第五章 金属合金的塑性变形 -
- 格式:doc
- 大小:30.50 KB
- 文档页数:15
金属塑性变形原理1、变形和应力1.1塑性变形与弹性变形金属晶格在受力时发生歪扭或拉长,当外力未超过原子之间的结合力时,去掉外力之后晶格便会由变形的状态恢复到原始状态,也就是说,未超过金属本身弹性极限的变形叫金属的弹性变形。
多晶体发生弹性变形时,各个晶粒的受力状态是不均匀的。
当加在晶体上的外力超过其弹性极限时,去掉外力之后歪扭的晶格和破碎的晶体不能恢复到原始状态,这种永久变形叫金属的塑性变形。
金属发生塑性变形必然引起金属晶体组织结构的破坏,使晶格发生歪扭和紊乱,使晶粒破碎并且使晶粒形状发生变化,一般晶粒沿着受力方向被拉长或压缩。
1.2应力和应力集中塑性变形时,作用于金属上的外力有作用力和反作用力。
由于这两种外力的作用,在金属内部将产生与外力大小相平衡的内力。
单位面积上的这种内力称为应力,以σ表示。
σ=P/S式中σ——物体产生的应力,MPa:P——作用于物体的外力,N;S——承受外力作用的物体面积,mm2。
当金属内部存在应力,其表面又有尖角、尖缺口、结疤、折叠、划伤、裂纹等缺陷存在时,应力将在这些缺陷处集中分布,使这些缺陷部位的实际应力比正常应力高数倍。
这种现象叫做应力集中。
金属内部的气泡、缩孔、裂纹、夹杂物及残余应力等对应力的反应与物体的表面缺陷相同,在应力作用下,也会发生应力集中。
应力集中在很大程度上提高了金属的变形抗力,降低了金属的塑性,金属的破坏往往最先从应力集中的地方开始。
2、塑性变形基本定律2.1体积不变定律钢锭在头几道轧制中因其缩孔、疏松、气泡、裂纹等缺陷受压缩而致密,体积有所减少,此后各轧制道次的金属体积就不再发生变化。
这种轧制前后体积不变的客观事实叫做体积不变定律。
它是计算轧制变形前后的轧件尺寸的基本依据。
H、B、L——轧制前轧件的高、宽、长;h、b、l——轧制后轧件的高、宽、长。
根据体积不变定律,轧件轧制前后体积相等,即HBL=hbl2.2最小阻力定律钢在塑性变形时,金属沿着变形抵抗力最小的方向流动,这就叫做最小阻力定律。
第五章 金属的塑性和变形抗力从金属成形工艺的角度出发,我们总希望变形的金属或合金具有高的塑性和低的变形抗力。
随着生产的发展,出现了许多低塑性、高强度的新材料,需要采取相应的新工艺进行加工。
因此研究金属的塑性和变形抗力,是一个十分重要的问题。
本章的目的在于阐明金属塑性和变形抗力的概念,讨论各种因素对它们的影响。
§5.1 塑性、塑性指标、塑性图和变形抗力的概念所谓塑性,是指固体材料在外力作用下发生永久变形而又不破坏其完整性的能力。
人们常常容易把金属的塑性和硬度看作成反比的关系,即认为凡是硬度高的金属其塑性就差。
当然,有些金属是这样的,但并非都是如此,例如下列金属的情况: Fe HB =80 ψ=80%Ni HB =60 ψ=60%Mg HB =8 ψ=3%Sb HB =30 ψ=0%可见Fe 、Ni 不但硬度高,塑性也很好;而Mg 、Sb 虽然硬度低,但塑性也很差。
塑性是和硬度无关的一种性能。
同样,人们也常把塑性和材料的变形抗力对立起来,认为变形抗力高塑性就低,变形抗力低塑性就高,这也是和事实不符合的。
例如奥氏体不锈钢在室温下可以经受很大的变形而不破坏,既这种钢具有很高的塑性,但是使它变形却需要很大的压力,即同时它有很高的变形抗力。
可见,塑性和变形抗力是两个独立的指标。
为了衡量金属塑性的高低,需要一种数量上的指标来表示,称塑性指标。
塑性指标是以金属材料开始破坏时的塑性变形量来表示。
常用的塑性指标是拉伸试验时的延伸率δ和断面缩小率ψ,δ和ψ由下式确定: %100l l l 00k ×−=δ (5.1) %100F F F 0K 0×−=ψ (5.2) 式中l 0、F 0——试样的原始标距长度和原始横截面积;l K 、F K ——试样断裂后标距长度和试样断裂处最小横截面积。
实际上,这两个指标只能表示材料在单向拉伸条件下的塑性变形能力。
金属的塑性指标除了用拉伸试验之外,还可以用镦粗试验、扭转试验等来测定。
第五章金属及合金的形变(第五、六、七节)第五章金属及合金的形变U第一节应力与应变U第二节弹性形变U第三节范性形变的表象U第四节单晶体的滑移ª第五节孪生及扭折ª第六节多晶体的范性形变ª第七节范性形变后金属的结构、组织和性能第五节孪生及扭折滑移是形变的主要形式,孪生及扭折也是形变的不同形式。
一、孪生孪生━晶体受力后,以产生孪晶的方式而进行的切变过程,称为孪生。
孪晶━以共格界面相联结,晶体学取向成镜面对称关系的这样一对晶体(或晶粒)的合称。
孪生前后晶体的形变晶体受到切应力后,沿着一定的晶面(孪生面) 和一定的晶向(孪生方向) 在一个区域内发生连续的顺序的切变。
滑移≠孪生滑移时晶体两部分相对滑移面的(整体) 切变量是原子间距的整数倍。
孪生时各晶面相对于孪生面的切变量与该晶面和孪生面的距离成正比,是原子间距的分数值。
第五节孪生及扭折孪生也是通过位错运动来实现的。
产生孪生的位错的柏氏矢量必须小于一个原子间距━部分位错。
每层原子都有一个不相等的部分位错。
逐层横扫、形成孪晶。
孪生比滑移困难:n晶体学条件必须满足孪生后取向关系,只能沿确定的晶面和晶向进行切变;o孪生所需切应力往往比滑移大许多倍。
孪生核心大多产生于晶体内的局部高应力、高应变区,即在滑移已进行到相当程度、并受到严重阻碍的区域。
对于一些滑移系较多,而孪生与滑移的临界分切应力又相差很大的晶体来说,要使晶体不发生滑移而进行孪生,是相当困难的。
Z HCP金属(Mg、Zn) 是最常见出现孪晶的。
六方晶系的滑移系很少,滑移困难,容易出现孪晶。
FCC 金属很少进行孪生,只有很少金属(Cu、Ag)在极低温度下滑移很困难时才发生孪生。
BCC 金属(αFe)在室温时,只有在冲击载荷下,才进行孪生。
第五节孪生及扭折二、扭折扭折是在滑移受阻、孪生也不利的条件下,晶体所作的不均匀局部塑性变形来适应外力的作用,是位错汇集引起协调性的形变。
和孪生不同,扭折区晶体的取向发生了不对称的变化,扭折带大多是由折曲(ABCD)和弯曲(左右两侧)两部分组成。
第五章金属及合金的塑性变形与断裂一名词解释固溶强化,应变时效,孪生,临界分切应力,变形织构固溶强化:固溶体中的溶质原子溶入基体金属后使合金变形抗力提高,应力-应变曲线升高,塑性下降的现象;应变时效:具有屈服现象的金属材料在受到拉伸等变形发生屈服后,在室温停留或低温加热后重新拉伸又出现屈服效应的情况;孪生:金属塑性变形的重要方式。
晶体在切应力作用下一部分晶体沿着一定的晶面(孪晶面)和一定的晶向(孪生方向)相对于另外一部分晶体作均匀的切变,使相邻两部分的晶体取向不同,以孪晶面为对称面形成镜像对称,孪晶面的两边的晶体部分称为孪晶。
形成孪晶的过程称为孪生;临界分切应力:金属晶体在变形中受到外力使某个滑移系启动发生滑移的最小分切应力;变形织构:多晶体中位向不同的晶粒经过塑性变形后晶粒取向变成大体一致,形成晶粒的择优取向,择优取向后的晶体结构称为变形织构,织构在变形中产生,称为变形织构。
二填空题1.从刃型位错的结构模型分析,滑移的移面为{111},滑移系方向为<110>,构成12 个滑移系。
P166.3. 加工硬化现象是指随变形度的增大,金属强度和硬度显著提高而塑性和韧性显著下降的现象,加工硬化的结果,使金属对塑性变形的抗力增大,造成加工硬化的根本原因是位错密度提高,变形抗力增大。
4.影响多晶体塑性变形的两个主要因素是晶界、晶格位向差。
5.金属塑性变形的基本方式是滑移和孪生,冷变形后金属的强度增大,塑性降低。
6.常温下使用的金属材料以细小晶粒为好,而高温下使用的金属材料以粗一些晶粒为好。
对于在高温下工作的金属材料,晶粒应粗一些。
因为在高温下原子沿晶界的扩散比晶内快,晶界对变形的阻力大为减弱而致7.内应力可分为宏观内应力、微观内应力、点阵畸变三种。
三判断题1.晶体滑移所需的临界分切应力实测值比理论值小得多。
(√)2 在体心立方晶格中,滑移面为{111}×6,滑移方向为〈110〉×2,所以其滑移系有12个(×)应为:{110}×6 〈111〉×2 P1663.滑移变形不会引起晶体结构的变化。
4.喷丸处理及表面辊压能显著提高材料的疲劳强度。
(√)5.在晶体中,原子排列最密集的晶面间的距离最小,所以滑移最困难。
(×)6.反复弯折铁丝,铁丝会越来越硬,最后会断裂。
(√)7.金属的加工硬化是指金属冷塑性变形后强度和塑性提高的现象。
(×)8 单晶体主要变形的方式是滑移,其次是孪生。
(√)9.细晶粒金属的强度高,塑性也好。
(×)10.晶界处滑移的阻力最大。
( √)首先明确,滑移变形的微观机制是位错的运动,晶界处产生强烈的晶格畸变,阻碍位错运动;而晶界附近造成严重的位错塞集,产生的应力场强烈阻止滑移的进行,因此晶界处滑移的阻力最大。
四选择题1.能使单晶体产生塑性变形的应力为( B )A.正应力B.切应力2.面心立方晶体受力时的滑移方向为(B )A <111>B <110>C <100>D <112>3.体心立方与面心立方晶格具有相同的滑移系,但其塑性变形能力是不同的,其原因是面心立方晶格的滑移方向较体心立方晶格的滑移方向( B )A.少B.多 C 相等D.有时多有时少4.冷变形时,随着变形量的增加,金属中的位错密度( A)。
A.增加 B 降低C无变化D.先增加后降低5.钢的晶粒细化以后可以( D )。
A.提高强度 B 提高硬度 C 提高韧性D.既提高强度硬度,又提高韧性6.加工硬化现象的最主要原因是( B)。
A.晶粒破碎细化 B 位错密度增加 C 晶粒择优取向D.形成纤维组织7.面心立方晶格金属的滑移系为( A )。
A.{111}<110> B.<110>{111} C.<100>{110} D.<100>{111}8 用铝制造的一种轻型梯子,使用时挠度过大但未塑性变形。
若要改进,应采取下列( A)措施A 采用高强度铝合金B 用钢代替铝C 用高强度镁合金D.改进梯子的结构设计五改错题1.塑性变形就是提高材料塑性的变形。
提高材料的强度,硬度及塑性。
2.滑移面是原子密度最大的晶面,滑移方向则是原子密度最小的方向滑移方向也是原子排列最密的方向,这是因为在晶体的原子密度最大的晶面上,原子间的结合力最强,而面与面之间的距离却最大,即密排晶面之间的原子间结合力最弱,滑移的阻力最小。
六简答1 单相合金的冷塑性变形与纯金属的室温塑性变形相比,有何特点。
1 简答:纯金属变形主要借助位错运动,通过滑移和孪生完成塑性变形,开动滑移系需要临界切应力,晶体中还会发生扭转;单相合金的基本变形过程与纯金属的基本过程是一样的,但会出现固溶强化,开动滑移系需要临界切应力较大,还有屈服和应变时效现象。
2 金属晶体塑性变形时,滑移和孪生有何主要区别?2 简答:滑移时原子移动的距离是滑移方向原子间距的整数倍,孪生时原子移动的距离不是孪生方向原子间距的整数倍;滑移时滑移面两边晶体的位向不变,而孪生时孪生面两边的晶体位向不同,以孪晶面形成镜像对称;滑移时需要的临界分切应力小,孪生开始需要的临界分切应力很大,孪生开始后继续切变时需要的切应力小,故孪生一般在滑移难于进行时发生。
3 简述冷加工纤维组织、带状组织和变形织构的成因及对金属材料性能的影响。
3 简答:冷加工纤维组织是纯金属和单相合金在冷塑性变形时和变形度很大的条件下,各晶粒伸长成纤维状;带状组织是复相合金在冷塑性变形和变形度大的条件下第二相被破碎或伸长,沿变形方向成带状分布而形成的;变形织构是金属和合金在在冷塑性变形时晶粒发生择优取向而形成的。
上述冷加工纤维组织、带状组织和变形织构都使材料的性能具有方向性,即在各个方向上的性能不均,对使用性能有不良影响,但少数金属材料,如用作变压器的硅钢片,各向异性能更好满足使用要求。
4 为什么金属材料经热加工后机械性能较铸造态好。
4 简答:金属材料经热加工后机械性能较铸造态好的主要原因是热加工时的高温、大变形量使气泡、疏松和微裂纹得到机械焊合,提高了材料的致密性,消除了铸造缺陷,同时改善夹杂物和脆性相的形态、大小和分布,使枝晶偏析程度减弱,合金成分均匀性提高,热加工中形成合理的加工流线,热加工还可使金属显微组织细化,这些都可以提高金属材料的性能。
5 何为加工硬化?列出产生加工硬化的各种可能机制。
(不必说明),加工硬化现象在工业上有哪些作用?5 简答:金属材料经冷加工后,强度增加,硬度增加,塑性降低的现象称为加工硬化。
产生加工硬化的各种可能机制有滑移面上平行位错间的交互作用的平行位错硬化理论,以及滑移面上位错与别的滑移面上位错林切割产生割阶的林位错强化理论。
加工硬化在实际生产中用来控制和改变金属材料的性能,特别是对不能热处理强化的合金和纯金属尤为重要,可以进行热处理强化的合金,加工硬化可以进一步提高材料的强度;加工硬化是实现某些工件和半成品加工成型的主要因素;加工硬化也会带来塑性降低,使变形困难的影响,还会使材料在使用过程中尺寸不稳定,易变形,降低材料耐蚀性。
6 简要说明第二相在冷塑性变形过程中的作用。
6 简答:第二相在冷塑性变形过程中的作用一般是提高合金强度,但还取决于第二相的种类数量颗粒大小形状分布特点及与基体结合界面结构等,对塑性变形影响复杂。
第二相强度高于基体但有一定塑性,其尺寸、含量与基体基本接近,则合金塑性是两相的变形能力平均值。
第二相硬、脆,合金变形只在基体中进行,第二相基本不变形;第二相均匀、弥散分布在固溶体基体上,可以对合金产生显著强化作用。
7 讨论织构的利弊及控制方法。
7 简答:织构由晶粒择优取向形成,变形织构对再结晶织构形成有主要影响,织构造成材料性能各向异性。
各向异性在不同情况需要避免或利用。
织构控制可以通过控制合金元素的种类和含量、杂质含量、变形工艺(如变向轧制)和退火工艺等多种因素的配合。
8叙述金属和合金在冷塑性变形过程中发生的组织性能的变化。
8 简答:金属和合金在冷塑性变形过程中发生的组织性能的变化主要有晶粒被拉长,形成纤维组织,冷变形程度很高时,位错密度增高,形成位错缠结和胞状组织,发生加工硬化,,变形金属中出现残余应力,金属在单向塑性变形时出现变形织构。
9.产生加工硬化的原因是什么?加工硬化在金属加工中有什么利弊?答:①随着变形的增加,晶粒逐渐被拉长,直至破碎,这样使各晶粒都破碎成细碎的亚晶粒,变形愈大,晶粒破碎的程度愈大,这样使位错密度显著增加;同时细碎的亚晶粒也随着晶粒的拉长而被拉长。
因此,随着变形量的增加,由于晶粒破碎和位错密度的增加,金属的塑性变形抗力将迅速增大,即强度和硬度显著提高,而塑性和韧性下降产生所谓“加工硬化”现象。
②金属的加工硬化现象会给金属的进一步加工带来困难,如钢板在冷轧过程中会越轧越硬,以致最后轧不动。
另一方面人们可以利用加工硬化现象,来提高金属强度和硬度,如冷拔高强度钢丝就是利用冷加工变形产生的加工硬化来提高钢丝的强度的。
加工硬化也是某些压力加工工艺能够实现的重要因素。
如冷拉钢丝拉过模孔的部分,由于发生了加工硬化,不再继续变形而使变形转移到尚未拉过模孔的部分,这样钢丝才可以继续通过模孔而成形。
10.为什么细晶粒钢强度高,塑性,韧性也好?答:晶界是阻碍位错运动的,而各晶粒位向不同,互相约束,也阻碍晶粒的变形。
因此,金属的晶粒愈细,其晶界总面积愈大,每个晶粒周围不同取向的晶粒数便愈多,对塑性变形的抗力也愈大。
因此,金属的晶粒愈细强度愈高。
同时晶粒愈细,金属单位体积中的晶粒数便越多,变形时同样的变形量便可分散在更多的晶粒中发生,产生较均匀的变形,而不致造成局部的应力集中,引起裂纹的过早产生和发展。
因此,塑性,韧性也越好。
11.金属经冷塑性变形后,组织和性能发生什么变化?答:①晶粒沿变形方向拉长,性能趋于各向异性,如纵向的强度和塑性远大于横向等;②晶粒破碎,位错密度增加,产生加工硬化,即随着变形量的增加,强度和硬度显著提高,而塑性和韧性下降;③织构现象的产生,即随着变形的发生,不仅金属中的晶粒会被破碎拉长,而且各晶粒的晶格位向也会沿着变形的方向同时发生转动,转动结果金属中每个晶粒的晶格位向趋于大体一致,产生织构现象;④冷压力加工过程中由于材料各部分的变形不均匀或晶粒内各部分和各晶粒间的变形不均匀,金属内部会形成残余的内应力,这在一般情况下都是不利的,会引起零件尺寸不稳定。
12.分析加工硬化对金属材料的强化作用?答:随着塑性变形的进行,位错密度不断增加,因此位错在运动时的相互交割、位错缠结加剧,使位错运动的阻力增大,引起变形抗力的增加。
这样,金属的塑性变形就变得困难,要继续变形就必须增大外力,因此提高了金属的强度。