无机化学第五章 氢和稀有气体
- 格式:ppt
- 大小:996.00 KB
- 文档页数:44
无机化学课后练习题解答第二章物质的状态2.一敝口烧瓶在280K时所盛的气体,需加热到什么温度时,才能使其三分之一逸出?解:由题知要使三分之一的气体逸出瓶外,即体积为原来的1.5倍,而这一过程压力始终保持不变,故有:(P0V1)/T1= (PV2)/T2所以有 T2 = (T1V2)/V1= 280×1.5=420K答:略。
4.容器中有4.4 g CO2,14 g N2,12.8g O2,总压为2.026105Pa,求各组分的分压。
解:由题意知:CO2: n= 4.4/44 = 0.1molN2: n=14/28=0.5molO2: n=12.8/32=0.4mol有道尔顿分压定律:CO2: p=2.026×104PaN2: p=1.013×104PaO2: p=8.104×104Pa答:略。
8.在291K和总压为1.013×105Pa时,2.70 dm3含饱和水蒸汽的空气,通过CaCl2干燥管,完全吸水后,干燥空气为3.21 g,求291K时水的饱和蒸汽压。
解:3.21g空气在291K,2.7L的容积中其压力为: PV=Nrt所以 P空气=3.21×291×8.31/29×0.0027=99185PaP水蒸气=P总压- P空气=101300-99185=2.12×103Pa答:略第三章原子结构4.已知M2+离子3d轨道中有5个电子,试推出:(1)M原子的核外电子排布;(2)M原子的最外层和最高能级组中电子数;(3)M元素在周期表中的位置。
答:(1)Mn 1s22s22p63s23p63d54s2(2) 最外层2个电子,最高能级组中5个电子(3) 第四周期,第VIIIB族6.据原子结构的知识,写出第17号、23号、80号元素的基态原子的电子结构式。
答:17号元素Cl,其电子结构式为1s22s22p63s23p523号元素V, 其电子结构式为1s22s22p63s23p63d34s280号元素Hg, 其电子结构式为1s22s22p63s23p63d104s24p64d104f145s25p65d106s29.列各组量子数哪些是不合理的,为什么?(1)n=2,l=1,m=0 (2)n=2,l=2,m=-1(3)n=3,l=0,m=0 (4)n=3,l=1,m=1(5)n=2,l=0,m=-1 (6)n=2,l=3,m=2答:(2)、(5)、(6)不合理10.列说法是否正确?不正确的应如何改正?a)s电子绕核运动,其轨道为一圆周,而电子是走 S形的;b)主量子数n为1时,有自旋相反的两条轨道;c)主量子数n为4时,其轨道总数为16,电子层电子最大容量为32;d)主量子数n为3时,有3s,3p,3d三条轨道。
第二章物质的状态1.某气体在293K与9.97×104Pa时占有体积1.910-1dm3其质量为0.132g,试求这种气体的相对分子质量,它可能是何种气体?解4.一容器中有4.4 g CO2,14 g N2,12.8g O2,总压为2.026105Pa,求各组分的分压。
解9.有一高压气瓶,容积为30 dm3,能承受2.6×107Pa,问在293K时可装入多少千克O2而不致发生危险?解第五章氢和稀有气体3.写出工业制氢的三个主要化学方程式和实验室中制备氢气最简便的方法?答14.完成并配平下列反应方程式:(1)XeF4 + ClO-3→(2)XeF4 + Xe →(3)Na4XeO6 + MnSO4 + H2SO4→(4)XeF4 + H2O →(5)XeO3 + Ba(OH)2→(6)XeF6 + SiO2→答①XeF4 +2 ClO-3+2 H2O=Xe + 2ClO-4+ 4HF③5Na4XeO6 + 2MnSO4 +7 H2SO4 =5XeO3 +2 NaMnO4 + 7 H2O + 9Na2SO4⑤2XeO3 +2 Ba(OH)2 = Ba2XeO6 + Xe + O2 + 2H2O第六章化学热力学初步2. 计算体系的热力学能变化,已知:(1)体系吸热1000J,对环境做540J的功;(2)体系吸热250J,环境对体系做635J的功;解3. 在298K 和100kPa 恒压下,21mol 的OF 2同水反应,放出161.5kJ 热量,求 反应OF 2(g) + H 2O(g) → O 2(g) + 2HF(g)的△rH θm 和△rU θm 。
解12. 已知下列键能数据键 N ≡N N —F N —Cl F —F Cl —Cl 键能/ kJ ·mol1- 942 272 201 155 243试由键能数据求出标准生成热来说明NF 3在室温下较稳定而NCl 3却易爆炸。
第五章氢和稀有气体§5—1 氢1—1氢在自然界中的分布氢是宇宙中最丰富的元素,除大气中含有少量自由态的氢以外,绝大部分的氢都是以化合物的形式存在。
氢在地球的地壳外层的三界(大气、水和岩石)里以原子百分比计占17%,仅次于氧而居第二位。
氢是太阳大气的主要组成部分,以原子百分比计,它占81.75%。
近年来,人们发现木星大气中也含有82%的氢。
可以说,在整个宇宙空间到处都有氢的出现。
氢有三种同位素:11H(氕、符号H),12H(氘、符号D)和13H(氚,符号T)。
它们的质量数分别为1,2,3。
自然界中普通氢内:H的丰度最大,原子百分比占99.98%,12H具有可变的天然丰度,平均原子百分比为0.016%。
13H是一种不稳定的放射性同位素:3H→23He+β半衰期t1/2=12.4年1在大气上层,宇宙射线裂变产物中每1021个H原子中仅有一个13H原子。
然而人造同位素增加了13H的量,利用来自裂变反应器内的中子与Li靶作用可制得13H:1n + 36Li →13H +24He氢的同位素因核外均含1个电子,所以它们的化学性质基本相同,由于它们质量相差较大,色散力大小不一样,导致了它们的单质和化合物在物理性质上的差异(见表5—1)。
l一2氢的成键特征氢原子的价电子层构型为1s1,电负性为2.2。
因此,当氢同其它元素的原子化合时,其成键特征如下:(1)形成离子键当它与电负性很小的活泼金属(Na,K,Ca等)形成氢化物时,它将获得一个电子形成H-离子。
这个离子因有较大的半径(208pm),仅存在于离子型氢化物的晶体中。
(2)形成共价键(a)形成一个非极性的共价单键,如H2分子。
(b)当氢原子同非金属元素的原子化合时,形成极性共价键,键的极性随非金属元素原子的电负性增大而增强。
(3)独特的键型(a)氢原子可以间充到许多过渡金属晶格的空隙中,形成一类非整比化合物,一般称之为金属氢化物,例如ZrH1.30瑚和LaH2.87等。