性能、衍射现象等。
1. 光线传输是沿直线传播的;2. 光线的传播满足亥姆霍兹方程;3. 光学系统是轴对称的,即沿光路方向上的所有点都是轴对称的。
在这些假设的基础上,可以推导出光线传输矩阵的一般形式。
假设一束光线在一个点 P 处(位置矢量为 [x, y, z])的方向余弦分别为 l, m, n,那么在向前传播一段距离 d 之后,在点 Q(位置矢量为[x′, y′, z′])处的方向余弦分别为l′, m′, n′。
下面推导光线传输矩阵。
首先,根据第一条假设,可以得到:x′ = x + dly′ = y + dmz′ = z + dn然后,根据亥姆霍兹方程,可以得到:$$\frac{\partial^2\psi}{\partial x^2} + \frac{\partial^2\psi}{\partial y^2} + \frac{\partial^2\psi}{\partial z^2} + k^2\psi = 0$$其中,$\psi$ 表示复振幅,$k$ 表示波数,$k = 2\pi/\lambda$。
假设在点 P 处的复振幅为 $\psi_0$,则在点 Q 处的复振幅为:$$\psi = \psi_0e^{ikn′d}$$其中,$n′d$ 表示传输距离。
忽略高阶小量,可以进一步简化为:$$\frac{\partial^2\psi_0}{\partial x^2}dl^2 +\frac{\partial^2\psi_0}{\partial y^2}dm^2 + \frac{\partial^2\psi_0}{\partialz^2}dn^2 + 2\frac{\partial^2\psi_0}{\partial x\partial y}dldm +2\frac{\partial^2\psi_0}{\partial x\partial z}dldn +2\frac{\partial^2\psi_0}{\partial y\partial z}dmdn + k^2\psi_0 = 0$$接下来,定义一个 2x2 的矩阵 A 和一个 2x2 的矩阵 B,它们分别表示在点 P 和点Q 处的光线倾斜角(slopes)和射线高度(heights):然后,将光线传输方程改写为矩阵形式:$$\begin{bmatrix} l′ \\ m′ \end{bmatrix} = M\begin{bmatrix} l \\ m\end{bmatrix}$$其中,$M$ 表示光线传输矩阵,它可以通过将以上方程变形得到:根据矩阵乘法的定义,可以将 $M$ 表示为:其中,$$\begin{aligned} A_{11} &= 1 + \frac{\partial l}{\partial z}d +\frac{\partial^2\psi_0}{\partial x\partial z}d\frac{\partial l}{\partial z}d \\ A_{12} &= d + l\frac{\partial^2\psi_0}{\partial x\partial z}d \\ A_{21} &=\frac{\partial m}{\partial z}d + m\frac{\partial^2\psi_0}{\partial y\partial z}d \\ A_{22} &= 1 + \frac{\partial m}{\partial z}d + \frac{\partial^2\psi_0}{\partial y\partial z}d\frac{\partial m}{\partial z}d \\ B_1 &= x +l\frac{\partial\psi_0}{\partial z}d +\frac{1}{2}\left(\frac{\partial^2\psi_0}{\partial x^2}l^2 +\frac{\partial^2\psi_0}{\partial y\partial x}lm +\frac{\partial^2\psi_0}{\partial x\partial z}ldx\right)d \\ B_2 &= y +m\frac{\partial\psi_0}{\partial z}d +\frac{1}{2}\left(\frac{\partial^2\psi_0}{\partial y\partial x}lm +\frac{\partial^2\psi_0}{\partial y^2}m^2 + \frac{\partial^2\psi_0}{\partialy\partial z}mdy\right)d \\ C_1 &= -\frac{1}{2}\frac{\partial^2\psi_0}{\partial x\partial y}d^2lm \\ C_2 &= -\frac{1}{2}\frac{\partial^2\psi_0}{\partialy\partial x}d^2lm \end{aligned}$$可以看到,光线传输矩阵 $M$ 的每一项都可以用初始光线的方向余弦和位置来表示。
传递矩阵法分类
典型的传递矩阵计算方法有Myklestad-Prohl 传递矩阵法和Riccati 传递矩阵法。
Myklestad-Prohl 传递矩阵法有很多优点,如矩阵的维数不会随着转子系统的自由度数的增加而增加、计算效率高、程序设计简单、占用内存少等等,所以在实际工程中得到了很广泛的应用。
但是,这种方法在大量应用的过程中,人们发现这种方法也存在一些问题,就是当计算的频率较高、或者结构支承的刚度很大、或者结构的自由度较多时,会出现数值不稳定的现象,从而使计算分析结果的精度大大下降[2~3,39〜40]。
为此,1978年Horner和Pilley提出了Riccati 传递矩阵法[39],这种方法保留了Myklestad-Prohl 传递矩阵法的全部优点,且计算精度高,数值上也比较稳定。
Riccati 传递矩阵法在使用过程中遇到的另一个问题是在特征根的搜索过程中剩余量有许多无穷大奇点,因此可能产生增根现象,1987年王正在研究了这一现象后给出了这种奇点的消除方法[40]。
传输矩阵法一、 传输矩阵法概述 1. 传输矩阵在介绍传输矩阵的模型之前,首先引入一个简单的电路模型。
如图1(a)所示, 在(a)中若已知A 点电压及电路电流,则我们只需要知道电阻R ,便可求出B 点电压。
传输矩阵具有和电阻相同的模型特性。
(a)(b)图1 传输矩阵模型及电路模拟模型如图1(b)所示,有这样的关系式存在:E 0=M(z)E 1。
M(z)即为传输矩阵,它将介质前后空间的电磁场联系起来,这和电阻将A 、B 两点的电势联系起来的实质是相似的。
图2 多层周期性交替排列介质传输矩阵法多应用于多层周期性交替排列介质(如图2所示), M(z)反映的介质前后空间电磁场之间的关系,而其实质是每层薄膜特征矩阵的乘积,若用j M 表示第j 层的特征矩阵,则有:1 2 3 4 …… j …… N(1)其中, (2)j δ为相位厚度,有 (3)如公式(2)所示,j M 的表示为一个2×2的矩阵形式,其中每个矩阵元都没有任何实际物理意义,它只是一个计算结果,其推导过程将在第二部分给出。
2. 传输矩阵法在了解了传输矩阵的基础上,下面将介绍传输矩阵法的定义:传输矩阵法是将磁场在实空间的格点位置展开,将麦克斯韦方程组化成传输矩阵形式,变成本征值求解问题。
从其定义可以看出,传输矩阵法的实质就是将麦克斯韦方程转化为传输矩阵,也就是传输矩阵法的建模过程,具体如下:利用麦克斯韦方程组求解两个紧邻层面上的电场和磁场,从而可以得到传输矩阵,然后将单层结论推广到整个介质空间,由此即可计算出整个多层介质的透射系数和反射系数。
传输矩阵法的特点:矩阵元少(4个),运算量小,速度快;关键:求解矩阵元;适用介质:多层周期性交替排列介质。
二、 传输矩阵的基础理论——薄膜光学理论 1.麦克斯韦方程组麦克斯韦方程组由四个场量:D 、E 、B 、H ,两个源量:J 、ρ以及反映它们之间关系的方程组成。
而且由媒质方程中的参数ε、μ、σ反映介质对电磁场的影响。
方程组的实质是描述电磁场的传播,即:一个变化的磁场引起邻近区域的电场变化,而此电场的变化又引起邻近磁场的变化,如此进行下去,便可抽象出电磁场的传播。
如图3 所示。
⎥⎦⎤⎢⎣⎡==∏=D C B A M z M Nj j 1)(⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=j j j j jjj i i M δδηδηδcos sin sin cos j j j j d N θλπδcos 2=ε图3 电磁场传播的模拟图将媒质方程带入麦克斯韦方程组,并对方程组求解可得以下两个重要结论:1) (4)式(4)中,N 即为介质的光学导纳,单位为西门子特别说明:光波段时,μ约等于1,N 数值上等于折射率。
自由空间导纳 。
2) (5)(6)式(5)为电场的波动方程,与经典波导方程(6)相比可得 ,通常把光速c 和电磁波在介质中速度之比定义为折射率,即得折射率公式:(7) 2.边界条件及反射折射电磁波在介质交界处满足切向分量连续的边界条件。
垂直入射时,电场和磁场均与入射面垂直,则它们的切向分量既是本身。
根据边界条件可得: (8)式(8)中,上标为+的代表入射波,-表示反射波。
又由导纳定义式(4)可得: (9)(10)将式(9)、(10)代入(8)中,整理可得反射系数定义式:(11)r 为反射系数,R 为反射率。
透射系数原理相同,在此不再推导。
E H H E E H H Ejk n vcE k H N -==⨯=00265.037710==ηt v 22221∂∂=∇ϕϕεμcv =tEc E 2222∂∂=∇μεμε=n ⎪⎭⎪⎬⎫+=+=-+-+001001H H H E E E ⎪⎭⎪⎬⎫⨯-=⨯=--++)()(000000E k N H E k N H )(111E k N H ⨯=101000N N N N E E r +-==+-2r R =上面讨论的是垂直入射的情况,斜入射时情况类似,只是用修正导纳0η、1η代替(11)中的0N 、1N 。
其实,无论电磁波入射情况如何,电磁波只有两种情况:一种是电场E 平行入射面即TM 波(P 分量),此时电场的切向分量θcos E E tg =(θ为入射角),而磁场的切向分量是其本身,因此由(4)式可得:)(cos )cos ()(E k NE k N E k N H H tg tg ⨯=⨯=⨯==θθ (12) 将(12)式与(4)式对比可得到P 分量的修正导纳,同理可得TE 波(S 分量)的修正导纳:(13)可得一般情况下的反射、透射系数表达式:(14) 介质的传光特性可以由反射、透射系数所表征,而由以上讨论可知,这两个参数与导纳紧紧联系。
因此,求解介质的传光特性就可以转换为求解导纳问题, 这也是传输矩阵法所解决的核心问题之一。
其实,传输矩阵法就是通过求得介质的导纳,从而得到介质的反射透射系数。
3. 传输矩阵这一部分将应用薄膜光学理论详细推导介质的传输矩阵,以及如何求得介质导纳,根据第一部分传输矩阵的介绍可以知道,它其实是每层特征矩阵的乘积,所以,这一部分的推导就从单层薄膜的特殊矩阵入手,进而推广到整个介质空间推导出介质的传输矩阵。
下面就详细介绍单层薄膜的特殊矩阵。
电磁波通过厚度为d 1的单层薄膜过程如图4所示。
⎪⎭⎪⎬⎫==θηθηcos cos N N s p 1010ηηηη+-=r 1002ηηη+=t图4 电磁波通过单层薄膜图5 单层薄膜等效为介质面的示意图薄膜是存在一定厚度的,电磁波从0E 透过薄膜变为2E 的过程,与简单的穿过介质面相比多了个1E 的中间变换,如果可以将0E 和2E 通过导纳直接联系起来,那么薄膜就可以等效为一个介质面(如图5所示),前面所介绍的反射透射公式便可用。
因此,我们第一步完成从薄膜到介质面的等效推导。
令薄膜导纳(介质面1和介质面2的组合导纳)为Y ,则可得到薄膜的透射反射系数:(15)由式(15)可知,求得Y 便可求得r 、t 。
由导纳定义并对薄膜的第一介质面应用边界连续条件可得:(16)+0E -0E 2E 2N +0E -0E2E 2N 0N YYr +-=00ηηYt +=002ηη)(00E k Y H ⨯=(17)图4中的+11E 、-11E 表示刚刚穿过介质面一的瞬时状态。
+12E 、-12E 表示即将穿过介质面二的瞬时状态。
这两个瞬时状态的唯一不同只是因为薄膜厚度引入的相位因子,即有:(18)将式(18)代入式(17)中可得式(19),并将其转为矩阵形式(20):(19)(20)同理,薄膜的第二介质面有如下关系式:(21)(22)⎪⎪⎭⎪⎪⎬⎫⨯-⨯=+=+=⨯+⨯=⨯+=+=-+-+-+-+-+-+)(1111101111000111101111000E k E k H H H H H H E k E k E k E E E E E η⎪⎭⎪⎬⎫==---++1111121112δδi i e E E e E E 1111cos 2θλπδd N =⎪⎭⎪⎬⎫⨯-⨯=⨯+⨯=⨯--+--+1111112112012120)()()()(δδδδηηi i i i e E k e E k H e E k e E k E k ⎥⎥⎦⎤⎢⎢⎣⎡⨯⨯⎥⎦⎤⎢⎣⎡-=⎥⎦⎤⎢⎣⎡⨯-+--121211001111E k E k e ee e H E k i i i i δδδδηη⎪⎪⎭⎪⎪⎬⎫⨯-⨯=+=⨯+⨯=⨯+=-+-+-+-+)(121212121221212212122E k E k H H H H E k E k E k E E E η⎪⎪⎭⎪⎪⎬⎫-⨯=⨯+⨯=⨯-+212122121221)(2121)(21H E k E k H E k E k ηη精品文档(23)式(20)、(23)分别表示介质面一、二两侧空间电磁场之间的联系,若将式(23)代入式(20)中相乘,则所得到的结果就表示整个薄膜两侧空间电磁场之间的联系,即:(24)从式(24)中得到了第一层的特征矩阵:(25)(26)考虑到导纳定义有如式(26)的关系,则可对式(24)进一步化简:(27)令 为为膜系的特征方程,则有关系式:⎥⎦⎤⎢⎣⎡⨯⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-=⎥⎥⎦⎤⎢⎢⎣⎡⨯⨯-+2211121221212121H E k E k E k ηη⎥⎦⎤⎢⎣⎡⨯⎥⎥⎦⎤⎢⎢⎣⎡=22111111cos sin sin cos H Ek i i δδηδηδ⎥⎦⎤⎢⎣⎡⨯⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-⎥⎦⎤⎢⎣⎡-=⎥⎦⎤⎢⎣⎡⨯--22111100212121211111H E k e e ee H E k i i i i ηηηηδδδδ⎥⎥⎦⎤⎢⎢⎣⎡=1111111cos sin sin cos δδηδηδi i M ⎪⎭⎪⎬⎫⨯=⨯=)()(22200E k H E k Y H η)(1cos sin sin cos 1)(221111110E k i i Y E k ⨯⎥⎦⎤⎢⎣⎡⎥⎥⎦⎤⎢⎢⎣⎡=⎥⎦⎤⎢⎣⎡⨯ηδδηδηδ⎥⎦⎤⎢⎣⎡C B(28)对比式(24)等号左边的形式,由导纳定义可得整个单层薄膜的组合导纳:BCY = (29)从而由式(15)可求得单层薄膜的反射、透射系数。
至此完成了第一步,即从薄膜到介质面的等效推导。
将将单层得到的结论推广到整个介质空间可得:(30)(31)(32)(33)(34)(35)⎥⎦⎤⎢⎣⎡⎥⎥⎦⎤⎢⎢⎣⎡=⎥⎦⎤⎢⎣⎡21111111cos sin sin cos ηδδηδηδi i C B ⎥⎦⎤⎢⎣⎡==∏=D C B A M z M Nj j 1)(⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡+11)(N z M C B ηBC Y =Yt +=002ηηYY r +-=00ηη⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=j j j j jj j i iM δδηδηδcos sin sin cos jj j j d N θλπδcos 2=式(30)为介质第j 层的特征矩阵,需要注意的是特征矩阵的行列式值为1。
由式(32)即可得到整个介质的传输矩阵。
至此,完成了多层介质传输矩阵的建模过程。
值得一提的是,在讨论单层薄膜时,得到单层薄膜的反射率后,若对薄膜的光学厚度H(H=nd ,n 为薄膜折射率,d 为薄膜实际厚度)求导,可得如图6的结果。
从结果中我们可以看出,在厚度为4时,反射率根据折射率的不同可达到最大或最小值。
图6 反射率与光学厚度的关系三、 传输矩阵法的应用举例传输矩阵法的典型应用是对多层周期性交替排列介质的分析,具有这样结构的器件实例有:光子晶体、光栅、量子阱结构、DBR 结构器件等。
具体应用过程请参见文献《传输矩阵法分析一维光子晶体的传光特性》。