MIDAS-横向分析
- 格式:pdf
- 大小:773.68 KB
- 文档页数:10
MIDAS鱼腹式箱梁的中横梁计算要点摘要:连续箱梁应对横梁进行PSC截面验算,需合理选取横梁受力断面即有效翼缘宽度,应采用与实际更为贴合准确的加载方式进行加载,以确保为设计提供合理的内力值,配置合理的预应力钢筋;MIDAS Civil 2010/Civil PSC设计验算功能模块的各项验算。
关键字:横梁;加载方式;MIDAS PSC设计1 项目介绍杭州市沿江公路跨运河二通道桥,主桥采用下承式钢异型拱桥,主跨跨径为252m,边跨跨径为106m;引桥为渔腹式截面预应力砼连续梁,标准跨径为30m,4跨一联,共有四联,桥面宽标准段为25.5m,加宽段为30.5m。
由于桥面较宽,引桥部分除了采用MIDAS对上部主梁进行PSC设计计算外,尚须对端、中横梁进行PSC设计计算,本次验算选取桥面宽度为30.5m联内主梁反力最大的中墩处横梁作为计算对象。
2 软件介绍计算采用北京迈达斯技术有限公司MIDAS Civil 2010/Civil PSC设计验算功能模块,将拟设计的预应力钢筋、普通钢筋输入至PSC截面数据当中,对横梁截面分别进行持久状况极限承载力验算、按照A类构建进行持久状况正常使用极限状态抗裂验算、持久状况应力验算、预应力钢筋容许拉应力验算等内容。
3 建模要素中横梁高度2.5米,宽2.0米,配置18束15-Φs15.20钢绞线,根据《公路钢筋混凝土及预应力混凝土桥涵设计规范》JTG D62-2004中第4.2.2条规定取翼缘宽度为顶板厚度的6倍(单侧)。
加载方式为:以纵向计算在支点处的支反力为基础,恒载作为外部荷载按一定方式加载至横梁桥面,活载在车道范围内按照轮距1.8m、车距1.3m由软件自动加载,温度、温度梯度、收缩徐变均按实际情况加载。
计算模型及跨中截面图01:4 恒载反力加载方式比较4.1 上部主梁的恒载反力(包含收缩徐变)为:27542KN,主梁中墩位双支座,支座间距为7.6m,该反力为双支座的合反力值。
北京迈达斯技术有限公司目录简要 (1)设定操作环境及定义材料和截面 (2)定义材料 (2)定义截面 (3)建立结构模型 (4)主梁及横向联系梁模型 (4)输入横向联系梁 (5)输入桥墩 (5)刚性连接 (7)建立桥墩和系梁 (9)输入边界条件 (10)输入支座的边界条件 (10)刚性连接 (11)输入横向联系梁的梁端刚域 (12)输入桥台的边界条件 (13)输入二期恒载 (14)输入质量 (15)输入反应谱数据 (17)输入反应谱函数 (17)输入反应谱荷载工况 (18)运行结构分析 (19)查看结果 (20)荷载组合 (20)查看振型形状和频率 (21)查看桥墩的支座反力 (24)简要本例题介绍使用MIDAS/CIVIL的反应谱分析功能来进行抗震设计的方法。
例题模型使用的是简化了的钢箱型桥梁模型,由主梁、横向联系梁和桥墩构成。
桥台部分由于刚度很大,不另外建立模型只输入边界条件;基础部分假设完全固定,也只按边界条件来定义。
下面是桥梁的一些基本数据。
跨径:45 m + 50 m + 45 m = 140 m桥宽:11.4 m主梁形式:钢箱梁钢材:GB(S) Grade3(主梁)混凝土:GB_Civil(RC) 30(桥墩)[单位:mm]图1. 桥梁剖面图设定操作环境及定义材料和截面开新文件(新项目),以‘Response.mcb’为名保存(保存)。
文件/ 新项目t文件/ 保存( Response )将单位体系设定为kN(力), m(长度)。
工具/ 单位体系长度>m; 力>kN ↵定义材料分别输入主梁和桥墩的材料数据。
模型/ 材料和截面特性/ 材料材料号(1); 类型>S钢材规范>GB(S); 数据库>Grade3 ↵材料号(2); 类型>混凝土规范>GB-Civil(RC); 数据库>30 ↵图2. 定义材料定义截面使用用户定义来输入主梁、横向联系梁以及桥墩的截面数据。
14交通科技与管理工程技术关于现浇箱梁横梁计算方法的探析胡家伟(山东省公路设计咨询有限公司,济南 250000)摘 要:箱形截面具有良好的截面性能,在现代桥梁工程中得到了广泛的应用。
横梁作为箱梁的一个重要组成部分,是上部荷载传递到下部结构的关键节点。
横梁就好比人体结构中的关节,肩负着上部结构主体安全的重要使命。
本文主要探析Midas 中横梁的计算流程及主要注意事项。
关键词:Midas;现浇箱梁;横梁中图分类号:U441 文献标识码:A1 总体思路在钢筋混凝土和预应力桥梁混凝土桥中,横梁对于加强结构的横向联系,保证构件的整体性起很大的作用,尤其是在车辆荷载和桥宽不断增大的情况下,横梁的正确受力分析和设计计算已成为整个设计中比较重要的一部分。
横梁计算过程中,除了承受自己本身的荷载以外,最主要还是承受纵向传递的荷载,即纵向主梁所承受的荷载通过腹板、顶底板以剪力的形式传递到横梁,然后通过支座传递到下部结构中。
纵向主梁传递荷载的方式主要有以下三种:等效重量法、等效剪力法、腹板剪力法。
在采用上述三种方法对横梁进行计算前,首先确定主梁在永久作用荷载时产生的此横梁下支座反力G z 和横梁模型的重量G L 。
1.1 等效重量法此方法假定:提高横梁自重提高系数可以等效为箱梁对横梁本身的外荷载。
式中:——计算中的横梁自重提高系数;——横梁模型材料的自重系数;——横梁自重转化系数;。
实际就是横梁计算模型的材料自重×[横梁自重提高系数]的方式。
1.2 等效剪力法此方法假定:箱梁是通过箱梁与横梁模型的全部接触面积上的剪力对横梁进行加载。
确定横梁模型的端部位置截面中每个高度变化位置距离左梁端距离和横梁高度变化点位置的荷载转化值。
式中:——荷载转化值;——剪应力;,为主梁和横梁的全部接触面积;——横梁高度变化点位置的实体高度之和。
1.3 腹板剪力法此方法假定:箱梁是通过箱梁与横梁模型的腹板接触面积上的剪力对横梁进行加载,忽略上下顶板、倒角对横梁的作用。
Midas GTS与 Soilworks的区别GTS是⼆维、三维有限元分析软件,⽽soilworks则是只针对⼆维部分的分析设计软件,
当如下情况时,可使⽤GTS软件:
1、地形复杂,⽤⼀些代表性剖⾯⽆法真实模拟现场条件时;
2、地层沿纵向的分布变化较⼤,纵向分析结果影响横向结果时;
3、需要做空间分析补充计算,结构纵横向布置有交叉,⽆法忽略相互影响时。
当如下情况时,可使⽤soilworks软件:
1、需要验算的剖⾯较多,但要求的设计周期较短时_
2、需要采⽤⼀些经验公式、理论公式计算,⽽这些公式仅⽀持⼆维分析时
3、简单的荷载结构法不能满⾜安全设计的要求,需要考虑结构-岩⼟协同作⽤时
4、需要考虑结构-岩⼟相互作⽤进⾏抗震分析时
综上所述:
常规设计项⽬⽤GTS投标,⽤SoilWorks设计
复杂项⽬⽤SoilWorks进⾏前期分析,⽤GTS做补充验算。
(总结)midasgen学习总结Midas Gen 学习总结⼀、YJK导⼊gen(详见“YJK模型转midas模型程序功能与使⽤”)1.版本选择选择版本V7.30,YJK中的地震反应谱函数和反应谱⼯况的相关内容不转换V8.00则进⾏转换。
建议取V8.00。
2.质量来源(质量源)同YJK:查看midas⼯作树形菜单中“质量”只有节点质量,各节点的质量⼤⼩及分布与YJK完全⼀致,不需要在gen中再将荷载和⾃重转换为质量。
建议取此选项。
Midas⾃算:查看midas⼯作树形菜单中“质量”有荷载转化为质量,同时“结构类型”中参数“将⾃重转化为质量”也⾃动勾选。
转⼊了在YJK定义的各种材料重度及密度。
3.墙体转换板:墙与连梁(墙开洞⽅式)都转换成midas的板单元,⾃动⽹格划分,分析结果较墙单元精确,但不能按规范给出配筋设计。
墙单元:墙转换成墙单元的板类型,连梁转换成梁单元。
分析结果没有板单元精确,但能按规范给出配筋设计。
4. 楼板表现楼板分块:导⼊到midas楼板为3节点或4节点楼板,需要在midas划分⽹格。
YJK⽹格划分:需要将楼板定义为弹性板,并勾选与梁变形协调,导⼊midas⽹格已划分,同时梁也实现分割,与板边界耦合。
4.楼屋⾯荷载板上均布荷载:导⼊midas楼⾯荷载同YJK。
导⼊后查看是否存在整层节点“刚性连接”。
导到周围梁墙:导⼊midas楼⾯荷载分配到周边梁墙。
⼆、gen建模、分析1、建模过程:(cad导⼊法)①前期准备:修改模型单位(mm)→定义材料、截⾯和厚度;②构件建模:从cad中导⼊梁→单元扩展⽣成柱墙→墙体分割与开洞→定义楼板类型(刚性板/弹性板);③施加荷载:定义静⼒荷载⼯况(恒、活、X/Y风)→分配楼⾯荷载和施加梁荷载→定义风荷载→定义反应谱和地震作⽤(Rx、Ry)→定义⾃重;④补充定义:荷载转化成质量→结构⾃重转化成质量→定义边界(⽀承条件、释放约束)→定义结构类型和层数据;⑤运⾏分析:先设定特征值的振型数量,然后点击运⾏分析。
矿产资源开发利用方案编写内容要求及审查大纲
矿产资源开发利用方案编写内容要求及《矿产资源开发利用方案》审查大纲一、概述
㈠矿区位置、隶属关系和企业性质。
如为改扩建矿山, 应说明矿山现状、
特点及存在的主要问题。
㈡编制依据
(1简述项目前期工作进展情况及与有关方面对项目的意向性协议情况。
(2 列出开发利用方案编制所依据的主要基础性资料的名称。
如经储量管理部门认定的矿区地质勘探报告、选矿试验报告、加工利用试验报告、工程地质初评资料、矿区水文资料和供水资料等。
对改、扩建矿山应有生产实际资料, 如矿山总平面现状图、矿床开拓系统图、采场现状图和主要采选设备清单等。
二、矿产品需求现状和预测
㈠该矿产在国内需求情况和市场供应情况
1、矿产品现状及加工利用趋向。
2、国内近、远期的需求量及主要销向预测。
㈡产品价格分析
1、国内矿产品价格现状。
2、矿产品价格稳定性及变化趋势。
三、矿产资源概况
㈠矿区总体概况
1、矿区总体规划情况。
2、矿区矿产资源概况。
3、该设计与矿区总体开发的关系。
㈡该设计项目的资源概况
1、矿床地质及构造特征。
2、矿床开采技术条件及水文地质条件。