手性化合物的拆分技术
- 格式:doc
- 大小:37.50 KB
- 文档页数:3
有机化学基础知识点手性化合物的分离与合成有机化学基础知识点:手性化合物的分离与合成手性化合物在有机化学领域中扮演着重要的角色,它们具有两种非对称的镜像异构体,即左旋和右旋。
手性化合物的分离与合成是有机化学中的一项重要技术和研究内容。
本文将探讨手性化合物的分离与合成的基础知识点。
一、手性化合物的分离方法1. 基于手性配体的手性柱层析法手性柱层析法是一种基于手性配体与目标分子之间的亲和性进行分离的方法。
通过选择适当的手性配体,可以实现对手性化合物的分离纯化。
例如,利用氨基酸衍生物作为手性配体,可以成功地分离出手性氨基酸和手性药物等。
2. 经典拆分结晶法经典拆分结晶法是一种通过晶体生长的方式分离手性化合物的方法。
通过合适的溶剂和配体选择,可以在晶体生长过程中实现手性化合物的拆分和纯化。
这种方法适用于一些具有较高拆分度的手性化合物。
3. 手性萃取法手性萃取法是一种利用手性选择性较大的手性萃取剂对手性化合物进行分离的方法。
通常通过控制温度、pH值和萃取剂浓度等条件,实现对手性化合物的选择性萃取。
手性萃取法在手性酮、手性醇以及手性药物等的分离中得到了广泛应用。
二、手性化合物的合成方法1. 左旋-右旋互换法左旋-右旋互换法是一种将一种手性化合物转化为其对映异构体的方法。
通常可通过二氧化硫气体的作用,将左旋手性化合物转化为右旋手性化合物,或者通过酸碱反应进行互换。
这种方法在手性药物和手性农药的合成中得到了广泛应用。
2. 手性催化剂的应用手性催化剂是一种能够选择性地促使手性化合物发生反应的催化剂。
通过催化剂的选择,可以实现手性化合物的不对称合成。
例如,手性金属配合物催化剂在不对称氢化和不对称还原反应中起到了关键作用。
3. 有机合成中的修饰法有机合成中的修饰法是一种通过对已有手性分子进行化学修饰,合成新的手性分子的方法。
通过对已有手性分子的保留或改变官能团,可以得到一系列具有不同手性的化合物。
这种方法在新药开发和杂环合成中得到了广泛应用。
有机化学中的手性识别与拆分有机化学是研究有机物质的结构、性质和变化的学科。
手性识别与拆分是有机化学中一个重要的研究领域,它涉及到手性化合物的性质、合成和应用等方面。
本文将从手性的概念、手性识别的方法、手性拆分的策略等方面进行探讨。
手性是指分子或物质的非对称性质。
在有机化学中,手性分子由不对称的碳原子或其他原子组成,它们的镜像异构体无法通过旋转或平移重叠,因此具有不同的性质。
手性分子的存在对于生命体系、药物研究和有机合成等领域具有重要意义。
手性识别是指区分手性分子的方法和技术。
目前,常用的手性识别方法包括光学方法、核磁共振方法、质谱方法和色谱方法等。
其中,光学方法是最常用的手性识别方法之一。
光学活性物质对于不同偏振光的旋光度有不同的响应,通过测量旋光度可以确定手性分子的结构和组成。
核磁共振方法则是通过测量手性分子在磁场中的响应来识别手性。
质谱方法和色谱方法则是利用分子的质量差异或分子在柱上的分离来实现手性识别。
手性拆分是指将手性分子分离为其对映异构体的过程。
手性拆分的策略多种多样,常见的手性拆分方法包括晶体拆分、化学拆分和生物拆分等。
晶体拆分是通过晶体生长的方式将手性分子分离为不同的晶体,进而得到对映异构体。
化学拆分则是通过化学反应将手性分子转化为其他化合物,从而实现手性分子的拆分。
生物拆分则是利用生物体系中的酶或其他生物分子对手性分子进行选择性催化,从而实现手性分子的分离。
手性识别与拆分在药物研究和合成中具有重要的应用价值。
在药物研究中,手性药物的对映异构体往往具有不同的药理活性和毒性。
因此,通过手性识别和拆分可以选择性地合成和使用具有更好活性和安全性的手性药物。
在有机合成中,手性识别和拆分可以帮助合成化学家选择性地合成手性分子,从而提高合成效率和产率。
总之,手性识别与拆分是有机化学中的重要研究领域。
通过手性识别和拆分,我们可以更好地理解和利用手性分子的性质,为药物研究和有机合成等领域提供更多的选择和可能性。
手性化合物的拆分方法
手性化合物的拆分方法主要有对映体分离法和酶催化法两种。
对映体分离法是指通过物理或化学方法将手性化合物中的对映体分离开来。
常用的物理方法有晶体分离法和对映体选择性结晶法。
晶体分离法是指利用手性化合物结晶时的差异,通过适当的选择溶剂和结晶条件,使其中一个对映体结晶出来,而另一个对映体仍保持在溶液中。
对映体选择性结晶法则是利用对映体结晶时晶体生长速度的差异,通过选择合适的溶液浓度和温度,使其中一个对映体的晶体生长速度比另一个对映体快,从而实现对映体的分离。
酶催化法是利用手性化合物和酶之间的反应性差异进行对映体分离的方法。
酶催化法主要通过酶的手性选择性来实现对映体的分离,其中最常用的是立体选择性催化酶。
这种酶具有对手性底物具有高选择性催化作用的特点,通过调节反应条件和酶底物比例,可以将手性化合物中的对映体分离开来。
除了以上的方法,还有一些其他的手性化合物拆分方法,如手性色谱法、手性电泳法、手性转换法等。
这些方法则是通过物理、化学或生物学手段对手性化合物进行选择性的分离和转化,以实现对映体的分离。
手性药物拆分技术及分析在药物研究和开发中,手性药物是一个非常重要的领域。
手性药物指的是分子结构中含有手性中心(手性碳原子)的化合物,左旋和右旋两种异构体具有不同的生物活性和体内代谢途径。
因此,正确地分析和分离手性药物对于药物研究和有效性的评估至关重要。
手性药物分析技术主要包括色谱法、光学活性法和核磁共振(NMR)法。
色谱法是一种常用的手性药物分析方法。
它基于手性药物的两种对映异构体在手性固定相上的不同吸附能力进行分离。
常见的色谱法包括高效液相色谱法(HPLC)和毛细管电泳法。
HPLC通常使用手性固定相柱,通过选择性地吸附左旋或右旋手性分子,实现对手性药物的分离。
毛细管电泳是一种高效的手性药物分析方法,基于对映异构体在电场中的迁移速率不同,通过毛细管中背景电解质的浓度和pH值调节来分离手性药物。
光学活性法是一种基于光学活性性质来分析和测定手性药物的方法。
光学活性手性药物由于具有旋光性,可以引起光的偏振方向发生旋转。
常用的光学活性法包括旋光仪法和圆二色光谱法。
旋光仪法是通过测定手性分子对光的旋转角度来判断手性药物的对映异构体的含量和比例。
圆二色光谱法则是测量手性分子对不同波长光的吸收性质,通过对波长的差异来判断手性药物的对映异构体。
核磁共振(NMR)是一种基于核磁共振现象来分析手性药物的方法。
NMR技术通过检测手性碳原子或核自旋的信号来确定手性药物的结构和对映异构体的比例。
通过对样品进行核磁共振实验后,通过解释谱图的峰位和峰形等信息,可以得到手性药物的分析结果。
此外,还有一些其他的手性药物分析方法,如质谱法、X射线衍射法和环光谱法等。
这些方法在手性药物分析中各有优劣,适用于不同类别和性质的手性药物。
总之,手性药物分析技术对于药物研究和评估的重要性不可忽视。
科学家们通过不断研究和发展新的手性分析技术,为新药开发和治疗提供了更可靠和准确的手性药物分析方法。
有机化学中的手性合成和拆分技术手性合成和拆分技术在有机化学中是非常重要的。
手性分子是一种在化学结构上相同但在空间结构上不对称的分子。
它们的特性在化学和生物学中起着至关重要的作用。
在药物开发中,药物分子的手性往往会影响药物的生物利用度和效果。
因此,了解手性化合物的合成和拆分技术非常有帮助。
手性合成技术的发展历程非常曲折。
一开始,化学家们发现可以通过光学性质(例如旋光性)来对手性分子进行检测和识别。
这种检测技术为手性合成技术的发展奠定了基础,因为这证明了存在具有手性的分子。
随着时间的推移,研究人员开始探索如何合成手性化合物。
最早的手性合成方法是利用天然产物。
化学家们发现有一些天然产物,如樟脑、多肽和生物碱,具有手性结构。
这些产物为手性合成技术的发展带来了重大贡献。
但是,天然产物只能提供有限的手性合成选择,导致化学家们广泛探索其他手性合成方法。
其中一种方法是对映体选择拆分。
所谓对映体选择拆分就是从一个混合物中分离出单一对映体结构。
这可以通过利用酸或碱作为催化剂来实现。
然而,分离出的手性化合物数量通常较小,这使得对映体选择拆分难以应用于大规模生产。
另一种手性合成技术是立体选择反应。
这种技术利用具有手性催化剂的化合物来选择性地控制产物的手性。
这种技术广泛应用于有机合成和药物研发中。
例如,铱催化的不对称氢化反应已被广泛利用于手性化合物的制备中。
手性合成技术的另一个发展方向是利用手性分子匹配。
对映体间相互作用,也就是对映体间的手性识别性质,被广泛应用于手性化学物质的设计和合成。
例如,在金属有机化学中,采用配位环层是一种常见而有效的手性识别策略。
除了手性合成技术之外,还存在手性拆分技术。
手性拆分是将一个手性化合物分解成其对应的两个对映体之一的过程。
一种方法是制备手性材料。
这种手性材料可以根据其空间构型选择性捕获手性分子,具有将手性分子拆分成其对应对映体的能力。
另一种方法是使用手性分离筛。
手性分离筛是一种高度智能的分离材料,可以根据手性识别原理选择性地排除对映体结构,从而分离出目标化合物的一个对映体。
色谱分析中的手性分离技术色谱分析是一种常见的分离和检测技术,它可以通过不同成分在色谱柱上的运移速度差异,实现样品中组分的分离。
而手性分离技术则是其中一种具有广泛应用的技术。
手性分离技术又称拆分体分离技术,是指将具有手性的化合物分离成其对映异构体的过程。
手性分离技术主要有两种:手性凝胶色谱和手性高效液相色谱。
手性凝胶色谱是一种传统的手性分离技术,它利用具有手性结构的聚合物凝胶作为色谱填料,通过样品分子与凝胶之间的分子识别作用实现分离。
手性凝胶色谱是一种相对简单的手性分离技术,但是由于其分离程度较低,通常用于对手性分析的初步筛查。
手性高效液相色谱是一种高效手性分离技术,它基于手性色谱填料的表面手性区分作用和反相分离作用,实现对手性化合物的高效分离。
在手性高效液相色谱中,手性色谱柱成为关键的分离工具,色谱柱内填充了各种具有手性结构的填料,如纳米结构材料、束缚配体、离子交换树脂等。
手性高效液相色谱技术需要精密的操作和控制技术,同时对手性填料的选择和性能也十分关键。
常见的手性高效液相色谱模式包括正相模式、反相模式和杂相模式。
正相模式下,填料是手性站点,流动相是水/有机溶剂混合物,溶液的极性越强,分离能力越高;反相模式下,填料是非手性的,分离基于无手性分子和手性分子与填料的相互作用,流动相是弱极性有机溶剂/水混合物;杂相模式是正相和反相模式的结合。
手性高效液相色谱技术在制药、化妆品、食品、医疗诊断等领域得到了广泛应用。
例如,在药物研发中,手性高效液相色谱可以对药物的对映异构体进行分离和鉴定,以确定对映异构体的药效和安全性;在食品领域,手性高效液相色谱可以对添加的手性能呈现不同风味的香料成分的组成比例进行分离和鉴定。
当然,手性分离技术也存在一些困难和局限性。
一方面,手性化合物的对映异构体之间的物理和化学性质非常相似,因此分离困难。
另一方面,手性化合物的分离需要精密的手性填料和色谱柱控制技术,手性柱的制备和使用成本也较高。
手性化合物的色谱法分离周丽华中师范大学化学学院2011级摘要:本文综述了手性化合物的四种拆分方法—薄层色谱法(TLC)、气相色谱法(GC)、高效液相色谱法(HPLC)、毛细管电色谱法(CEC),及每种方法的作用机理关键字:手性化合物色谱法分离Chromatographic Separation of Chiral Compounds Abstract: This paper reviewed four methods for separation of chiral compounds , such as TLC、GC、HPLC、CEC , introduced mechanism of each method.Key word : Chiral Compounds Chromatographic Separation1.引言手性是用来表达化合物分子结构不对称性的术语,被认为是三维物体的一个基本属性。
有很多化合物分子,构成它们的元素完全相同,但原子排列方式不同,彼此如同镜子内外世界的对应,也就是具有手性,它们就互称为“对映体”。
在自然界中,手性现象无处不在。
化合物分子含有某些不对称因素时,该化合物被称为手性化合物。
随着人类在生物工程和生命科学上的发展,科学家己经认识到,手性化合物例如手性药物异构体尽管其物理和化学性质几乎完全相同,只有旋光性不同,但他们在生物体内的生理活性和药理作用却存在很大的差别。
最经典的例子是thahdomide[l],也叫反应停。
其不同的构型却存在不同的生理效应:R构型具有良好的镇静作用而S构型却导致胎儿畸形。
在农药方面,手性问题也受到广泛的关注。
这主要是因为在外消旋体的农药中,其中一半可能是没有活性的,如果用于洒播在农田,既造成资源浪费,又污染环境。
但随着对环境安全、高效、安全的要求,含单一对映体的手性农药将会不断的发展。
鉴于有机分子的构型与其生物活性的的特殊关系,有必要对手性化合物的各个异构体分别进行考察,了解他们各自的生理活性,以便达到高效、安全、无污染的用药目的。
手性化合物的拆分技术研究进展摘要本文综述了分离外消旋体的几种主要拆分方法的优缺点及其应用情况。
分别有:化学拆分法、膜拆分法、色谱拆分法以及毛细管电泳拆分法。
关键词:手性物;拆分;外消旋体Technical Progress of Chiral SeparationAbstractThis article reviews separation methods of chiral which include chemical,membranous,chromatographic and electrophoretic methods.Key words:chiral compounds;chiral separation;raceme目前获得手性物的主要方法还是通过拆分外消旋体。
早期的拆分方法主要有机械拆分,结晶拆分以及手性溶剂结晶拆分。
这三种方法都是利用外消旋混合物的两种对应体结晶性能不一样的特点进行分离。
已经有较成熟工业应用,但一次性收率较差,在此不做赘述还是本文综述了今年来手性拆分方法中使用较多的化学拆分法、膜拆分、色谱拆分以及毛细管电泳拆分四种拆分技术。
1化学拆分[1]1.1生成非对映体拆分此方法是利用外消旋混合物与手性试剂反应后生成有不同性质的非対映体,从而利用生成物的不同物理性质(溶解度、蒸汽压、结晶速率等)将其分离,再将分离后的物质分别还原成之前的対映体。
还可以使用拆分剂家族代替单一拆分剂进行拆分,所谓拆分剂家族是指有类似结构的2~3个手性剂拆分剂。
组合拆分提高了产品收率和纯度。
1998年Hulsho F L A等人[2]就使用一定量的(S,S)酒石酸衍生物的拆分剂家族拆分3-(1,4-亚乙基哌啶基)苯甲酸酯和3,4-二笨基四氢吡咯,经过一定处理后,两种対映体的纯度(ee值)分别达到了99%和98%。
如果拆分剂不能和対映体反应,就可以利用拆分剂的空穴与两种対映体之间形成氢键或者范德华力能力的不同,将一种対映体优先包裹以达到分离的目的。
手性胺的拆分的操作方法
手性胺的拆分操作方法可以通过以下几种方式实现:
1. 应用手性分离柱:首先,将手性胺溶解于某种适合的溶剂中,然后通过手性分离柱进行分离。
手性分离柱是填充有手性配体的柱子,例如偏酸性纤维素(Pirkle)柱或手性配体固定的液相柱。
将溶解好的手性胺溶液通过这些柱子进行洗脱操作,不同的对映体将以不同的速度通过柱子洗脱,从而实现手性胺的拆分。
2. 应用手性化合物结晶法:将手性胺与适合的手性化合物按照一定的摩尔比进行结晶反应。
由于手性胺和手性化合物成分的差异,导致结晶时形成不同的晶体形式。
通过收集和分离这些不同的晶体形式,可以得到手性胺的不同对映体。
3. 应用糖醇法:手性胺通常可以与某些手性糖醇反应生成二元络合物。
这些二元络合物在熔点上表现出不同的特性,例如熔点的可测性以及不同对映体的熔化温度偏差。
通过测定这些熔点数据,可以对手性胺进行分离。
无论通过哪种方式进行手性胺的拆分,最终目标是得到手性纯的对映体,并且这些方法在实际操作中还需根据具体情况进行具体选择。
手性药物拆分技术及分析手性药物(chiral drugs)是指分子内部有一个或多个不对称碳原子的药物,即具有手性结构的药物。
手性药物由于具有左右旋异构体,使得其药理学效应、药效学性质、药代动力学以及安全性能等方面出现差异。
因此,手性药物的拆分技术及分析对于药物的研发、生产和应用具有重要意义。
手性药物的拆分技术主要有下述几种方法:晶体化学方法、酶法、化学拆分、色谱法和光学活性检测。
首先是晶体化学方法,该方法是利用手性药物晶体的对称性差异完成拆分。
通过晶体中的尖、刃、拱等特征差异,将手性药物分离为晶体异构体。
其次是酶法,手性药物的拆分可以通过酶的催化作用实现。
酶是具有高选择性、高催化效率和高效底物转化率的催化剂。
通过选择合适的酶,可以将手性药物转化为对应的手性异构体或原生态精细化靶化合物。
化学拆分是指通过特定的化学反应将手性药物分解为不对称碳原子具有相反手性的产物。
该方法较为常用,但对于存储稳定性较差的手性药物较不适宜。
色谱法是利用不同手性列进行手性分离,如手性HPLC(高效液相色谱)和手性毛细管电泳等。
这些方法主要是利用手性固定相对手性药物进行分离,可达到手性药物的拆分效果。
光学活性检测是通过光学活性的手性试剂或手性染料,以手性化合物的吸光性能差异检测手性药物的拆分效果。
根据手性分析原理,通过手性分析仪器对手性药物进行检测和分析。
手性药物的分析对于药物研发、生产和应用非常重要。
分析手性药物的关键是确保其纯度和药效学性质,并且有助于合理掌握手性药物在体内的吸收、分布、代谢和排泄的信息。
以下是手性药物分析的一些常用方法。
首先是纳米液相色谱法,该方法是将分离的手性药物样品通过微量泵输送到纳米柱中,在极小的流速和流体容量下进行分离。
该方法对于手性药物样品的需求量很小,因此可以减少手性药物样品的消耗。
其次是循环偏振负压电流法,该方法通过测量手性药物样品对光的旋光性质,直接反应其手性结构。
该方法准确、快速,适用于灵敏度高的手性药物分析。
手性化合物拆分方法
手性化合物的拆分方法通常有以下几种:
1. 光学拆分:利用手性催化剂或其他手性物质对手性化合物进行拆分。
光学活性的手性化合物经过光学反应与手性催化剂反应可以得到单一手性的产物。
2. 液体相转移拆分:将手性化合物溶解在不对其进行反应的溶剂中,然后加入具有手性结构的离子对或分子对,形成包合物。
通过改变反应条件或进行萃取操作,可以将手性化合物从包合物中分离出来。
3. 对映体选择性结晶:通过控制结晶条件和添加适当的对映配体或样品处理剂,使手性化合物在结晶过程中选择性地形成单一手性晶体。
4. 气相拆分:利用对映体的蒸汽压差异,通过适当的气-液平衡条件和温度条件,将手性化合物分离出来。
5. 手性液相色谱:利用手性稳定相或手性固定相,在手性固定相或手性稳定相的控制下对手性化合物进行分离和拆分。
6. 酶催化拆分:利用手性酶的选择性催化作用,将手性化合物转化为单一手性的产物。
以上方法中的选择取决于手性化合物的特性、拆分要求和可用的拆分试剂或设备。
手性拆分技术手性药物的制备技术由化学控制技术和生物控制技术两部分组成。
化学控制技术:普通化学合成、不对称合成和手性源合成.生物控制技术:天然物的提取分离技术和控制酶代谢技术。
手性拆分法:结晶法拆分、动力学拆分、色谱分离法拆分、膜拆分法、萃取拆分法1.结晶拆分法结晶法拆分包括直接结晶法拆分和非对映异构体拆分分别适用于外消旋混合物和外消旋化合物的拆分。
在一种外消旋混合物的过饱和溶液中, 直接加入某一对映体的晶种,即可得到一定量的该对映体, 这种直接结晶的拆分方法仅适用于外消旋混合物, 其应用几率不到10%外消旋化合物较为常见, 大约占所有外消旋体的90%。
通过与非手性的酸或碱成盐可以使部分外消旋化合物转变为外消旋混合物,扩大直接结晶法拆分的应用范围使部分外消旋化合物转变为外消旋混合物。
也可采用与另一手性化合物(即拆分剂)形成非对映异构体混合物的方法,利用这对非对映异构体盐的溶解度和结晶速去率的差异, 通过结晶法进行分离, 最后脱去拆分剂即得单一构型的异构体。
最常见的拆分剂是手性酸或手性碱。
近年出现了组合拆分、复合拆分、包合拆分和包结拆分等新技术,是对非对映异构体拆分的有效补充。
1.1 组合拆分组合拆分是指采用结构类型相同的2~3个手性化合物构成的拆分剂家族代替单一拆分剂进行外消旋化合物拆分的新方法。
拆分剂家族一般是将常用的手性拆分剂(如α-甲基苄胺、α—氨基苯乙醇、酒石酸、扁桃酸等)进行结构修饰而形成的一组衍生物.在拆分剂家族中,每个化合物之间要具有非常强的结构类似性和立体化学均一性。
实际操作过程是将拆分剂家族和被拆分的外消旋化合物以物质的量比1∶1的比例溶在某一种溶剂中, 进行结晶拆分。
与单一拆分剂相比,拆分剂家族以高选择性和高收率与外消旋体快速地形成非对映体的结晶。
1。
2 复合拆分如果外消旋化合物结构中无酸性或碱性官能团时,那么结晶法拆分的应用将受到限制,复合拆分(complexresolution)便是一个补充。
手性物质提取分离手性药物的结晶拆分方法:手性化合物的拆分是给外消旋混合物制造一个不对称的环境,使两个对映异构体能够分离开来。
从方法学上来讲,可以分为结晶拆分法(物理拆分方法、化学拆分方法)、动力学拆分方法、生物拆分方法(相当部分是生物催化的动力学拆分)及色谱拆分方法。
--手性药物的拆分方法—1、结晶拆分法--直接结晶法---在光学活性溶剂中的结晶拆分--直接结晶法---外消旋体的不对称转化和结晶拆分--直接结晶法---逆向结晶法逆向结晶法则是在外消旋体的饱和溶液中加入可溶性某一种构型的异构体[如(R)—异构体],添加的(R)—异构体就会吸附到外消旋体溶液中的同种构型异构体结晶体的表面,从而抑制了这种异构体结晶的继续生长,而外消旋体溶液中相反构型的(S)—异构体结晶速度就会加快,从而形成结晶析出。
--直接结晶法---优先结晶法优先结晶方法(preferential crystallization)是在饱和或过饱和的外消旋体溶液中加入一个对映异构体的晶种,使该对映异构体稍稍过量因而造成不对称环境,结晶就会按非稍的过程进行,这样旋光性与该晶种相同的异构体就会从溶液中结晶出来。
--直接结晶法---自发结晶拆分法自发结晶拆分(spontaneous resolution)是指当外消旋体在结晶的过程中,自发的形成聚集体。
--通过形成非对映异构体的结晶法--非对映异构体的形成和拆分原理--通过形成非对映异构体的结晶法--用于碱拆分的拆分试剂(酸性拆分剂)2、动力学拆分化反应,分离方法直接。
的衍生化试剂具有良好的对热及水的稳定性。
局限性色谱柱价格昂贵,部分固定相还存在稳定性差,柱容量低,柱强度差等缺点,且根据不同手性药物的性质不同,选用的分析方法也不同。
系统平衡时间较长,添加剂消耗大,对于一些难分离的对映体效果差。
手性试剂需要有高的光学纯度,各对映体的衍生化速率及平衡常数应一致,要求衍生化反应迅速、彻底,否则影响定量结果。
有机化学基础知识点手性化合物的分离和鉴定手性化合物是有机化学中重要的研究对象,具有对光学活性和立体选择性等特性。
因此,对手性化合物的分离和鉴定具有重要的意义。
本文将介绍手性化合物的分离和鉴定的基本原理和常用方法。
一、手性化合物分离的原理和方法1. 手性分离的原理手性分离是指将混合物中的手性化合物分离为单一手性形式的过程。
这是由于手性化合物的分子具有非对称中心或轴对称性,存在光学异构体,其旋光性不同,因此可以通过物理性质的差异实现手性分离。
2. 手性分离的方法(1)晶体分离法:利用晶体的手性选择性分离手性化合物,常用的方法包括晶体生长法和再结晶法。
(2)液体分离法:根据手性化合物在固定相或流动相中的保留差异进行分离,如手性层析法、手性萃取法和手性色谱法等。
(3)胶体分离法:利用光学、电学、化学、热学等对手性分子的效应实现分离,如手性电泳法和手性微胶囊相变法。
二、手性化合物鉴定的原理和方法1. 光学旋光度的测定手性化合物是具有光学活性的,可以使平面偏振光的偏振方向发生旋转,这种旋转的角度称为光学旋光度。
通过测定光学旋光度可以确定手性化合物的相对构型和绝对构型。
2. 核磁共振波谱(NMR)的应用核磁共振波谱是一种常用的手性化合物鉴定方法,通过分析化合物的NMR谱图,可以确定手性中心的数量和相对位置,进而推测手性化合物的结构。
3. 圆二色谱(CD)的应用圆二色谱是一种测定手性化合物的方法,通过测定手性化合物对环形偏振光的吸收和散射来判断化合物的手性。
圆二色谱可以提供手性中心的绝对构型信息。
4. X射线晶体衍射法X射线晶体衍射法是一种精确测定化合物三维结构的方法,通过测定手性化合物晶体的衍射图案,可以得到化合物的空间构型和手性。
结论手性化合物分离和鉴定是有机化学中的重要内容,本文介绍了手性化合物分离的原理和方法,以及手性化合物鉴定的常用方法。
通过合理选择适用的方法,可以准确地分离和鉴定手性化合物。
这对于深入理解手性化合物的性质和反应机理,对于药物合成、光电材料和医药等领域的研究有着重要的意义。
手性化合物的拆分技术研究进展
许多药物具有光学活性。
一般显示光学活性的药物分子,其立体结构必定是手性的,即具有不对称性。
手性是指其分子立体结构和它的镜像彼此不能重合。
互为镜像关系而又不能重合的一对分子结构称为对映体。
虽然对映异构体药物的理化性质基本相同,但由于药物分子所作用的受体或靶位是由氨基酸、核苷、膜等组成的手性蛋白质和核酸大分子等,后者对与之结合的药物分子的空间立体构型有一定的要求。
因此,对映异构体在动物体内往往呈现出药效学和药动学方面的差异。
鉴于此,美国食品药品监督管理局规定,今后研制具有不对称中心的药物,必须给出手性拆分结果,欧盟也提出了相应的要求。
因此,手性拆分已成为药理学研究和制药工业迫切需要解决的问题。
1.生成非对映体拆分
此方法是利用外消旋混合物与手性试剂反应后生成有不同性质的非対映体,从而利用生成物的不同物理性质(溶解度、蒸汽压、结晶速率等)将其分离,再将分离后的物质分别还原成之前的対映体。
还可以使用拆分剂家族代替单一拆分剂进行拆分,所谓拆分剂家族是指有类似结构的2~3个手性剂拆分剂。
组合拆分提高了产品收率和纯度。
2.动力学拆分
利用两个対映体和手性试剂发生反应的速度不一样,在混合物中添加不足量的手性试剂。
一个対映体与手性试剂结合,从而得到纯的反应慢的対映体。
可以分为经典动力学拆分和动态动力学拆分,动态动力学拆分是指将经典动力学拆分和底物消旋化相结合的拆分方法,理论产率可以达到100%。
底物消旋化分为化学消旋化和酶消旋化,由于酶消旋化具有操作条件温和、产率高、副反应少等优点而具有广泛的工业应用价值[4]。
3.液膜拆分
将具有手性识别功能的物质溶解在溶剂中制备液膜,利用内外向间推动力(浓度差、pH 差等)使待分离物中的某种物质得到富集。
液膜分离方法又分为本体液膜、乳化液膜、支撑液膜3种类型。
4.固体膜拆分
此方法是基于対映体间亲和力的差异,利用推动力(浓度差、压力差、电势差)进行分
离。
根据膜是否具有选择性又分成了两类,但是不具有手性选择性的膜分离时还需要有辅助的手性选择环境。
5.气相色谱拆分
气相色谱拆分法有操作简单、分离效率高、灵敏性高、分离效率高的优点。
但是它需要样品能气化,这就要求被分离体系具有很好的热稳定性,这大大限制了GC的广泛应用。
在GC中应用最多的固定相是各种环糊精衍生物。
使用这些固定相成功地分离了有机氯、手性有机磷等手性农药以及三唑类手性杀菌剂的分离[8]。
6.高效液相色谱拆分(HPLC)
高效液相色谱已经被广泛地使用到手性物的分离中,是处理药物、天然化学品、农药等领域中非常重要的分离手段。
包括了间接法和直接法两种。
间接法是利用高光学纯度的衍生试剂与対映体反应生成非对映异构体,最后再非手性环境下进行分离。
直接法是指在手性环境中直接进行分离,又可以分成手性固定相法(CSPHPLC)和手性流动相法。
由于CSPHPLC 避免了分离后対映体与流动相的拆分,因而是目前较为简单有效的方法。
为了达到好的分离效果需要有很高识别性能的手性固定相(CSP),在众多的手性固定相中基于多糖和淀粉的CSPs对众多的消旋物都有很好的识别能力,是目前使用最多的CSP。
此外还有反相色谱拆分、高效逆流色谱拆分、薄层色谱拆分以及超临界流体拆分等众多色谱拆分方法。
7.毛细管区带电泳(CZE)
CZE是CE中最常见的一种分离方法。
可以加入多种手性拆分剂,分别具有不同的机理。
除了CZE以外还有基于分子筛原理的毛细管凝胶电泳CGE,由于这个电泳技术使用的手性选择剂局限在蛋白类和CD及其衍生物,所以CGE主要用来分离多肽、蛋白质等有生物活性的物质。
毛细管胶束电动色谱MEKC,集色谱分配和电渗电泳于一体的新型色谱。
它能够很好的用于分离、分析中性化合物。
毛细管等速电泳CITP,在生物制品和药物的纯度检测方面具有很大的应用前景。
毛细管电色谱CEC,以电渗流为流动相的驱动力,集CE的高效率和HPLC的高选择性于一身,很适合用于分离疏水性或着电泳淌度很接近的対映体。
非水毛细管电泳NACE,是在高电场的作用下,通过非水溶剂的不同酸、碱、离子的溶剂化作用效应,使対映体得到拆分的技术。
使用范围很广。
除此之外还新产生了萃取拆分、旋转带蒸馏拆分等新型的拆分技术[4]。
结论
随着食品、制药、农药等领域中手性化合物重要性的日益凸显,手性拆分技术必将有更广阔的发展空间。
本文提到的各种手性拆分方法都有各自的优缺点,相信随着对酶的进一步研究以及新型分离技术的使用,在已有的拆分方法基础上结合多种分离方法进行分离,综合其优
点,必定能够更加完善现有的拆分方法。
参考文献
[1]李水清,黄延胜.手性化合物对映体拆分方法概述[J].天津化工.2004,18(5):18-21
[2]邓金根,彭小华,崔欣,等. 光学纯兰索拉唑的制备方法:中国, 2000 /1329003 [ P ]. 2000 – 06- 19
[3]杨千姣,刘丹,曲雷,等.手性拆分技术及其在手性药物合成中的应用新进展.中国药物化学杂志.2009,19(6):429-435
[4]朱小波,王仪,陈福良,等.环糊精衍生物在手性农药气相色谱分离中的应用[J].现代农药.2009,8(3):5-10
[5]任朝兴,艾萍,李莉,等.手性离子液体和纤维素三(3,5-二甲基苯基氨基甲酸酯)混合气相色谱手性固定相研究[J] .分析化学研究简报.2006,34(11):1637-1640
[6]徐卉姝,关瑾,陈星,等.紫外分光光度法测定配合物组成及其在手性分离中的应用[J].光谱实验室.2010,27(3):972-976
[7]田芹,任丽萍,吕春光,等.反相色谱条件下三唑类手性农药対映异构体的拆分[J].分析化学研究简报.2010,5(38):688-692
[8]李成平,曾怀超,鲁琳,等.二氢毗咤钙拮抗剂马尼地平和西尼地平对映体的手性拆分研究[J].药物分析杂志.2010,30(4):661-663
[9]陶佳颐.手性化合物和毛细管电泳技术的应用.蚌埠医学院学报.2007,32(1):124-126
[10]祝宝福,解育静,杜学勤.高效毛细管电泳在手性药物分析中的应用.广东化工.2009,36(4):157-159
[11]韦寿莲,邓光辉.手性药物的毛细管电泳拆分[J].分析测试学报,2007,26(6):907-910。