高斯扩散模型
- 格式:ppt
- 大小:577.50 KB
- 文档页数:10
高斯扩散模型的适用条件1. 高斯扩散模型适用的条件之一就是要有相对稳定的环境呀!就好比在一个平静的湖泊里,水的流动很平稳,这时候高斯扩散模型就能很好地发挥作用啦!比如研究污染物在这样的环境中是怎么扩散的。
2. 它还适用于扩散源比较集中的情况呢!就像一个发光的灯泡,光线从那里散发出来,用高斯扩散模型来分析这种扩散是不是很合适呢?比如火灾中烟雾的扩散。
3. 扩散的物质不能有太奇怪的性质哦!可不是什么都能用高斯扩散模型的,这就像你不能用切菜的方法去绣花呀!比如一些特殊的化学物质可能就不太适用。
4. 要有足够的观测数据支持呀!没有数据就像巧妇难为无米之炊,怎么能让高斯扩散模型大展身手呢?比如对大气中颗粒物扩散的研究就得有大量数据。
5. 时间尺度也很重要呢!如果变化太快或太慢,高斯扩散模型可能就不太好使啦!好比一辆车开得太快或太慢,你都不好判断它的行驶轨迹,比如瞬间爆发的爆炸产生的扩散。
6. 空间范围也得合适呀!太大或太小的空间,高斯扩散模型也会有力不从心的时候呢!就像用小勺子舀大海的水,或者用大桶去装一滴水,比如研究小范围的气味扩散。
7. 系统不能太复杂啦!要是乱七八糟的因素太多,高斯扩散模型可就头疼咯!就像解一团乱麻,得先理清楚呀!比如生态系统中多种生物的相互作用下的物质扩散。
8. 扩散的速度得比较适中呀!太快或太慢,高斯扩散模型就不好把握啦!就像跑步,速度适中你才能更好地观察和分析,比如一些化学反应的扩散速度。
9. 环境不能总是变来变去的呀!一会儿这样一会儿那样,高斯扩散模型也会不知所措的!就像天气一会儿晴一会儿雨,怎么预测呀!比如海洋中水流和温度不断变化时的物质扩散。
10. 边界条件得明确呀!不然高斯扩散模型都不知道该从哪里开始从哪里结束呢!就像跑步没有起点和终点,怎么跑呀!比如研究一个房间内的气体扩散,房间的边界就得清楚。
我的观点结论就是:只有在这些条件满足的情况下,高斯扩散模型才能像一把锋利的宝剑,在研究扩散现象的战场上大显身手呀!。
高斯扩散模型 python高斯扩散模型是一种在空间或时间上描述随机现象扩散的模型。
该模型主要考虑了物质分子的运动规律,同时也考虑了物质分子之间的碰撞和相互作用。
在Python中,我们可以利用相关的库和函数来实现高斯扩散模型,下面将从以下几个方面进行介绍:1. 理解高斯分布首先,我们需要了解高斯分布,也称正态分布,表示连续变量的分布情况,常用于对连续变量进行建模和预测。
在Python中,可以使用SciPy库中的stats模块来计算高斯分布。
import numpy as npimport matplotlib.pyplot as pltfrom scipy.stats import norm# 定义均值(mean)和标准差(standard deviation)mu, sigma = 0, 0.1# 构造一些数据s = np.random.normal(mu, sigma, 1000)# 绘制直方图count, bins, ignored = plt.hist(s, 30, density=True)plt.plot(bins, 1/(sigma * np.sqrt(2 * np.pi)) *np.exp( - (bins - mu)**2 / (2 * sigma**2) ),linewidth=2, color='r')plt.show()2. 构建高斯扩散模型接下来,我们可以利用高斯分布的概念来构建高斯扩散模型。
在Python中,可以使用NumPy和SciPy库中的函数来进行计算。
import numpy as npimport matplotlib.pyplot as pltfrom scipy.special import erfcdef diffusion(x, t, D):return np.exp(-(x**2)/(4*D*t))/(2*np.sqrt(np.pi*D*t))# 初始化一些变量N = 100000 # 粒子数D = 1.0 # 扩散系数t = 100.0 # 时间bins = 200 # 直方图中的箱子数# 生成位移数据x = np.sqrt(2*D*t)*np.random.randn(N)# 利用扩散函数计算概率密度hist, bins = np.histogram(x, bins=bins, density=True) binCenters = 0.5*(bins[1:] + bins[:-1])theory = diffusion(binCenters, t, D)# 绘制直方图plt.plot(binCenters, hist, label='simulation')plt.plot(binCenters, theory, label='theory')plt.xlabel('x')plt.ylabel('P(x,t)')plt.legend()plt.show()3. 可视化高斯扩散模型的结果为了更直观地了解高斯扩散模型的结果,我们可以使用Matplotlib库中的plot函数来绘制直方图和散点图。
高斯扩散模型及其适用条件(1)一般表达式根据质量守恒原理和梯度输送理论,污染物在大气中一般运动规律为:(3分)cccc c c c Nu v w k x k y k z S p t x y z x x y y z z p 1C:污染物质平均浓度;X,y,z:三个方向坐标;u,v,w:三个方向速度分量;k x,k y,k z:三个方向扩散系数;t:为污染物扩散时间;3:污染物源、汇强度。
(2)高斯模型的适用条件:①大气流动稳定,表明污染物浓度不随时间改变,即[0 ;②有主导风向,表明u=常数,且v=w=0 ;③污染物在大气中只有物理运动,物化学和生物变化,且预测范围内无其他同类污染的源和汇。
表明S P=0(P=1,2,….n)此时三维的动态模型就可简化为三维的稳态模型,得:u~c k x 工k y,k z」(3 分)x x x y y z z④有主导风情况下,主导风对污染物输送应远远大于湍流运动引起污染物在主导风方向上扩散。
即U」(平流输送作用)远远大于x—k x—(湍流弥散作用)。
x x此时方程又可以简化为:c c Cu k y k z (2分)x y y z z(3)由于y和z方向上污染物浓度不发生变化,故规定k y与y无关,k z与z无关,即:2c k z 2z(4)由质量守恒原,理运用连续点源源强计算方式,按照单元体积(3)简化得到的方程进行积分ucdydz二Q ,结合边界条件x y z 0时,c=x, y, z 时,c=0对方程进行求解。
(2分)(5)设x=ut,令2=2k y t;;=2k z t。
化简求解得到高斯扩散模型的标准形式:c x, y,zQ 1 y2 2 zexp小222 U y z 2 y z(1分)ky y2(1 分)。
9.2.2大气污染物扩散的高斯模型模拟:可视化模拟点源大气污染的扩散9.2.2 Gaussian Atmospheric Dispersion Model突发性大气污染事故时有发生,对大气污染扩散进行模拟和分析,有利于减小事故的危害,减轻人员伤亡和财产损失。
高斯扩散模型是国际原子能机构(IAEA)推荐使用于重气云扩散模拟的数学模型,该模型在非重气云扩散的应用日益广泛。
高斯扩散模型是描述大气对有害气体的输移、扩散和稀释作用的物理或数学模型,是进行灾害预测和救援指挥的有力手段之一。
9.2.2.1高斯扩散模型高斯模型又分为高斯烟团模型和高斯烟羽模型。
大气污染物泄漏分为瞬时泄漏和连续泄漏,瞬时泄漏是指污染物泄放的时间相对于污染物扩散的时间较短如突发泄漏等的情形,连续泄漏则是指污染物泄放的时间较长的情形。
瞬时泄漏采用高斯烟团模型模拟,而连续泄漏采用高斯模型烟羽模型模拟。
高斯模型适用于非重气云气体,包括轻气云和中性气云气体。
要求气体在扩散过程中,风速均匀稳定。
在高斯烟团模型中,选择风向建立坐标系统,即取泄漏源为坐标原点,x 轴指向风向,y 轴表示在水平面内与风向垂直的方向,z 轴则指向与水平面垂直的方向,具体公式见式(9.1):22222222()()()22223/2(,,,)()(2)y x z z y x ut z H z H x y z Q C x y z t e e e e σσσσπσσσ--+----=⋅⋅⋅+⋅…………(9.1)其中:(,,,)C x y z t 为泄漏介质在某位置某时刻的浓度值;Q 为污染物单位时间排放量(mg/s); x σ、y σ、z σ分别x 、y 、z 轴上的扩散系数,需根据大气稳定度选择参数计算得到(m);x 、y 、z 表示x 、y 、z 上的坐标值(m);u 表示平均风速(m/s);t 表示扩散时间(s);H 表示泄漏源的高度(m)。
同理,高斯烟羽模型的表达式如:222222()()222(,,,)()2y z z y z H z H y z Q C x y z t e e e u σσσπσσ-+---=⋅⋅+………………………(9.2)9.2.2.2 技术方法若用高斯模型算出空间每一个点在一个时刻的污染浓度,这个计算量是很大的。
高斯扩散模型假设名词解释
高斯扩散模型是一种用来描述空气污染物在大气中传播和扩散
的数学模型。
它是基于高斯分布的假设,即空气污染物在水平方向上的传播服从正态分布。
在高斯扩散模型中,假设空气污染物在垂直方向上的传播是均匀的,即空气污染物在垂直方向上的浓度是恒定的。
这是基于大气中存在的湍流现象,使得空气混合均匀,污染物被均匀分散在大气中。
另外,高斯扩散模型还假设空气污染物在水平方向上的传播是径向对称的,即从污染源点开始,污染物浓度随着距离的增加呈现出高斯分布的特征。
这是因为在大气中存在着各种影响空气传播的因素,如风速、大气稳定度等,这些因素使得空气污染物向各个方向扩散。
高斯扩散模型可以通过一系列的数学公式来计算空气污染物在不同
位置的浓度分布。
这些公式考虑了污染源的排放强度、环境因素(如风速、大气稳定度等)以及地形特征等因素的影响。
通过模拟和计算,可以预测不同条件下空气污染物的传播范围和浓度分布,从而为环境管理和污染控制提供科学依据。
除了以上提到的假设,高斯扩散模型还可以考虑其他因素的影响,如地形地貌、建筑物的阻挡效应等,以更加准确地描述污染物在大气中
的传播过程。
它是环境科学领域中常用的一种模型,能够帮助我们更好地理解和管理空气污染问题。
2 扩散模型2.1 高斯模型燃气泄漏后会在泄漏源附近形成气团,气团在大气中的扩散计算通常采用高斯模型。
高斯模型的基本形式是在如下的假设条件下推导出来的[1、9]:假定燃气在扩散的过程中没有沉降、化合、分解及地面吸收的发生;燃气连续均匀地排放;扩散空间的风速、大气稳定度都均匀、稳定;在水平和垂直方向上都服从正态分布。
泄漏燃气相对密度小于或接近1的连续泄漏采用高斯烟羽模型。
以泄漏点为原点,风向方向为x轴的空间坐标系中的某一点(x,y,z)处的质量浓度计算公式如下[9]:平均风速>1m/s时:平均风速=0.5~1m/s时:平均风速<0.5m/s时,假设气团围绕泄漏点浓度均匀分布,则距离泄漏点r处的燃气质量浓度为:式中ρd(x,y,z)——扩散燃气在点(x,y,z)处的质量浓度,kg/m3x、y、z——x、y、z方向上距泄漏点的距离,mua——平均风速,m/sδx 、δy、δz——x、y、z方向的扩散系数,mh——泄漏点高度,mρ(r)——距离泄漏点r处的燃气质量浓度,kg/m3dr——空间内任意一点到泄漏点的距离,ma、b——扩散系数,mt——静风持续时间,s,取3600的整数倍扩散系数可查HJ/T 2.2—93《环境影响评价技术导则大气环境》得到。
2.2 重气扩散模型液化石油气密度比空气密度大,属于重气。
该类气体泄漏时在重力的作用下会下沉,这时使用高斯模型计算的结果会使泄漏燃气扩散速度偏大,泄漏源附近的浓度偏小。
为了解决这个问题,可以引入最早由Van Ulden提出,并由M anju Mohan等发展的箱式模型[1]。
箱式模型分为两个阶段:泄漏后的重气扩散阶段和重气效应消失后的被动气体扩散阶段。
重气泄漏后首先是重气扩散阶段。
在这个阶段,重气云团由于重力作用逐渐下沉并不断卷吸周围的空气,在卷吸空气的同时,气云受热,最终当重气云团与空气的密度差<0.001kg/m3时,可认为气云转变成中性状态。
随着重气的继续扩散,气云所受的重力不再是影响扩散的主要因素,而大气湍流扩散逐渐占主要地位,这时便是被动气体扩散阶段,可以应用高斯模型计算泄漏燃气的扩散。
高斯扩散模型的适用条件《高斯扩散模型的适用条件》嘿,咱今天就来聊聊高斯扩散模型的适用条件哈。
你知道吗,有一次我去公园散步,那时候天气特别好,阳光暖洋洋地洒在身上。
我走着走着,看到一群小朋友在那吹泡泡,那一个个五彩斑斓的泡泡在阳光下飘啊飘的,特别好看。
我就突然想到了这高斯扩散模型。
咱就说这高斯扩散模型啊,它可不是啥情况都能用的呢。
就像那些泡泡,在没有风的时候,它们就慢悠悠地在空中飘着,大致就是个比较规则的扩散状态,这时候可能就比较符合高斯扩散模型的条件啦。
但要是突然来了一阵大风,那泡泡可就被吹得乱七八糟,完全没了规律,这就不符合高斯扩散模型啦。
比如说吧,如果是在一个比较平静的环境里,污染物的扩散可能就会像那些泡泡一样,比较有规律地向四周扩散。
但要是环境很复杂,有各种气流啊、障碍物啊之类的,那可就不能简单地用高斯扩散模型来描述了。
就好比泡泡遇到了树枝或者墙壁,它们的走向就完全变了。
还有啊,如果扩散的物质本身性质很特殊,比如特别容易团聚或者反应很强烈,那也不能直接套用上高斯扩散模型。
这就像有些泡泡可能质量不太好,在空中没飘多久就自己破掉了,这可就和正常的扩散不一样咯。
所以啊,咱得清楚高斯扩散模型可不是万能的,得看具体情况。
就像在公园看那些泡泡,不同的情况就有不同的表现。
咱在研究和应用的时候,可得好好琢磨琢磨,别乱用一气。
不然得出的结果可能就不靠谱啦。
总之呢,高斯扩散模型有它能用的时候,也有不能用的时候,咱得根据实际情况来判断。
就像公园里的泡泡,有时候它们乖乖地飘着,有时候又调皮得很呢。
咱得抓住它们的特点,才能更好地理解高斯扩散模型的适用条件呀!这就是我对高斯扩散模型适用条件的一些小想法啦,嘿嘿。
高斯模型介绍高斯模式是一种应用较为广泛的气体扩散模型,适用于均一的大气条件,以及地面开阔平坦的地区、点源的扩散模式。
排放大量污染物的烟囱、放散管、通风口等,虽然其大小不一,但是只要不是讨论例如烟囱底部很近距离的污染问题,均可视其为点源。
本附录A 介绍高斯模型坐标系、模型假设及模型公式等内容。
F.1坐标系高斯模型的坐标系如图A-1所示,原点为排放点(若为高架源,原点为排放点在地面的投影),x 轴正向为风速力一向,y 轴在水平面上垂直于x 轴,正向在x 轴左侧,z 轴垂直于水平面xoy ,向上为正向。
在此坐标下烟流中心线或烟流中心线在xoy 面的投影与x 轴重合。
图A-1 高斯模型坐标系F.2 模型假设高斯模型有如下假设条件:(1)污染物的浓度在y 、z 轴上的分布是高斯分布(正态分布)的;(2)污染源的源强是连续且均匀的,初始时刻云团内部的浓度、温度呈均匀分布;(3)扩散过程中不考虑云团内部温度的变化,忽略热传递、热对流及热辐射;(4)泄漏气体是理想气体,遵守理想气体状态方程;(5)在水平方向,大气扩散系数呈各向同性;(6)取x 轴为平均风速方向,整个扩散过程中风速的大小、方向保持不变,不随地点、时间变化而变化;(7)地面对泄漏气体起全反射作用,不发生吸收或吸附作用;(8)整个过程中,泄漏气体不发生沉降、分解,不发生任何化学反应等。
F.3 模型公式距地面一定高度连续点源烟羽扩散模式的高斯修正模型为:()()()()⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛+-+⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛-=22222221exp 21exp 21exp 2,,,z z y z y H z H z y k x Q H z y x C σασσσσπ(A-1)式(A-1)中:C (x,y,z,H)——表示横向x、纵向y、地面上方z处气体浓度,kg/m3;Q(x)——表示源强(即源释放速率),kg/s;k——表示平均风速,m/s;σy——表示水平扩散参数,m;σz——表示垂直扩散参数,m;H——表示泄漏源有效高度,m;y——表示横向距离,m;z——表示纵向距离,m。