第五章离子注入_572605374
- 格式:pdf
- 大小:1.76 MB
- 文档页数:42
半导体离子注入工艺--离子注入离子注入法掺杂和扩散法掺杂对比来说,它的加工温度低、容易制作浅结、均匀的大面积注入杂质、易于自动化等优点。
当前,离子注入法已成为超大规模集成电路制造中不可缺少的掺杂工艺。
1.离子注入原理:离子是原子或分子经过离子化后形成的,即等离子体,它带有一定量的电荷。
可通过电场对离子进行加速,利用磁场使其运动方向改变,这样就可以控制离子以一定的能量进入wafer内部达到掺杂的目的。
离子注入到wafer中后,会与硅原子碰撞而损失能量,能量耗尽离子就会停在wafer中某位置。
离子通过与硅原子的碰撞将能量传递给硅原子,使得硅原子成为新的入射粒子,新入射离子又会与其它硅原子碰撞,形成连锁反应。
杂质在wafer中移动会产生一条晶格受损路径,损伤情况取决于杂质离子的轻重,这使硅原子离开格点位置,形成点缺陷,甚至导致衬底由晶体结构变为非晶体结构。
2.离子射程离子射程就是注入时,离子进入wafer内部后,从表面到停止所经过的路程。
入射离子能量越高,射程就会越长。
投影射程是离子注入wafer内部的深度,它取决于离子的质量、能量,wafer的质量以及离子入射方向与晶向之间的关系。
有的离子射程远,有的射程近,而有的离子还会发生横向移动,综合所有的离子运动,就产生了投影偏差。
3.离子注入剂量注入剂量是单位面积wafer表面注入的离子数,可通过下面的公式计算得出 ,式中,Q 是剂量;I 是束流, 单位是安培;t 是注入时间,单位是秒;e 是电子电荷,1.6×10-19C ;n 是电荷数量;A 是注入面积,单位是 。
4.离子注入设备离子注入机体积庞大,结构非常复杂。
根据它所能提供的离子束流大小和能量可分为高电流和中电流离子注入机以 及高能量、中能量和低能量离子注入机。
离子注入机的主要部件有:离子源、质量分析器、加速器、聚焦器、扫描系统以及工艺室等。
(1)离子源离子源的任务是提供所需的杂质离子。
在合适的气压下,使含有杂质的气体受到电子碰撞而电离,最常用的杂质源有和 等, (2)离子束吸取电极吸取电极将离子源产生的离子收集起来形成离子束。
第5章离⼦注⼊第五章离⼦注⼊15.1 概述5.2离⼦注⼊原理5.3注⼊离⼦在靶中的分布5.4 注⼊损伤5.5 退⽕5.6 离⼦注⼊设备与⼯艺5.7 离⼦注⼊的其它应⽤5.8 离⼦注⼊与热扩散⽐较及掺杂新技术5.1 概述2什么是离⼦注⼊:将原⼦电离,在强电场作⽤下离⼦被加速射⼊靶材料的表层,以改变这种材料表层的性质。
离⼦注⼊⼯艺:⽤离⼦注⼊⽅法,将⼀定剂量的Ⅲ、Ⅵ族杂质注⼊到半导体晶⽚的特定区域,再进⾏退⽕,激活杂质,修复晶格损伤,从⽽获得所需的杂质浓度,形成pn结。
离⼦注⼊⼯艺特点3杂质浓度分布与总量可控性好;是⾮平衡过程,不受固溶度限制;注⼊杂质纯度⾼,能量单⼀,洁净度好;室温注⼊,避免了⾼温过程对靶⽚的影响;杂质分布的横向效应⼩,有利于器件尺⼨的缩⼩;离⼦注⼊会造成晶格缺陷,甚⾄⾮晶化,即使退⽕也以难完全消除;是单⽚⼯艺,⽣产效率低、成本⾼;设备复杂、价格昂贵。
5.2离⼦注⼊原理射程R :离⼦在靶内移动的总路线长度;投影射程x P :在⼊射⽅向上离⼦射程的投影距离射程的横向分量x i :在与⼊射⽅向垂直的⽅向上离⼦射程的投影距离45.2.1 与注⼊离⼦分布相关的⼏个概念R =l 1+l 2+l 3…5.2.1 与注⼊离⼦分布相关的⼏个概念射程分布:⼤量⼊射离⼦投影射程的统计分布,即靶内⼊射离⼦浓度分布平均投影射程(R p ):正是离⼦浓度最⼤值位置投影射程标准偏差(?R p ):是平均投影射程的统计波动横向标准偏差(?R ⊥):是射程的平均横向分量的统计波动。
5注⼊离⼦的⼆维分布5.2.2 离⼦注⼊相关理论基础6在集成电路制造中,注⼊离⼦的能量⼀般为5~500keV,进⼊靶内的离⼦不仅与靶内的⾃由电⼦和束缚电⼦发⽣相互作⽤,⽽且与靶内原⼦核相互作⽤。
LSS理论认为注⼊离⼦在靶内的能量损失分为两个彼此独⽴的部分:⼊射离⼦与原⼦核的碰撞,即核阻挡的能量损失过程;⼊射离⼦与电⼦的碰撞,即电⼦阻挡的能量损失过程。
离子注入原理离子注入是一种常用的半导体加工技术,它通过将离子注入半导体材料中,改变其电学性质和化学性质,从而实现对半导体材料的加工和改性。
离子注入技术在集成电路制造、光电子器件制造、材料改性等领域都有着广泛的应用。
本文将介绍离子注入的原理及其在半导体加工中的应用。
离子注入的原理主要包括离子源、加速器、束流控制系统和靶材等部分。
首先,离子源会产生所需的离子种类,比如常见的硼、砷、磷等离子。
然后,这些离子会被加速器加速,形成高能离子束。
束流控制系统会控制离子束的方向和强度,使其准确地注入到靶材中。
最后,靶材会接受离子的注入,从而改变其物理和化学性质。
离子注入技术的应用非常广泛。
在集成电路制造中,离子注入常用于形成P型和N型掺杂区,从而实现晶体管的制造。
在光电子器件制造中,离子注入可以用于改变半导体材料的光学性质,提高器件的性能。
此外,离子注入还可以用于材料的表面改性,提高材料的硬度、耐腐蚀性等。
离子注入技术具有许多优点。
首先,它可以实现对半导体材料的局部改性,精度高,控制方便。
其次,离子注入可以实现对半导体材料的多种性质改变,包括电学性质、光学性质、力学性质等。
最后,离子注入可以在常温下进行,不需要高温处理,从而避免了材料的退火和晶格损伤。
然而,离子注入技术也存在一些局限性。
首先,离子注入会在材料中引入大量的杂质,从而影响材料的电学性能。
其次,离子注入过程中会产生能量损失,导致材料局部加热,从而影响材料的结构和性能。
最后,离子注入需要复杂的设备和控制系统,成本较高。
总的来说,离子注入技术是一种重要的半导体加工技术,具有广泛的应用前景。
随着半导体工艺的不断发展,离子注入技术也将不断得到改进和完善,为半导体材料的加工和改性提供更加可靠的技术支持。
离子注入原理
离子注入是一种将离子束加速并注入到固体材料中的技术。
它通过加速器将离子加速到高速,并经过选通孔进入真空室。
在真空室中,离子束通过电场和磁场的作用被转向和聚焦,最终注入到固体材料的表面或内部。
离子注入的过程中,离子束与固体材料发生相互作用,这主要包括两种作用:电子损失和核损失。
电子损失是指离子束中的离子与固体材料中的电子相互作用,导致电子被激发或离开原子轨道。
这种相互作用导致了离子束的能量损失,使离子的路径发生弯曲。
同时,被激发或离开轨道的电子也会与固体材料中的其他原子相互作用,形成激发态或离子。
这些电子的产生和扩散过程对材料的性质和结构有着重要的影响。
核损失是指离子束中的离子与固体材料中的原子核相互作用,导致原子核被排斥或吸引。
这种相互作用导致了离子束的能量损失,并改变了离子的运动方向。
当离子的速度较高时,会产生较大的核损失,导致离子在材料中形成较深的轰击区域。
离子注入的主要应用领域包括微电子器件制造、材料改性和材料分析等。
通过调控注入离子的种类、能量和注入剂量,可以实现对材料的物理、化学和电学性质的调控和改变。
第五章离子注入15.1 概述5.2离子注入原理5.3注入离子在靶中的分布5.4 注入损伤5.5 退火5.6 离子注入设备与工艺5.7 离子注入的其它应用5.8 离子注入与热扩散比较及掺杂新技术5.1 概述2什么是离子注入:将原子电离,在强电场作用下离子被加速射入靶材料的表层,以改变这种材料表层的性质。
离子注入工艺:用离子注入方法,将一定剂量的Ⅲ、Ⅵ族杂质注入到半导体晶片的特定区域,再进行退火,激活杂质,修复晶格损伤,从而获得所需的杂质浓度,形成pn结。
离子注入工艺特点3杂质浓度分布与总量可控性好;是非平衡过程,不受固溶度限制;注入杂质纯度高,能量单一,洁净度好;室温注入,避免了高温过程对靶片的影响;杂质分布的横向效应小,有利于器件尺寸的缩小;离子注入会造成晶格缺陷,甚至非晶化,即使退火也以难完全消除;是单片工艺,生产效率低、成本高;设备复杂、价格昂贵。
5.2离子注入原理射程R :离子在靶内移动的总路线长度;投影射程x P :在入射方向上离子射程的投影距离射程的横向分量x i :在与入射方向垂直的方向上离子射程的投影距离4 5.2.1 与注入离子分布相关的几个概念R =l 1+l 2+l 3…5.2.1 与注入离子分布相关的几个概念 射程分布:大量入射离子投影射程的统计分布,即靶内入射离子浓度分布平均投影射程(R p ):正是离子浓度最大值位置投影射程标准偏差(∆R p ):是平均投影射程的统计波动横向标准偏差(∆R ⊥):是射程的平均横向分量的统计波动。
5注入离子的二维分布5.2.2 离子注入相关理论基础6在集成电路制造中,注入离子的能量一般为5~500keV,进入靶内的离子不仅与靶内的自由电子和束缚电子发生相互作用,而且与靶内原子核相互作用。
LSS理论认为注入离子在靶内的能量损失分为两个彼此独立的部分: 入射离子与原子核的碰撞,即核阻挡的能量损失过程;入射离子与电子的碰撞,即电子阻挡的能量损失过程。
离子注入的作用和基本原理嘿,朋友!你知道啥是离子注入不?这可是个相当厉害的技术呢!离子注入啊,简单来说,就像是给材料“打针”。
把带着特定能量和电荷的离子,强行“扎”进材料里面去。
这一“扎”可不简单,能让材料的性质发生神奇的变化。
比如说,在半导体制造中,离子注入就像是个神奇的魔法棒。
它能精确地控制半导体中的杂质浓度和分布,就好比是在雕琢一件极其精细的艺术品。
要是没有离子注入这一招,那些高性能的芯片可就没法诞生啦!那离子注入到底有啥作用呢?它能改变材料的电学性能,这难道不神奇吗?就好像原本普普通通的一块材料,经过离子注入这一“加工”,瞬间就拥有了超能力,能在电路中发挥大作用。
而且啊,离子注入还能增强材料的硬度和耐磨性。
想象一下,一块脆弱的材料,经过离子注入后,变得坚硬无比,就像穿上了一层坚不可摧的铠甲,是不是很厉害?不仅如此,离子注入还能用于材料的表面改性。
比如说,让金属材料的表面更加耐腐蚀,这不就像是给材料披上了一件隐形的防护衣嘛!再来说说离子注入的基本原理。
离子注入就像是一场精准的“射击比赛”。
首先,要有离子源产生出我们需要的离子,这离子就像是一个个准备出征的“小战士”。
然后,通过电场或者磁场的加速,让这些“小战士”获得足够的能量和速度。
接下来,这些带着能量的离子就像子弹一样,朝着目标材料飞奔而去。
在这个过程中,离子会和材料中的原子发生碰撞和相互作用。
这就好比是一场激烈的“战斗”,离子要突破重重阻碍,才能成功“驻扎”在材料内部。
离子注入的能量和剂量的控制可是非常关键的。
这就好比做饭时放盐,放多了太咸,放少了没味道。
能量和剂量控制不好,那可就达不到我们想要的效果啦!怎么样,离子注入是不是很有趣又很神奇?它就像是一个隐藏在科技世界里的神秘魔法,不断为我们创造出更多的可能。
所以啊,可别小看了这离子注入,说不定未来还有更多让我们惊叹的应用等着被发现呢!。