《动力学分析中的传递矩阵法》
- 格式:ppt
- 大小:5.47 MB
- 文档页数:16
传递矩阵法是研究转子系统动力学问题的有效手段。
传递矩阵法还具有其它方法(如摄动有限元素法)无法比拟的优点,例如,在做转子系统的临界转速、阻尼固有频率和稳定性计算分析时,由于流体密封交叉刚度、油膜轴承、阻尼项往往是不对称的,再加上陀螺力矩的影响;这样,用随机有限元素法形成的单元刚度矩阵和系统总体刚度矩矩阵往往也是不对称的,阻尼也不可以简单地以小阻尼或比例阻尼系统来替代,求解这样一个非对称系统的复特征值问题,目前还没有一个较为理想的方法。
而传递矩阵法没有随机有限元法在求解这些的问题时带来的这些困难。
因此,传递矩阵法在转子系统动力学问题的研究中占有主导的地位。
%求解转子系统前三个临界转速和主振型的传递矩阵法clcclear%等截面轴参数l1=0.12;d=0.04;A=pi*d*d/4;%轮盘参数D=0.5;h=0.025;%盘轴材料参数(忽略轴的质量)a=1;u=0.3;rou=7800;E=2.0e11;G=E/(2*(1+u));I=pi*(d^4)/64;K1=2.0e7;v1=6*E*I/(a*G*A*l1*l1);mi=rou*pi*D^2/4*h;%轮盘的集质量Jp=mi*D^2/8; Jd=Jp/2;Ji=Jp-Jd;%参数的数组形式L=[l1 l1 l1 l1 l1 l1 l1 l1 l1 l1 l1 l1 l1 0 0];M=[0 mi mi mi mi mi mi 0 0 0 0 0 mi mi 0];K=[K1 0 0 0 0 0 0 K1 0 0 0 K1 0 0 0];v=[v1 v1 v1 v1 v1 v1 v1 v1 v1 v1 v1 v1 v1 0 0];J=[0 Ji Ji Ji Ji Ji Ji 0 0 0 0 0 Ji Ji 0];k=0;Tit=['第一阶频率的振型和弯矩图';'第二阶频率的振型和弯矩图';'第三阶频率的振型和弯矩图'];for w=0:0.01:4000;for i=1:15;T(:,:,i)=[1+(L(i)^3)*(1-v(i))*(M(i)*w^2-K(i))/(6*E*I) L(i)+L(i)^2*J(i)*w^2/(2*E*I) L(i)^2/(2*E*I) L(i)^3*(1-v(i))/(6*E*I);(L(i)^2)*(M(i)*w^2-K(i))/(2*E*I) 1+L(i)*J(i)*w^2/(E*I) L(i)/(E*I) L(i)^2/(2*E*I);L(i)*(M(i)*w^2-K(i)) J(i)*w^2 1 L(i);M(i)*w^2-K(i) 0 0 1];endH=T(:,:,1);for i2=2:15;H=T(:,:,i2)*H;endF=H(3,1)*H(4,2)-H(3,2)*H(4,1);if F*(-1)^k < 0 %求解临界转速k=k+1;wi(k)=w;w=wi(k)ni(k)=wi(k)*30/pi;endendfor i1=1:3;w=wi(i1);for j=1:14;T(:,:,j)=[1+(L(j)^3)*(1-v(j))*(M(j)*w^2-K(j))/(6*E*I) L(j)+L(j)^2*J(j)*w^2/(2*E*I) L(j)^2/(2*E*I) L(j)^3*(1-v(j))/(6*E*I);(L(j)^2)*(M(j)*w^2-K(j))/(2*E*I) 1+L(j)*J(j)*w^2/(E*I) L(j)/(E*I) L(j)^2/(2*E*I);L(j)*(M(j)*w^2-K(j)) J(j)*w^2 1 L(j);M(j)*w^2-K(j) 0 0 1];endH=T(:,:,1);for j=2:15;H=T(:,:,j)*H;endb=-H(4,1)/H(4,2);X(:,1)=([1 b 0 0]');for n=2:16;X(:,n)=T(:,:,n-1)*X(:,n-1); %相邻两质点右边的传递关系endfor j1=1:15;y(j1)=X(1,j1);z(j1)=X(3,j1);x(j1)=(j1-1)*l1;endy(16)=X(1,16);x(16)=1.56;z(16)=X(3,16);y=y/max(abs(y));%归一化z=z/max(abs(z));subplot(3,1,i1)plot(x,y,'b-',x,z,'r:')title(Tit(i1,:))xlabel('轴长'),ylabel('不平衡值')axis([0,1.56,-1.2,1.2])grid onz;endlegend('振型','弯矩') ni wi0.511.5-101第一阶频率的振型和弯矩图轴长不平衡值00.511.5-101第二阶频率的振型和弯矩图不平衡值0.511.5-101轴长不平衡值ni = 1.0e+004 *0.1468 0.2065 0.5254 1.3837 2.3759 2.3832 3.1036 3.5473 wi = 1.0e+003 *0.1537 0.2162 0.5502 1.4490 2.4881 2.4956 3.2501 3.7147%转子系统的不平衡响应clc clearww=[153.68 216.23 550.22 1449 2488.1 2495.6 3250.1 3714.7] %前8阶固有频率 n=ww*30/pi %前8阶转频 wi=[0.9*ww(1) (ww(1)+ww(2))/2] %0.9w(1)和(w(1)+w(2))/2) %等截面轴参数 l1=0.12; d=0.04;A=pi*d*d/4; %轮盘参数 D=0.5;h=0.025;%盘轴材料参数(忽略轴的质量) rou=7800;E=2.0e11;I=pi*(d^4)/64;K1=2.0e7;m=rou*pi*D^2/4*h;%轮盘的集质量Jp=m*D^2/8; Jd=Jp/2;J1=Jp-Jd;u1=0.8e-4;%参数的数组形式L=[l1 l1 l1 l1 l1 l1 l1 l1 l1 l1 l1 l1 l1 l1];M=[0 m m m m m m 0 0 0 0 0 m m];K=[K1 0 0 0 0 0 0 K1 0 0 0 K1 0 0];J=[0 J1 J1 J1 J1 J1 J1 0 0 0 0 0 J1 J1];Tit=['wi(1)时的振动响应图';'wi(2)时的振动响应图'];U=[0 0 0 0 0 0 0 0 0 0 0 0 0 u1];for i=1:2w=wi(i);n(i)=w*30/pifor j=1:14;T(:,:,j)=[1+(L(j)^3)*(M(j)*w^2-K(j))/(6*E*I) L(j)+L(j)^2*J(j)*w^2/(2*E*I) L(j)^2/(2*E*I) L(j)^3/(6*E*I) L(j)^3/(6*E*I)*U(j)*w^2; (L(j)^2)*(M(j)*w^2-K(j))/(2*E*I) 1+L(j)*J(j)*w^2/(E*I) L(j)/(E*I) L(j)^2/(2*E*I) L(j)^2/(2*E*I)*U(j)*w^2; L(j)*(M(j)*w^2-K(j)) J(j)*w^2 1 L(j) L(j)*U(j)*w^2; M(j)*w^2-K(j) 0 0 1 U(j)*w^2;0 0 0 0 1];endG=T(:,:,1);for j1=2:14;H=T(:,:,j1)*G;G=H;endD1=H([3 4],[1 2]);B=H([3 4],[5 2]);B(:,1)=-B(:,1);C=H([3 4],[1 5]);C(:,2)=-C(:,2);b=det(B)/det(D1); c=det(C)/det(D1);X(:,1)=([b c 0 0 1]');for n=2:14;X(:,n)=T(:,:,n-1)*X(:,n-1); %相邻两质点右边的传递关系endy(1)=X(1,1);x(1)=0;for j2=2:13;y(j2)=X(1,j2);x(j2)=x(j2-1)+L(j2-1);endy(14)=X(1,14);x(14)=1.56;xi=0:0.05:1.56;yi=interp1(x,y,xi,'spline'); subplot(2,1,i)plot(xi,yi, 'b-o','LineWidth',1.5) title(Tit(i,:))xlabel('轴长'),ylabel('不平衡值') grid on end00.20.40.60.81 1.2 1.4 1.6-6wi(1)时的振动响应图轴长不平衡值00.20.40.60.81 1.2 1.4 1.6x 10-6wi(2)时的振动响应图轴长不平衡值ww = 1.0e+003 *0.1537 0.2162 0.5502 1.4490 2.4881 2.4956 3.2501 3.7147n = 1.0e+004 *0.1468 0.2065 0.5254 1.3837 2.3760 2.3831 3.1036 3.5473wi = 138.3120 184.9550n = 1.0e+003 * 0.0150 1.76620.20.40.60.81 1.2 1.41.6-101第一阶频率的振型和弯矩图轴长不平衡值0.20.40.60.81 1.2 1.41.6-101第二阶频率的振型和弯矩图不平衡值0.20.40.60.811.21.41.6-101轴长不平衡值0.511.5-101第一阶频率的振型和弯矩图轴长不平衡值0.511.5-101第二阶频率的振型和弯矩图不平衡值0.511.5-101轴长不平衡值0.511.5-101第一阶频率的振型和弯矩图轴长不平衡值0.511.5-101第二阶频率的振型和弯矩图不平衡值0.51 1.5-101轴长不平衡值00.20.40.60.81 1.2 1.4 1.6x 10-6wi(1)时的振动响应图轴长不平衡值00.20.40.60.81 1.2 1.4 1.6-6wi(2)时的振动响应图轴长不平衡值00.20.40.60.81 1.2 1.4 1.6x 10-6wi(1)时的振动响应图轴长不平衡值00.20.40.60.81 1.2 1.4 1.6-6wi(2)时的振动响应图轴长不平衡值。
传递矩阵法
传递矩阵法,也称为状态转移矩阵法,是一种用来求解动态规划问题的方法。
它是将原问题分成多段子问题,每一段子问题都可以用状态转移矩阵表示,最后把多个子问题求解出来,并最终组合在一起,得到最优解的方法。
传递矩阵法是动态规划中最常使用的一种方法,它的核心思想是:将原问题分解成小问题,然后将小问题求解出来,最后再组合在一起,求出最优解。
传递矩阵法的具体步骤如下:
1、分析问题:对需要求解的问题进行分析,找出问题的目标函数,状态转移方程式,以及约束条件。
2、构建状态转移矩阵:根据上述分析结果,构建状态转移矩阵,并填充状态转移方程式中的变量,形成状态转移矩阵。
3、求解状态转移矩阵:对状态转移矩阵进行求解,根据问题的特点,可以采用递推法、回溯法、逐步增加法等求解方法,求解出状态转移矩阵。
4、解决问题:根据求解出来的状态转移矩阵,解决问题,得到最优解。
传递矩阵法是一种求解动态规划问题的非常常用的方法,其优点是可以将原问题分解成小问题,并将小问题求
解出来,最后再组合在一起,求出最优解,比较简单易行。
但是其缺点也很明显,需要分析的问题必须能够被分解成小问题。
此外,传递矩阵法的时间复杂度依然较大,所以在解决复杂问题时,可能会遇到时间上的限制。
机械运动系统的动力学建模机械运动系统是由各种连杆、齿轮、传动链等组成的复杂结构。
为了研究和分析这些系统的运动行为,我们需要建立动力学模型。
动力学建模是描述物体运动与力学特性的数学模型,它可以通过运动学和动力学分析来实现。
一、运动学分析在动力学建模过程中,首先要进行运动学分析,即研究机械系统的几何关系和运动规律。
通过分析系统的结构和机构特性,我们可以确定各个连杆的位置、角度和速度等参数,从而为后续的动力学分析提供基础。
运动学分析的一个重要工具是位移图,它可以直观地描述各个连杆的运动轨迹和行程。
通过观察位移图,我们可以了解机械系统的工作过程和运动规律,为动力学建模提供方向。
二、动力学分析在运动学分析的基础上,我们可以进行动力学分析,即研究机械系统的受力和加速度等动力学特性。
通过分析系统的运动学参数和物体的质量、惯性矩等力学性质,我们可以建立动力学模型,并求解系统的运动方程。
动力学分析常常涉及到受力分析和动力学方程的推导。
受力分析是研究各个物体之间的力学作用,包括内力和外力等。
通过受力分析,我们可以确定物体的受力情况,并计算出受力大小和方向。
动力学方程的推导是根据牛顿定律和动量守恒原理等基本原理,利用受力分析的结果,建立描述物体运动行为的数学方程。
通过求解这些方程,我们可以得到物体的位置、速度和加速度等动力学参数。
三、动力学建模方法机械运动系统的动力学建模可以采用多种方法和技术。
下面介绍几种常用的建模方法。
1. 传递矩阵法传递矩阵法是一种基于齿轮传动的动力学建模方法。
通过分析齿轮之间的传动关系和力学特性,可以建立齿轮系统的动力学模型。
传递矩阵法可以将整个系统简化为代表齿轮之间传递关系的矩阵,并通过矩阵运算求解系统的运动方程。
2. 基于虚功原理的方法虚功原理是一种利用虚位移和虚功的原理进行动力学分析的方法。
通过引入虚位移和虚功的概念,可以建立系统的虚功方程,并通过对虚功方程的求解,推导出物体的运动方程。