抗体酶
- 格式:doc
- 大小:44.00 KB
- 文档页数:9
抗体酶是具有催化性质的抗体,它同时具备抗体和酶的特征,可催化多种化学反应,如酰基转移、酯水解、酰胺水解、重排反应、光诱导反应、氧化还原分应、金属螯合反应等。
用人工方法合成的抗体酶,可作为研究酶作用机理的有力工具,用于催化大量天然酶不能催化的立体专一性反应,更为开发具有高度选择性的药物指明了方向。
本文对抗体酶的研究开发思路和历史、催化反应类型、制备方法及发展前景作了综述。
关键词抗体酶过渡态类似物催化反应抗体酶是具有催化性质的抗体。
1986年,Lerner和Schultz [1] 同时在美国《Science》周刊上发表了他们各自独立领导的研究组对抗体酶的研究报告,并将之命名为Abzyme。
Abzyme 本质为免疫球蛋白(Ig),只是在易变区被赋予了酶的属性,故又被称为催化抗体(Catalytic antibody)。
抗体有极高的亲和力,解离常数在10 ~10 mol/L,这与酶相似,但无催化活力。
酶的催化机制在于它能结合底物产生过渡态,降低能垒,改变化学反应的速度。
抗体酶同时具备了抗体和酶的特征,应用前景十分广阔。
一、抗体酶设计的研究思路及历史过程1946年,Pauling用过渡态理论阐明了酶催化的实质,即酶之所以具有催化活力是因为它能特异性结合并稳定化学反应的过渡态(底物激态),从而降低反应能级。
他指出,酶通过某种方式与高能、短寿命的过渡态结合而起催化作用。
这个过渡态构型中某些键在形成,另一些键在断裂,存在时间极短,半衰期约为10 ~10 s,实际中极难捕获。
同时,Pauling又指出酶和抗体的根本不同在于前者选择性的结合一个化学反应的过渡态,而抗体则是结合一个基态分子。
既然过渡态分子难以捕获,而过渡态类似物是能够模拟一个酶催化反应过渡态的结构的稳定物质,于是人们就设想,只要寻找到与反应中决定性步骤的相应酶紧密结合的酶竞争性抑制剂,就等于发现了过渡态类似物;还有一种思路,就是这种类似物也能根据化学反应机制推测设计出来。
抗体酶摘要:抗体酶是一种具有催化活性的免疫球蛋白,它既有抗体的高度选择性,又有酶的高效性。
因此它的发现不仅提供了研究生物催化过程的新途径,而且能为生物学、化学和医学提供具有高度特异性的人工生物催化剂,并可以根据需要使人们获得具有某些不能被酶催化或较难催化的化学反应催化剂。
抗体酶的出现,意味着有可能出现简单有效的方法,从而人们可凭主观愿望来设计蛋白质。
这一发现是利用生物学和化学成果在分子水平上交叉渗透研究的产物。
本文总结了抗体酶的结构、性质、产生方法、筛选方法、酶学特征及研究的最新进展。
关键词:抗体酶酶学特征筛选性质抗体酶(Abzyme)或催化抗体(Catalytic antibody)是一种新型人工酶制剂,它是依据对酶分子催化反应机制的理解,结合免疫球蛋白的分子识别特性,应用免疫学、细胞生物学、化学、分子生物学、等技术制备的具有高度底物专一性及特殊催化活力的新型催化抗体。
由于抗体酶的多样性、特异性和稳定性已经形成了生物界中的一个崭新的超分子体系它把免疫学酶学理论的发展和抗体在医药工业等领域的应用推向一个新水平。
近年来对抗体酶的制备,催化反应特性及分子结构等已进行了一些阐明下面介绍抗体酶的基本性质和研究进展。
1 抗体的结构抗体和酶一样是大分子蛋白质,由2条相同的轻链(大约2500D)和2条相同的重链(大约5000D)组成。
轻链由VL(可变区)和CL(不变区)组成,重链也由VH(可变区)和CH(不变区)组成。
重链和重链及重链和轻链之间通过二硫键相连,此外重链还有一连接枢扭抗体的结合部位由6个超变区组成对同类型抗体CL和CH部分氨基酸的序列相同,然而VL和VH是非常专一的,可变区大约由110个氨基酸组成,至少可产生108个不同抗体它是抗体多样性的基础。
Fab片段由轻链和重链VH及CH1组成抗体-抗原复合物是借助范得华力疏水作用静电作用及氢键作用而形成。
2 抗体酶的基本结构及性质抗体酶主要来自IgG抗体分子。
抗体酶综述陈璇【摘要】抗体酶是一类以过渡态类似物,为半抗原,可诱导免疫系统产生具有类似天然酶催化活性的免疫球蛋白。
抗体酶既具有抗体的高效选择性,又能像酶那样高效催化化学反应,开创了催化剂研究的崭新领域。
本文从抗体酶的发展历史、作用原理、制备、应用及研究展望多个角度进行综述。
【关键词】抗体酶;发现史;作用原理;制备;现状及应用前景抗体酶抗体酶(abzyme),又称催化抗体(cat·alytic antibody),是指通过一系列化学与生物技术方法制备出的具有催化活性的抗体,它除了具有相应免疫学性质,还类似于酶,能催化某种活性反应。
抗体与酶相似,它们都是蛋白质分子.酶与底物的结合及抗体与抗原的结合都是高度专一性的,但这两种结合的基本区别在于酶与高能态的过渡态分子相结合,而抗体则与抗原(基态分子)相结合。
抗体与天然酶相比,最大的优点在于抗体的种类是巨大的,免疫系统可以拥有10 种抗原特异性不同的抗体分子。
制备成功的抗体酶不但能催化一些天然酶能催化的反应,而且还能催化一些天然酶不能催化的反应。
抗体酶的发现早在l948年,美国斯坦福大学荣誉退休化学教授l』_波林(LinusPaulin'f)就提出过渡态理论(transition state theory) [2]。
这一理论认为,酶之所以具有催化能力,是因为它与反应分子(底物)的牢固结合的方式,有利于反应中的过渡态(transition state)的结构。
而这种结构会迅速重新排列成该反应的产物。
任何有利于过渡态,而不是其它可能的结构的因素,都能加快化学反应速度。
1 969年,布兰戴斯大学生物化学家w ·詹克斯(w ·Jenks)进一步发展了这一理论。
他和几位美国科学家认为,如果波林的观点是正确的话,那么利用某一反应过渡态的模拟物作为免疫原,则会得到催化该反应的抗体。
这种抗体能特异地识别化学反应的过渡态,并利用其结合能降低反应的活化能。
那么,适当的抗体也就能够以一种方式与真正的酶反应物结合.成为“酶家族”中新成员,去催化正常情况下由酶来完成的化学反应。
1986年以后,抗体酶研究进入一个新的阶段。
这一年的12月,R.A.Lerner和P.G.SChutz两个小组同时在《科学》(Science)杂志上报道,他们已成功地得到了具有酶活性的抗体酶。
SChutz等人认为对硝基苯酚磷酸胆碱酯(PNPPC)作为相应羧酸二酯水解反应的过渡态类似物,推测用这个类似物作为半抗原诱导产生的单克隆抗体可能对羧酸二酯的水解反应有催化活性。
通过对单克隆抗体的筛选,找到了一株MOPC167单抗,后来又找到一株抗体酶T15,经证明该催化反应的动力学行为满足米氏方程。
[3]Lerner等人,从金属肽酶的研究成果中得到启发,合成了一个含有吡啶甲酸的膦酸酯类似物为半抗原诱导产生一个单抗6D4,用来催化不含吡啶甲酸的相应羧酸酯化合物的水解反应,使反应加速近1000倍,并表现出底物专一性和对介质pH的依赖性等。
[3]抗体酶的基本结构及性质抗体酶主要来自IgG抗体分子[4]。
对抗体结构分析表明.IgG分子s是由两条相同的重链及两条相同的轻链靠二硫键连接而成。
木瓜蛋白酶作用抗体后,产生三个片断,其中相同的二个片断为抗原结合片断(Fab);在抗原结合片断中与抗原结合的部位,是“高度可变区”(Fv),该部位广泛的结构及顺序变化决定了抗体对外来物质的识别特性,其中电荷互补及立体互补是其分子识别的主要特征。
抗体酶催化的反应及其原理抗体酶能催化酯水解反应,Oxy—Cope重排反应,还原反应,环氧化及氧化物开环反应, Diels—Alder反应,Claisen重排反应。
[5]而在抗体催化的反应中,研究最广泛的是酯水解反应,所以在这里只介绍一下酯水解反应的原理。
酯水解反应的过渡态是带负电荷的四面体结构。
7以MOPCI67催化碳酸脂水解为例说明。
首先通过化学合成过渡态磷酸脂的类似物——硝基苯磷酰胆碱脂,利用过渡态类似物作为半抗原,并将其与牛血清蛋白偶合,制成抗原注入动物体内,动物体的血液中就会产生可以和过渡态碳酸脂特异性结合的抗体MOPCl67,然后采用单克隆技术分离纯化出MOPCI67。
在抗体催化碳酸脂反应中,MOPCI67和过渡态碳酸脂结合后,提高了反应物过渡态的稳定性,降低了反应的活化能,从而加速了水解反应的进程。
该反应的产物生成速度常数l(c 达到了(o.40±0.04)/min,米氏常数Km为208±431mol/L。
)抗体酶的制备酶与其催化的活性化合物之间具有结构互补的性质,即酶分子与“反应过渡态”化合物互补,从分子识别角度来看,这种互补关系类似于抗体抗原间的互补作用。
抗体酶最初的产生手段是按以下步骤进行的:首先合成稳定的反应过渡态类似物,将此化合物做为半抗原与载体蛋白相连,免疫动物制备单克隆抗体,由它诱导产生的抗体,可以按预定方向取得催化活性。
该方法中最重要的是半抗原的分子设计和合成。
近年来,抗体酶的产生途径又有新的进展。
主要有以下途径和方法:1直接引入天然或合成的催化基团[5]①化学诱变法一将合成的或天然的具有催化活性的基团通过化学修饰法引入分子中;②蛋白质工程技术一通过蛋白质工程技术使抗体结合部位的氨基酸残基产生定向改变,既可以直接产生酶活性.也可以对初步具有酶活性的抗体进行进一步改造,构建高活性体。
2 基因工程技术由免疫学可知.对独特的分子抗原,动物可有5~10000个不同的B细胞产生抗体,而通过细胞融合产生的单克隆抗体一般只有上百个。
因此重组抗体分子在细菌E.coli中的表达,可以提供抗体库。
基因工程抗体库得到的抗体数量比免疫技术得到的抗体要高几个数量级。
但该方法中筛选抗体的技术还需进一步完善3 相似分子诱导法在反应过渡态类似物难以合成的条件下,采用化学结构相似的舒子如酶的抑制剂分子做半抗原,也可筛选到抗体酶因为免疫系统对一个半抗原可以产生一些结构大致相同.但却存在细微差别的抗体,因此用含有与半抗原类似结{旬的化台物筛选单克隆抗体.也会找到所需要的有特殊识别功能及催化作用的抗体酶4 共价抗原免疫法这是在亲和标记抑制剂基础上发展起来的新的抗体酶制备方法。
如果以亲和标记剂为半抗原,则抗体结合部位将产生与亲和基团电荷性质相反的基团,如亲核性、亲电性氨基酸,酸性氨基酸、碱性氯基酸等。
该途径适用于产生一些晤性部位中含有上述氨基酸的酶。
5细胞融合法 [6]其过程如下:要得到一特定抗原的抗体,如果抗原是小分子,必须将其和载体蛋白相联。
然后对此抗原进行免疫,使宿主有机体针对抗原产生抗体,产生抗体的脾细胞与骨髓细胞相融合。
融合得到的杂交细胞既能产生抗体又能在体外培养。
通过选择培养,杂交细胞得以存留。
将杂交体克隆化,即繁殖成母体的同一细胞或分离成菌落。
这些菌落能产生单一均匀的抗体。
对这些菌落用酶联免疫吸收试验加以筛选,以评价其选择性结合抗原的能力。
然后把抗原结合到一种固体支撑物上,再加入含有抗体的介质,这样抗原一抗体复合物随即形成,经过提纯就得到AB—AG复合物。
抗体酶的应用及前景1.抗体酶的应用(一)在有机合成领域的应用目前,已成功筛选出可催化6种类型酶促反应和几十种化学反应的抗体酶,可催化许多困难和能量不利的反应.催化类型包括底物异构化反应、酯水解、酰胺水解、酰基转移、Claisen重排反应、光诱导反应、氧化还原、金属螯合、环化反应等,抗体酶还可以作为手性助剂控制光加成反应产物的立体化学,用于手性化合物的拆分,还可用于探索化学反应机制.(二)在医学领域的应用利用抗体酶催化药物在体内的还原,有利于机体对药物的吸收,并降低药品的毒副作用;将抗体酶技术和蛋白质融合技术结合在一起,设计出既有催化功能又有组织特异性的嵌合抗体,用于切割恶性肿瘤;将抗体酶直接作为药物,以治疗酶缺陷症患者¨.(三)在戒毒领域的应用抗体酶可以拮抗可卡因等麻醉剂的成瘾性,使可卡因失去刺激功能,以帮助瘾君子戒除毒瘾.抗体酶还可以水解清除血液中的毒素,如分解可卡因、有机磷毒剂等.(四)在前药设计中的应用[7]前药(prodrug)是指为降低药物毒性而设计的一类自身无活性或活性较低,需在体内经代谢转化为活性药物以发挥作用的化合物.抗体酶在正在发展的ADEPT体系中成功地对前药进行活化,提高了肿瘤治疗的选择性,显示出很好的应用前景[8].ADEPT 体系,即抗体靶向的酶前药治疗(antibody directed enzyme prodrug therapy ADEPT )体系.将能催化前药转化为肿瘤细胞毒剂的酶,与肿瘤细胞专性抗体相偶联,酶通过与肿瘤抗体的结合而存在于肿瘤细胞表面,当前药扩散至肿瘤细胞表面或附近时,抗体酶就会将前药迅速水解,释放出抗肿瘤药物.这样大大提高了肿瘤细胞附近局部药物的浓度,增强对肿瘤细胞的杀伤力,减少对正常细胞的杀伤作用[9].经过科学家们的不断努力,抗体酶在ADEPT 体系中的应用将日益完善,有可能成为癌症化疗的重要武器.2.前景抗体酶的研究是当今科学前沿多学科研究的交汇点,吸引着合成化学家、生物学家、免疫学家、化学动力学家、催化学家的格外关注。
它突破了传统的束缚、大分子、配位化合物等模拟酶的框框,开辟了崭新的模拟酶研究的方向,开辟了催化剂研究的新领域,无论是在理论探索方面或是实践应用方面,都具有极其广阔的前景。
它将在医学、化学、生物学、免疫学、制药学等诸多学科中发挥重要的作用。
(1)可以使不可能发生的化学反应变为可能。
(2)可以使苛刻条件下的化学反应在温和条件下实现。
(3)可以选择性地催化平行反应中的某一反应,从而大大增加产品的产率。
它可以实现有机化学家梦寐以求的不对称合成,只催化生成某一光学异构体的反应,使原料的利用率大大提高。
(4)在不久的将来,有可能研究成功蛋白质氨基酸序列快速分析的抗体酶,从而大大简化和加速蛋白质氨基酸序列的测定。
(5)病毒蛋白在水解过程中的过渡态相似物诱发的抗体酶,可作为医学上的接种疫苗。
(6)指导未知酶的寻找。
有些反应,如Cope重排和Dids- Alter反应,明明知道是酶催化的,但时至今日,人们对催化上述反应的酶仍一无所知,对这些反应的抗体酶的结构和功能的研究无疑会对未知酶的寻找提供方向性的提示。
(7)通过对抗体酶的研究,对其过渡态相似物结构的研究,无疑对确定基元反应的过渡态提供十分有用的信息,为确定化学反应机理提供依据。
[10]短短的10来年,抗体酶的研究获得了迅猛的发展,取得了长足的进步。
人们常常感叹裁缝手艺的精巧绝伦,而现今,科学家正在使动物的免疫系统成为制造催化剂的“高级裁缝”,使它根据过渡态相似物的几何形状、电性结构、酸碱性质等“量体裁衣式”地制造抗体酶,使科学迈向催化剂制备的自由王国,这将使人类朝实现控制化学反应的目标不断逼近。