组合的概念
- 格式:doc
- 大小:163.50 KB
- 文档页数:3
组合一、基本定义及性质1、组合的概念:一般地,从n 个不同元素中取出m ()m n ≤个元素并成一组,叫做从n 个不同元素中取出m 个元素的一个组合说明:⑴不同元素;⑵“只取不排”——无序性;⑶相同组合:元素相同2、组合数的概念:从n 个不同元素中取出m ()m n ≤个元素的所有组合的个数,叫做从n 个不同元素中取出m 个元素的组合数....用符号m n C 表示. 3、组合数公式:(1)(2)(1)!m mnnmmA n n n n m C A m ---+==或)!(!!m n m n C m n-=,,(n m N m n ≤∈*且4、组合数的性质1:mn n m n C C -=.规定:10=n C ;5、组合数的性质2:m n C 1+=m n C +1-m nC二、典型例题 例1、(1)6本不同的书分给甲、乙、丙3同学,每人各得2本,有多少种不同的分法?(2)从5个男生和4个女生中选出4名学生参加一次会议,要求至少有2名男生和1名女生参加,有多少种选法?例2、4名男生和6名女生组成至少有1个男生参加的三人社会实践活动小组,问组成方法共有多少种?例3、100件产品中,有98件合格品,2件次品从这100件产品中任意抽出3件. (1)一共有多少种不同的抽法;(2)抽出的3件都不是次品的抽法有多少种?(3)抽出的3件中恰好有1件是次品的抽法有多少种? (4)抽出的3件中至少有1件是次品的取法有多少种?例4、从编号为1,2,3,…,10,11的共11个球中,取出5个球,使得这5个球的编号之和为奇数,则一共有多少种不同的取法?例5、现有8名青年,其中有5名能胜任英语翻译工作;有4名青年能胜任德语翻译工作(其中有1名青年两项工作都能胜任),现在要从中挑选5名青年承担一项任务,其中3名从事英语翻译工作,2名从事德语翻译工作,则有多少种不同的选法?解:我们可以分为三类:例6、甲、乙、丙三人值周,从周一至周六,每人值两天,但甲不值周一,乙不值周六,问可以排出多少种不同的值周表?例7、6本不同的书全部送给5人,每人至少1本,有多少种不同的送书方法?例8、6本不同的书,按下列要求各有多少种不同的选法:(1)分给甲、乙、丙三人,每人2本;(2)分为三份,每份2本;(3)分为三份,一份1本,一份2本,一份3本;(4)分给甲、乙、丙三人,一人1本,一人2本,一人3本;(5)分给甲、乙、丙三人,每人至少1本例9、身高互不相同的7名运动员站成一排,(1)其中甲、乙、丙三人自左向右从高到矮排列的排法有多少种?(2)其中甲、乙、丙三人自左向右从高到矮排列且互不相邻的排法有多少种?例10、(1)四个不同的小球放入四个不同的盒中,一共有多少种不同的放法?(2)四个不同的小球放入四个不同的盒中且恰有一个空盒的放法有多少种?例11、马路上有编号为1,2,3,…,10的十盏路灯,为节约用电又不影响照明,可以把其中3盏灯关掉,但不可以同时关掉相邻的两盏或三盏,在两端的灯都不能关掉的情况下,有多少种不同的关灯方法?例12、九张卡片分别写着数字0,1,2,…,8,从中取出三张排成一排组成一个三位数,如果6可以当作9使用,问可以组成多少个三位数?例13、某考生打算从7所重点大学中选3所填在第一档次的3个志愿栏内,其中A校定为第一志愿;再从5所一般大学中选3所填在第二档次的三个志愿栏内,其中B、C两校必选,且B在C前问:此考生共有多少种不同的填表方法?例14.有10只不同的试验产品,其中有4只次品,6只正品,现每次取一只测试,直到4只次品全测出为止,求最后一只次品正好在第五次测试时被发现的不同情形有多少种?例15.在一次象棋比赛中,进行单循环比赛其中有2人,他们各赛了3场后,因故退出了比赛,这样,这次比赛共进行了83场,问:比赛开始时参赛者有多少人?三、课堂练习:1.判断下列问题哪个是排列问题,哪个是组合问题:(1)从4个风景点中选出2个安排游览,有多少种不同的方法?(2)从4个风景点中选出2个,并确定这2个风景点的游览顺序,有多少种不同的方法? 2.7名同学进行乒乓球擂台赛,决出新的擂主,则共需进行的比赛场数为( )A .42B .21C .7D .63.如果把两条异面直线看作“一对”,则在五棱锥的棱所在的直线中,异面直线有( ) A .15对 B .25对 C .30对 D .20对4.设全集{},,,U a b c d =,集合A 、B 是U 的子集,若A 有3个元素,B 有2个元素,且{}A B a = ,求集合A 、B ,则本题的解的个数为 ( )A .42B .21C .7D .35.从6位候选人中选出2人分别担任班长和团支部书记,有 种不同的选法6.从6位同学中选出2人去参加座谈会,有 种不同的选法 7.圆上有10个点:(1)过每2个点画一条弦,一共可画 条弦;(2)过每3个点画一个圆内接三角形,一共可画 个圆内接三角形8.(1)凸五边形有 条对角线;(2)凸n 五边形有 条对角线9.计算:(1)315C ;(2)3468C C ÷.10.,,,,A B C D E 5个足球队进行单循环比赛,(1)共需比赛多少场?(2)若各队的得分互不相同,则冠、亚军的可能情况共有多少种?11.空间有10个点,其中任何4点不共面,(1)过每3个点作一个平面,一共可作多少个平面?(2)以每4个点为顶点作一个四面体,一共可作多少个四面体?12.壹圆、贰圆、伍圆、拾圆的人民币各一张,一共可以组成多少种币值?13.写出从,,,,a b c d e 这5个元素中每次取出4个的所有不同的组合14.有3张参观券,要在5人中确定3人去参观,不同方法的种数是 ;15.要从5件不同的礼物中选出3件分送3位同学,不同的方法种数是 ; 16.5名工人分别要在3天中选择1天休息,不同方法的种数是 ;17.集合A 有m 个元素,集合B 有n 个元素,从两个集合中各取出1个元素,不同方法的种数是 .18、从1,2,3,,20 这20个数中选出2个不同的数,使这两个数的和为偶数,有_ 种不同选法19.正12边形的对角线的条数是 .20.6人同时被邀请参加一项活动,必须有人去,去几人自行决定,共有多少种不同的去法? 21.在所有的三位数中,各位数字从高到低顺次减小的数共有 个22.有两条平行直线a 和b ,在直线a 上取4个点,直线b 上取5个点,以这些点为顶点作三角形,这样的三角形共有( )A .70B .80C .82D .8423.12名同学分别到三个不同的路口进行车流量的调查,若每个路口4人,则不同的分配方案有 ( )种A .4441284C C C B .44412843C C C C .4431283C C AD .444128433C C C A24.5本不同的书,全部分给4个学生,每个学生至少一本,不同分法的种数为 A .480 B .240 C .120 D .9625.已知甲、乙两组各有8人,现从每组抽取4人进行计算机知识竞赛,比赛成员的组成共有 种可能26.在一次考试的选做题部分,要求在第1题的4个小题中选做3个小题,在第2题的3个小题中选做2个小题,第3题的2个小题中选做1个小题,有 种不同的选法27.从1,3,5,7,9中任取3个数字,从2,4,6,8中任取2个数字,一共可以组成 个没有重复数字的五位数28.正六边形的中心和顶点共7个点,以其中三个点为顶点的三角形共有 个 29.从5名男生和4名女生中选出4人去参加辩论比赛(1)如果4人中男生和女生各选2人,有 种选法;(2)如果男生中的甲与女生中的乙必须在内,有 种选法;(3)如果男生中的甲与女生中的乙至少要有1人在内,有 种选法; (4)如果4人中必须既有男生又有女生,有 种选法30.在200件产品中,有2件次品从中任取5件,(1)“其中恰有2件次品”的抽法有 种; (2)“其中恰有1件次品”的抽法有 种; (3)“其中没有次品”的抽法有 种;(4)“其中至少有1件次品”的抽法有 种 四、课后作业:1.以一个正方体的顶点为顶点的四面体共有 个 2.以一个正方体的8个顶点连成的异面直线共有 对3.⑴6本不同的书全部送给5人,有多少种不同的送书方法?⑵5本不同的书全部送给6人,每人至多1本,有多少种不同的送书方法? ⑶5本相同的书全部送给6人,每人至多1本,有多少种不同的送书方法?4.某班元旦联欢会原定的5个学生节目已排成节目单,开演前又增加了两个教师节目如果将这两个教师节目插入原节目单中,那么不同插法的种数为 ( )A .42B .30C .20D .125.从7人中选派5人到10个不同的交通岗的5个中参加交通协管工作,则不同的选派方法有 ( )A .5557105C A AB .5557105AC A C .55107C CD .55710C A 6.某班分成8个小组,每小组5人,现要从中选出4人进行4个不同的化学实验,且每组至多选一人,则不同的安排方法种数是 ( )A .4484C AB .441845C A C C .444845C AD .44404C A7.5个人分4张同样的足球票,每人至多分一张,而且票必须分完,那么不同的分法种数是 .8.某学生要邀请10位同学中的6位参加一项活动,其中有2位同学要么都请,要么都不请,共有 种邀请方法9.一个集合有5个元素,则该集合的非空真子集共有 个10.平面内有两组平行线,一组有m 条,另一组有n 条,这两组平行线相交,可以构成 ___________个平行四边形11.空间有三组平行平面,第一组有m 个,第二组有n 个,第三组有t 个,不同两组的平面都相交,且交线不都平行,可构成 个平行六面体12.在某次数学考试中,学号为(1,2,3,4)i i =的同学的考试成绩(){85,87,88,90,93}f i ∈,且满足(1)(2)(3)(4)f f f f ≤<<,则这四位同学的考试成绩的所有可能情况有 种 13.某人制订了一项旅游计划,从7个旅游城市中选择5个进行游览如果其中的城市A 、B 必选,并且在旅游过程中必须按先A 后B 的次序经过A 、B 两城市(A 、B 两城市可以不相邻),则不同的游览路线有 种14.高二某班第一小组共有12位同学,现在要调换座位,使其中有3个人都不坐自己原来的座位,其他9人的座位不变,共有 种不同的调换方法15.某兴趣小组有4名男生,5名女生:(1)从中选派5名学生参加一次活动,要求必须有2名男生,3名女生,且女生甲必须在内,有种选派方法;(2)从中选派5名学生参加一次活动,要求有女生但人数必须少于男生,有____种选派方法;(3)分成三组,每组3人,有种不同分法16.学校召开学生代表大会,高二年级的3个班共选6名代表,每班至少1名,代表的名额分配方案种数是()A.64B.20C.18D.1017.3名医生和6名护士被分配到3所学校为学生体检,每所学校分配1名医生和2名护士,不同的分配方法共有()A.90B.180C.270D.54018.公共汽车上有4位乘客,汽车沿途停靠6个站,那么这4位乘客不同的下车方式共有种;如果其中任何两人都不在同一站下车,那么这4位乘客不同的下车方式共有种19.4名男生和3名女生排成一行,按下列要求各有多少种排法:(1)男生必须排在一起;(2)女生互不相邻;(3)男女生相间;(4)女生按指定顺序排列.20.有排成一行的7个空位置,3位女生去坐,要求任何两个女生之间都要有空位,共有种不同的坐法21.赛艇运动员10人,3人会划右舷,2人会划左舷,其余5人两舷都能划,现要从中挑选6人上艇,平均分配在两舷上划桨,共有种选法22.,,,,A B C D E5位同学进行网页设计比赛,决出了第1至第5名的名次A、B两位同学去询问名次,主考官对A说:“很遗憾,你和B都未拿到冠军”;对B说:“你当然不会是最差的”从这个回答分析,5位同学的名次排列共可能有种不同的情况23.学校餐厅供应客饭,每位学生可以在餐厅提供的菜肴中任选2荤2素共4种不同的品种,现在餐厅准备了5种不同的荤菜,若要保证每位学生有200种以上的不同选择,则餐厅至少还需准备种不同的素菜种24.有10只不同的试验产品,其中有4只次品,6只正品,现每次取一只测试,直到测出1只次品为止,求第一只次品正好在第五次测试时被发现的不同情形有 _______种25.圆周上有12个等分点,以其中3个点为顶点的直角三角形的个数为个。
组 合【要点梳理】要点一:组合1.定义:一般地,从n 个不同元素中取出m (m n ≤)个元素并成一组,叫做从n 个不同元素中取出m 个元素的一个组合.要点诠释:① 从排列与组合的定义可知,一是“取出元素”;二是“并成一组”,“并成一组”即表示与顺序无关. 排列与元素的顺序有关,而组合与元素的顺序无关,这是它们的根本区别.② 如果两个组合中的元素相同,那么不管元素的顺序怎样都是相同的组合;只有当两个组合中的元素不完全相同时,才是不同的组合.因此组合问题的本质是分组问题,它主要涉及元素被取到或未被取到.要点二:组合数及其公式1.组合数的定义:从n 个不同元素中取出m (n m ≤)个元素的所有组合的个数,叫做从n 个不同元素中取出m 个元素的组合数.记作m n C .要点诠释:“组合”与“组合数”是两个不同的概念:一个组合是指“从n 个不同的元素中取出m (m ≤n )个元素并成一组”,它不是一个数,而是具体的一件事;组合数是指“从n 个不同元素中取出m (m ≤n )个元素的所有组合的个数”,它是一个数. 例如,从3个不同元素a ,b ,c 中取出2个元素的组合为ab ,ac ,bc ,其中每一种都叫做一个组合,而数字3就是组合数.2.组合数的公式及推导求从n 个不同元素中取出m 个元素的排列数m n A ,可以按以下两步来考虑:第一步,先求出从这n 个不同元素中取出m 个元素的组合数m n C ;第二步,求每一个组合中m 个元素的全排列数mm A .根据分步计数原理,得到m m m n n m A C A =⋅. 因此这里n ,m ∈N +,且m ≤n ,这个公式叫做组合数公式.因为!()!m n n A n m =-,所以组合数公式还可表示为:!!()!m n n C m n m =-.要点诠释:组合数公式的推导方法是一种重要的解题方法!在以后学习排列组合的混合问题时,一般都是按先取后排(先组合后排列)的顺序解决问题。
组合的名词解释组合是指由两个或多个独立的事物组成的整体。
在语言学中,组合是通过将两个或多个词语或词素结合在一起形成新的词语。
这种结合可以通过多种方式实现,包括连接、缩写、重叠等。
在组合中,每个组合的成分都保留了其原始意义,但同时也会生成一个新的意义。
这种新的意义通常是从组合词的组成部分中衍生出来的,并且往往不是直接可见或推导的。
组合可以是固定的,意即一旦形成就不再改变。
例如,“饮食”、“黑白”、“男女”等。
这些词的意义是不可分割的,如果单独使用其中的一个成分,可能不再具有原本的含义。
另一种类型的组合是可变的,意味着组合的成分可以根据需要进行调整。
例如,“电视台”可以变化为“电视剧院”、“海洋电视”等。
这些例子表明,组合词的含义可以通过组合词的成分进行修改和扩展。
组合词的形成可以通过多种方式实现。
最常见的一种方法是通过连接两个或多个词语。
例如,“汽车”就是由“汽”和“车”两个词连接而成的。
这种连接可以通过连字符或没有连字符来实现,例如,“高速公路”和“红酒”。
另一种组合的方式是通过缩写来实现。
在这种情况下,组合词的一个成分通常由多个词语的首字母组成。
例如,“NBA”代表“National Basketball Association”(美国篮球协会),“NASA”代表“National Aeronautics and Space Administration”(美国国家航空航天局)。
除了连接和缩写,组合词还可以通过重叠实现。
这种情况下,词语的一部分重复出现在组合词中。
例如,“咖啡因”是由“咖啡”和“因”两个词重叠而成的。
组合词的意义往往是从组成部分中衍生出来的。
例如,“电视台”由“电视”和“台”组成,可以理解为一个播放电视节目的地方。
同样,“火车站”由“火车”和“站”组成,表示一个供火车停靠的地方。
组合词在语言中起到了丰富和扩展词汇的作用。
通过将不同的词语或词素组合在一起,我们能够创造出描述新事物、抽象概念和特定场景的词汇。
组合和组合数公式组合是组合数学中的一个重要概念,用来计算从n个元素中选取r个元素的方式数。
组合数公式是用来计算组合数的公式。
本文将详细介绍组合和组合数公式,并说明其应用和性质。
1.组合的定义组合由n个元素中选取r个元素所组成的集合,称为从n个元素中选取r个元素的组合。
组合中的元素是无序的,即选取的元素的顺序对组合没有影响。
2.组合的表示方法组合通常用C(n,r)来表示,其中n是总的元素个数,r是选取的元素个数。
例如,从4个元素中选取2个元素的组合可以表示为C(4,2)。
组合数公式用于计算从n个元素中选取r个元素的方式数。
常用的组合数公式有以下几种:3.1乘法法则根据乘法法则,从n个元素中选取r个元素的方式数等于从n中选择1个元素的方式数乘以从n-1个元素中选取r-1个元素的方式数。
这一公式可以表示为:C(n,r)=C(n-1,r-1)*n/r3.2递推公式根据递推关系,可以通过前一项的组合数计算后一项的组合数。
递推公式可以表示为:C(n,r)=C(n-1,r-1)+C(n-1,r)3.3组合公式组合公式是计算组合数的一种常用方法。
组合公式可以表示为:C(n,r)=n!/(r!(n-r)!)其中n!表示n的阶乘,即n!=n*(n-1)*(n-2)*...*14.组合的性质组合具有以下几个重要的性质:4.1对称性组合数具有对称性,即C(n,r)=C(n,n-r)。
这是因为从n个元素中选取r个元素的方式数与从n个元素中选取n-r个元素的方式数是一样的。
4.2递推性组合数具有递推性,即可以通过递推公式计算组合数。
这使得计算大规模组合数变得更加高效。
4.3性质的递推公式组合数的性质也可以通过递推公式计算。
例如,根据乘法法则和递推公式可以推导出组合数的对称性。
5.组合数的应用组合数在组合数学、概率论和统计学等领域具有广泛的应用。
以下是几个常见的应用:5.1排列组合组合数可以用于计算排列组合的方式数。
排列是组合的一种特殊情况,它要求选取的元素有序。
组合与排列的基本概念和计算方法组合与排列是数学中两个非常重要的概念,这两个概念在很多领域都是必不可少的,比如概率论、统计学以及组合数学等。
在我们的日常生活中,也可以通过组合与排列来解决各种实际问题,如排队买票、选择菜单等问题。
下面,我们将详细介绍组合与排列的基本概念和计算方法。
一、组合的概念和计算方法组合指的是从n个不同元素中选取r个元素并进行组合的方式的数量。
组合中的元素是不考虑它们的排列顺序的,因此,n个元素的组合数可以表示为C(n,r)。
组合的计算方法可以用下式表示:C(n,r)=n!/((n-r)!*r!)其中,!表示阶乘,即n!=n*(n-1)*(n-2)* (1)例如,若从5个不同的元素中选择3个元素进行组合,那么它们的组合数为:C(5,3)=5!/((5-3)!*3!)=10。
也就是说,从5个元素中选出3个元素进行组合,一共有10种不同的组合方式。
二、排列的概念和计算方法排列指的是从n个不同元素中选取r个元素并进行排列的方式的数量。
与组合不同的是,排列中的元素是考虑它们的排列顺序的,因此,n个元素的排列数可以表示为A(n,r)。
排列的计算方法可以用下式表示:A(n,r)=n!/(n-r)!例如,若从5个不同的元素中选择3个元素进行排列,那么它们的排列数为:A(5,3)=5!/2!=60。
也就是说,从5个元素中选出3个元素进行排列,一共有60种不同的排列方式。
三、组合和排列的联系组合和排列都是从n个元素中选取r个元素的方式,不同的是,组合中的元素是不考虑它们的排列顺序的,而排列中的元素是考虑它们的排列顺序的。
因此,排列数通常大于组合数。
同时,在排列中,由于元素的排列顺序不同,同样的n个元素中选取r个元素的方式可能会生成不同的r元排列。
而在组合中,不考虑元素的排列顺序,因此,不同的r元组合方式只会被计算一次。
当r=n时,对于组合和排列来说,它们的计算方法都会退化成n!。
因为此时,从n个元素中选取n个元素,并对它们进行排列或组合后,只有一种情况,即所有元素的全排列或组合。
组合及组合数公式1.组合的概念一般地,从n个不同元素中取出m_(m≤n)个元素并成一组,叫做从n个不同元素中取出m个元素的一个组合.2.组合数的概念从n个不同元素中取出m (m≤n)个元素的所有组合的个数,叫做从n个不同元素中取出m个元素的组合数,用符号C m n表示.3.组合数公式C m n=A m nA m m=n(n-1)(n-2)…(n-m+1)m!=n!m!(n-m)!(n,m∈N*,m≤n).探究点一组合的概念例1判断下列各事件是排列问题,还是组合问题.(1)10个人相互各写一封信,共写了多少封信?(2)10个人规定相互通一次电话,共通了多少次电话?(3)10支球队以单循环进行比赛(每两队比赛一次),这次比赛需要进行多少场次?(4)10支球队以单循环进行比赛,这次比赛冠、亚军获得者有多少种可能?探究点二组合的列举问题思考怎样写一个问题的所有组合?答和解排列问题类似,可以借助树形图来写一个问题的所有组合,组合的树形图中其元素也不能重复出现,但元素出现的次序必须按照从左到右的顺序(如元素b后面不能出现a,元素c后面不能出现a、b 等)来考虑,否则就会出现重复或遗漏.例2从4个不同元素a、b、c、d中任取3个元素,写出所有的组合形式.踪训练2写出从A,B,C,D,E 5个元素中,依次取3个元素的所有组合.探究点三组合数公式及应用思考1对比排列数的定义,能否给组合数下一个定义?答从n个不同元素中取出m (m≤n)个元素的所有组合的个数,叫做从n个不同元素中取出m个元素的组合数,用符号C m n表示.思考2 由例2看出组合数C 34与排列数A 34有什么关系?你能写出求C 34的公式吗?答 由例2可知,每一个组合都对应着6个不同的排列,因此,求从4个不同元素中取出3个元素的排列数A 34,可以分如下两步:①考虑从4个不同元素中取出3个元素的组合,共有C 34个;②对每一个组合的3个不同元素进行全排列,各有A 33种方法.由分步计数原理得:A 34=C 34·A 33,所以,C 34=A 34A 33.例3(1)求值:C 5-n n +C 9-n n +1;(2)若C 4n >C 6n ,则n 的取值集合为________.跟踪训练3 (1)计算C 38-n 3n +C 3n n +21的值; (2)求证:C m n =m +1n -m ·C m +1n.例4现有10名教师,其中男教师6名,女教师4名.(1)现要从中选出2名去参加会议,有多少种不同的选法?(2)现要从中选出男、女教师各2名去参加会议,有多少种不同的选法?巩固练习:1.已知平面内A 、B 、C 、D 这4个点中任何3点均不共线,则由其中任意3个点为顶点的所有三角形的个数为________.答案 42.把三张游园票分给10个人中的3人,分法有________种.答案 1203.甲、乙、丙三位同学选修课程,从4门课程中,甲选修2门,乙、丙各选修3门,则不同的选修方案共有________种.答案 964.从4台甲型电视机和5台乙型电视机中任意取出3台,其中至少有甲型和乙型电视机各1台,则不同的取法有________种.答案 705.从1,2,3,4这四个数中一次随机地取两个数,求其中一个数是另一个数的两倍的概率.6.某班级有一个7人小组,现任选其中3人相互调整座位,其余4人座位不变,则不同的调整方案的种数有________.答案70组合的应用探究点一组合数的两个性质思考1“从10人中选出6人参加比赛”与“从10人中选出4人不参加比赛”的方法数有什么关系?答思考2一个口袋内装有大小相同的7个白球和1个黑球.(1)从口袋内取出3个球,共有多少种取法?(2)从口袋内取出3个球,使其中含有1个黑球,有多少种取法?(3)从口袋内取出3个球,使其中不含黑球,有多少种取法?(4)由(1)(2)(3)问的结果你能得到怎样的关系?答思考3由思考1、2你能得出组合数的性质吗?如何证明?答组合数具备以下两个性质:①C m n=C n-mn ;②C m n+1=C m n+C m-1n.例1计算下列各式的值.(1)C9699+C9799;(2)C n n+1·C n-2n;(3)C34+C35+C36+…+C310;(4)A23+A24+A25+…+A2100.探究点二简单的组合应用题例2某人决定投资8种股票和4种债券,经纪人向他推荐了12种股票和7种债券.问:此人有多少种不同的投资方式?跟踪训练27名志愿者中安排6人在周六、周日两天参加社区公益活动.若每天安排3人,则不同的安排方案共有________种.(用数字作答)答案140例3 (1)平面内有10个点,以其中每2个点为端点的线段共有多少条?(2)平面内有10个点,以其中每2个点为端点的有向线段共有多少条?探究点四有限制条件的组合问题例4在100件产品中,有98件合格品,2件次品.从这100件产品中任意抽出3件.(1)有多少种不同的抽法?(2)抽出的3件中恰好有1件是次品的抽法有多少种?(3)抽出的3件中至少有1件是次品的抽法有多少种?。
组合的定义解释
组合是一个汉语词汇,既可以作为名词使用,也可以作为动词使用。
作为名词,组合指的是由几个部分或个体结合成的整体。
例如,一本集子可能由诗、散文和小说等不同的元素组合而成。
在数学中,组合是指从n个不同元素中每次取出m个不同元素(0≤m≤n),不管其顺序合成一组,称为从n个元素中不重复地选取m个元素的一个组合。
作为动词,组合意味着组织成整体。
例如,人们可能会花费一整天的时间将各个零件组合成一个飞机模型。
此外,“组合”这个词在名字中通常寓意着团结、有爱、有组织能力、杰出和美好等意义。
在五行中,“组”字五行为金,“合”字五行为水,金水组合意味着金生水,水旺。
综上所述,组合的定义涵盖了多个方面,包括词汇的基本含义、数学上的概念以及名字中的寓意等。
组合与组合数公式1.组合的定义一般地,从n个不同元素中取出m(m≤n)个元素合成一组,叫做从n个不同元素中取出m个元素的一个组合.组合的概念中有两个要点:(1)取出元素,且要求n个元素是不同的;(2)“只取不排”,即取出的m个元素与顺序无关,无序性是组合的特征性质2.组合数的概念、公式、性质组合数定义从n个不同元素中取出m(m≤n)个元素的所有不同组合的个数,叫做从n个不同元素中取出m个元素的组合数表示法C m n组合数公式乘积式C m n=A m nA m m=n(n-1)(n-2)…(n-m+1)m!阶乘式C m n=n!m!(n-m)!性质C m n=C n-mn,C mn+1=Cmn+Cm-1n备注①n,m∈N*且m≤n;②规定:C0n=1判断正误(正确的打“√”,错误的打“×”)(1)从a1,a2,a3三个不同元素中任取两个元素组成一个组合,所有组合的个数为C23.( )(2)从1,3,5,7中任取两个数相乘可得C24个积.( )(3)C35=5×4×3=60.( )(4)C2 0162 017=C 12 017=2 017.( )答案:(1)√(2)√(3)×(4)√若A3n=8C2n,则n的值为( )A.6 B.7 C.8 D.9 答案:A计算:(1)C37=________;(2)C1820=________.答案:(1)35 (2)190甲、乙、丙三地之间有直达的火车,相互之间的距离均不相等,则车票票价有________种.解析:车票的票价有C23=3种.答案:3探究点1 组合概念的理解判断下列问题是排列问题,还是组合问题.(1)从1,2,3,…,9九个数字中任取3个,组成一个三位数,这样的三位数共有多少个?(2)从1,2,3,…,9九个数字中任取3个,然后把这三个数字相加得到一个和,这样的和共有多少个?(3)5个人规定相互通话一次,共通了多少次电话?(4)5个人相互写一封信,共写了多少封信?【解】 (1)当取出3个数字后,如果改变3个数字的顺序,会得到不同的三位数,此问题不但与取出元素有关,而且与元素的安排顺序有关,是排列问题.(2)取出3个数字之后,无论怎样改变这3个数字的顺序,其和均不变,此问题只与取出元素有关,而与元素的安排顺序无关,是组合问题.(3)甲与乙通一次电话,也就是乙与甲通一次电话,无顺序区别,为组合问题.(4)发信人与收信人是有区别的,是排列问题.判断一个问题是否是组合问题的方法技巧区分某一问题是排列问题还是组合问题的关键是看取出元素后是按顺序排列还是无序地组合在一起.区分有无顺序的方法是把问题的一个选择结果写出来,然后交换这个结果中任意两个元素的位置,看是否会产生新的变化.若有新变化,即说明有顺序,是排列问题;若无新变化,即说明无顺序,是组合问题.判断下列问题是排列问题还是组合问题:(1)把当日动物园的4张门票分给5个人,每人至多分一张,而且票必须分完,有多少种分配方法?(2)从2,3,5,7,11这5个质数中,每次取2个数分别作为分子和分母构成一个分数,共能构成多少个不同的分数?(3)从9名学生中选出4名参加一个联欢会,有多少种不同的选法?解:(1)是组合问题.由于4张票是相同的(都是当日动物园的门票),不同的分配方法取决于从5人中选择哪4人,这和顺序无关.(2)是排列问题,选出的2个数作分子或分母,结果是不同的.(3)是组合问题,选出的4人无角色差异,不需要排列他们的顺序.探究点2 组合数公式、性质的应用计算下列各式的值.(1)3C 38-2C 25; (2)C 34+C 35+C 36+…+C 310; (3)C 5-nn +C 9-nn +1. 【解】 (1)3C 38-2C 25=3×8×7×63×2×1-2×5×42×1=148.(2)利用组合数的性质C mn +1=C mn +C m -1n , 则C 34+C 35+C 36+…+C 310 =C 44+C 34+C 35+…+C 310-C 44 =C 45+C 35+…+C 310-C 44= …=C 411-1=329.(3)⎩⎪⎨⎪⎧5-n ≤n ,5-n ≥0,9-n ≤n +1,9-n ≥0,解得4≤n ≤5.又因为n ∈N *,所以n =4或n =5. 当n =4时,原式=C 14+C 55=5. 当n =5时,原式=C 05+C 46=16.[变条件]若将本例(2)变为:C 55+C 56+C 57+C 58+C 59+C 510,如何求解? 解:原式=(C 66+C 56)+C 57+C 58+C 59+C 510 =(C 67+C 57)+C 58+C 59+C 510=… =C 610+C 510=C 611=C 511 =11×10×9×8×75×4×3×2×1=462.关于组合数公式的选取技巧(1)涉及具体数字的可以直接用n n -mC mn -1=nn -m ·(n -1)!m !(n -1-m )!=n !m !(n -m )!=C mn 进行计算.(2)涉及字母的可以用阶乘式C mn =n !m !(n -m )!计算.(3)计算时应注意利用组合数的性质C mn =C n -mn 简化运算.1.C 58+C 98100C 77=________.解析:C 58+C 98100C 77=C 38+C 2100×1=8×7×63×2×1+100×992×1=56+4 950=5 006. 答案:5 0062.若C 23+C 24+C 25+…+C 2n =363,则正整数n =________. 解析:由C 23+C 24+C 25+…+C 2n =363, 得1+C 23+C 24+C 25+…+C 2n =364, 即C 33+C 23+C 24+C 25+…+C 2n =364. 又C m n +C m -1n =C mn +1,则C 33+C 23+C 24+C 25+…+C 2n =C 34+C 24+C 25+…+C 2n =C 35+C 25+C 26+…+C 2n =…=C 3n +1,所以C 3n +1=364,化简可得(n +1)n (n -1)3×2×1=364,又n 是正整数,解得n =13. 答案:133.解方程:C 3n +618=C 4n -218.解:由原方程及组合数性质可知, 3n +6=4n -2,或3n +6=18-(4n -2), 所以n =2,或n =8,而当n =8时,3n +6=30>18,不符合组合数定义,故舍去. 因此n =2.探究点3 简单的组合问题现有10名教师,其中男教师6名,女教师4名. (1)现要从中选2名去参加会议有多少种不同的选法?(2)选出2名男教师或2名女教师参加会议,有多少种不同的选法? (3)现要从中选出男、女教师各2名去参加会议,有多少种不同的选法?【解】 (1)从10名教师中选2名去参加会议的选法种数,就是从10个不同元素中取出2个元素的组合数,即C 210=10×92×1=45种. (2)可把问题分两类情况:第1类,选出的2名是男教师有C 26种方法; 第2类,选出的2名是女教师有C 24种方法.根据分类加法计数原理,共有C 26+C 24=15+6=21种不同选法.(3)从6名男教师中选2名的选法有C 26种,从4名女教师中选2名的选法有C 24种,根据分步乘法计数原理,共有不同的选法C 26×C 24=6×52×1×4×32×1=90种.[变问法]本例其他条件不变,问题变为从中选2名教师参加会议,至少有1名男教师的选法是多少?最多有1名男教师的选法又是多少?解:至少有1名男教师可分两类:1男1女有C16C14种,2男0女有C26种.由分类加法计数原理知有C16C14+C26=39种.最多有1名男教师包括两类:1男1女有C16C14种,0男2女有C24种.由分类加法计数原理知有C16C14+C24=30种.解简单的组合应用题的策略(1)解简单的组合应用题时,首先要判断它是不是组合问题,组合问题与排列问题的根本区别在于排列问题与取出元素之间的顺序有关,而组合问题与取出元素的顺序无关.(2)要注意两个基本原理的运用,即分类与分步的灵活运用.[注意] 在分类和分步时,一定注意有无重复或遗漏.某次足球比赛共12支球队参加,分三个阶段进行.(1)小组赛:经抽签分成甲、乙两组,每组6队进行单循环比赛,以积分及净胜球数取前两名;(2)半决赛:甲组第一名与乙组第二名,乙组第一名与甲组第二名作主客场交叉淘汰赛(每两队主客场各赛一场)决出胜者;(3)决赛:两个胜队参加决赛一场,决出胜负.问全部赛程共需比赛多少场?解:小组赛中每组6队进行单循环比赛,就是每组6支球队的任两支球队都要比赛一次,所以小组赛共要比赛2C26=30(场).半决赛中甲组第一名与乙组第二名,乙组第一名与甲组第二名主客场各赛一场,所以半决赛共要比赛2A22=4(场).决赛只需比赛1场,即可决出胜负.所以全部赛程共需比赛30+4+1=35(场).1.下面几个问题属于组合的是( )①由1,2,3,4构成双元素集合;②5支球队进行单循环足球比赛的分组情况;③由1,2,3构成两位数的方法;④由1,2,3组成无重复数字的两位数的方法.A.①③B.②④C.①②D.①②④解析:选C.由集合元素的无序性可知①属于组合问题;因为每两个球队比赛一次,并不需要考虑谁先谁后,没有顺序的区别,故②是组合问题;③④中两位数顺序不同数字不同为排列问题.2.若C n 12=C 2n -312,则n 等于( )A .3B .5C . 3或5D .15解析:选C.由组合数的性质得n =2n -3或n +2n -3=12,解得n =3或n =5,故选C. 3.10个人分成甲、乙两组,甲组4人,乙组6人,则不同的分组种数为________.(用数字作答)解析:从10人中任选出4人作为甲组,则剩下的人即为乙组,这是组合问题,共有C 410=210种分法. 答案:2104.计算下列各式的值. (1)C 98100+C 199200; (2)C 37+C 47+C 58+C 69; (3)C 38-n3n +C 3n21+n .解:(1)C 98100+C 199200=C 2100+C 1200=100×992×1+200=5 150. (2)C 37+C 47+C 58+C 69=C 48+C 58+C 69=C 59+C 69=C 610=C 410=210.(3)因为⎩⎪⎨⎪⎧1≤38-n ≤3n ,1≤3n ≤21+n ,即⎩⎪⎨⎪⎧192≤n ≤37,13≤n ≤212,所以192≤n ≤212.因为n ∈N *,所以n =10,所以C 38-n3n +C 3n21+n =C 2830+C 3031=C 230+C 131=466.[A 基础达标]1.楼道里有12盏灯,为了节约用电,需关掉3盏不相邻的灯,则关灯方案有( ) A .72种 B .84种 C .120种D .168种解析:选C.需关掉3盏不相邻的灯,即将这3盏灯插入9盏亮着的灯的空当中,所以关灯方案共有C 310=120(种). 2.方程C x28=C 3x -828的解为( ) A .4或9 B .4 C .9D .5解析:选A.当x =3x -8时,解得x =4;当28-x =3x -8时,解得x =9.3.将2名女教师,4名男教师分成2个小组,分别安排到甲、乙两所学校轮岗支教,每个小组由1名女教师和2名男教师组成,则不同的安排方案共有( ) A .24种 B .12种 C .10种D .9种解析:选B.第一步,为甲地选1名女老师,有C 12=2种选法;第二步,为甲地选2名男教师,有C 24=6种选法;第三步,剩下的3名教师到乙地,故不同的安排方案共有2×6×1=12种.故选B.4.化简C 9798+2C 9698+C 9598等于( ) A .C 9799 B .C 97100 C .C 9899D .C 98100解析:选B.由组合数的性质知,C 9798+2C 9698+C 9598 =(C 9798+C 9698)+(C 9698+C 9598) =C 9799+C 9699=C 97100.5.男女学生共有8人,从男生中选取2人,从女生中选取1人,共有30种不同的选法,其中女生有( ) A .2人或3人 B .3人或4人 C .3人D .4人解析:选A.设男生有n 人,则女生有(8-n )人,由题意可得C 2n C 18-n =30,解得n =5或n =6,代入验证,可知女生为2人或3人.故选A. 6.若A 3n =6C 4n ,则n 的值为________. 解析:由题意知n (n -1)(n -2) =6·n (n -1)(n -2)(n -3)4×3×2×1,化简得n -34=1,所以n =7.答案:77.某单位需同时参加甲、乙、丙三个会议,甲需2人参加,乙、丙各需1人参加,从10人中选派4人参加这三个会议,不同的安排方法有________种.解析:从10人中选派4人有C 410种方法,对选出的4人具体安排会议有C 24C 12种方法,由分步乘法计数原理知,不同的选派方法有C 410C 24C 12=2 520种. 答案:2 5208.若C m -1n ∶C mn ∶C m +1n =3∶4∶5,则n -m =________.解析:由题意知:⎩⎪⎨⎪⎧C m -1n C m n =34,C mn C m +1n =45, 由组合数公式得⎩⎪⎨⎪⎧3n -7m +3=0,9m -4n +5=0,解得:n =62,m =27.n -m =62-27=35. 答案:359.判断下列问题是否为组合问题,若是组合则表示出相应结果.(1)10名同学分成人数相同的数学和英语两个学习小组,共有多少种分法?(2)从1,2,3,…,9九个数字中任取3个,由小到大排列,构成一个三位数,这样的三位数共有多少个?(3)10人聚会,见面后每两人之间要握手相互问候,共需握手多少次? 解:(1)与顺序无关是组合问题,共有C 510种不同分法. (2)大小顺序已确定,故是组合问题,构成三位数共有C 39个. (3)握手无先后顺序,故是组合问题,共需握手C 210次. 10.(1)解方程:C x -2x +2+C x -3x +2=110A 3x +3; (2)解不等式:1C 3x -1C 4x <2C 5x .解:(1)原方程可化为C x -2x +3=110A 3x +3,即C 5x +3=110A 3x +3, 所以(x +3)!5!(x -2)!=(x +3)!10·x !,所以1120(x -2)!=110·x (x -1)·(x -2)!,所以x 2-x -12=0,解得x =4或x =-3, 经检验知,x =4是原方程的解. (2)通过将原不等式化简可以得到6x (x -1)(x -2)-24x (x -1)(x -2)(x -3)<240x (x -1)(x -2)(x -3)(x -4).由x ≥5,得x 2-11x -12<0,解得5≤x <12. 因为x ∈N *,所以x ∈{5,6,7,8,9,10,11}.[B 能力提升]11.式子C m +210+C 17-m10(m ∈N *)的值的个数为( ) A .1B .2C .3D .4解析:选A.由⎩⎪⎨⎪⎧m +2≤10,17-m ≤10,得7≤m ≤8,所以m =7或8.当m =7时,原式=C 910+C 1010. 当m =8时,原式=C 1010+C 910, 故原式的值只有一个.12.某班级有一个7人小组,现任选其中3人相互调整座位,其余4人座位不变,则不同的调整方案有( ) A .35种 B .70种 C .30种D .65种解析:选B.先从7人中选出3人有C 37=35种情况,再对选出的3人相互调整座位,共有2种情况,故不同的调整方案种数为2C 37=70.13.一个口袋内装有大小相同的7个白球和1个黑球. (1)从口袋内取出3个球,共有多少种取法?(2)从口袋内取出3个球,使其中含有1个黑球,有多少种取法? (3)从口袋内取出3个球,使其中不含黑球,有多少种取法? 解:(1)从口袋内的8个球中取出3个球, 取法种数是C 38=8×7×63×2×1=56.(2)从口袋内取出3个球,有1个是黑球,于是还要从7个白球中再取出2个,取法种数是C 27=7×62×1=21.(3)由于所取出的3个球中不含黑球,也就是要从7个白球中取出3个球,取法种数是C 37=错误!=35.14.(选做题)某足球赛共32支球队有幸参加,它们先分成8个小组进行循环赛,决出16强(每队均与本组其他队赛一场,各组一、二名晋级16强),这16支球队再分成8个小组决出8强,8强再分成4个小组决出4强,4强再分成2个小组决出2强,最后决出冠、亚军,此外还要决出第三名、第四名,问这次足球赛共进行了多少场比赛? 解:可分为如下几类比赛:(1)小组循环赛:每组有C 24=6场,8个小组共有48场;(2)八分之一淘汰赛,8个小组的第一、二名组成16强,根据赛制规则,16强分成8组,每组两个队比赛一场,可以决出8强,共有8场;(3)四分之一淘汰赛,根据赛制规则,8强再分成4组,每组两个队比赛一次,可以决出4强,共有4场;(4)半决赛,4强再分成2组,每组两个队比赛一场,可以决出2强,共有2场;(5)决赛,2强比赛1场确定冠、亚军,4强中的另两支队比赛1场,决出第三、四名,共有2场.综上,共有48+8+4+2+2=64场比赛.。
组合的计算公式原理和方法组合是数学中一个重要的概念,它涉及到从给定的元素集合中选择若干个元素,而不考虑元素的顺序。
在实际生活中,组合的概念被广泛应用于排列组合、概率统计、计算机算法等领域。
本文将从组合的计算公式原理和方法进行详细介绍。
一、组合的定义。
在数学中,组合是指从n个不同元素中取出m(m≤n)个元素的所有不同的选择方式的个数。
一般用C(n,m)表示,即从n个元素中取出m个元素的组合数。
组合数的计算公式为:C(n,m) = n! / (m! (n-m)!)。
其中,n!表示n的阶乘,即n(n-1)(n-2)...1。
m!表示m的阶乘,即m(m-1)(m-2)...1。
n-m表示n与m的差值。
二、组合的计算方法。
1. 递推法。
组合数的计算可以采用递推法,即从已知的组合数推导出新的组合数。
递推法的思路是利用组合数的性质,通过已知的组合数计算出新的组合数。
具体实现方法是利用组合数的性质C(n,m) = C(n-1,m-1) + C(n-1,m)来计算新的组合数。
2. 数学公式法。
组合数的计算也可以采用数学公式法,即直接使用组合数的计算公式进行计算。
这种方法适用于小规模的组合数计算,可以通过计算阶乘和求解差值来得到组合数的值。
3. 动态规划法。
在计算机算法中,组合数的计算可以采用动态规划法。
动态规划法的思路是将大问题分解成小问题,通过保存已计算的结果来避免重复计算,从而提高计算效率。
具体实现方法是使用一个二维数组来保存已计算的组合数值,通过填表的方式逐步计算出所有的组合数值。
三、组合的应用。
1. 排列组合。
在排列组合问题中,组合数的计算是一个重要的环节。
排列组合问题涉及到从给定的元素集合中选择若干个元素,而不考虑元素的顺序。
组合数的计算可以帮助解决排列组合问题,从而得到所有可能的选择方式。
2. 概率统计。
在概率统计中,组合数的计算也是一个重要的内容。
概率统计问题涉及到从给定的元素集合中选择若干个元素,计算出发生某种事件的概率。
10以内的组合与分解摘要:一、引言二、10以内的组合与分解基本概念1.组合2.分解三、10以内的组合方法1.相邻数组合2.相同数组合3.互补数组合四、10以内的分解方法1.按位数分解2.质因数分解五、组合与分解的应用1.数学问题求解2.实际生活场景六、总结与展望正文:一、引言在数学领域,组合与分解是基础中的基础,尤其在10以内的数学运算中,掌握组合与分解的方法对我们解决各种数学问题具有重要意义。
本文将详细介绍10以内的组合与分解方法,并通过实际例子帮助大家更好地理解和运用。
二、10以内的组合与分解基本概念1.组合:组合指的是从一定范围内选取若干个元素进行组合,形成不同的组合方式。
在10以内的数学运算中,我们可以将数字进行组合,以达到某种目标,如求和、求积等。
2.分解:分解是将一个数拆分成若干个较小的数,以便于进行计算或分析。
在10以内的数学运算中,我们可以将一个数进行分解,了解其构成方式,从而更好地进行运算和组合。
三、10以内的组合方法1.相邻数组合:相邻数组合是指将10以内的相邻数字进行组合,如1和2、3和4等。
这种组合方式在求和、求积等运算中具有较高的实用性。
2.相同数组合:相同数组合是指将10以内的相同数字进行组合,如2和2、3和3等。
这种组合方式在求和、求积等运算中具有较高的实用性。
3.互补数组合:互补数组合是指将10以内的互补数字进行组合,如1和9、2和8等。
这种组合方式在求和、求积等运算中具有较高的实用性。
四、10以内的分解方法1.按位数分解:按位数分解是将一个数拆分成各个位数上的数字,如123可以分解为1、2、3。
这种分解方法有助于我们了解数字的构成,从而进行相关运算。
2.质因数分解:质因数分解是将一个数拆分成若干个质数的乘积,如12可以分解为2×2×3。
这种分解方法有助于我们了解数字的质因数构成,从而进行相关运算。
五、组合与分解的应用1.数学问题求解:在解决数学问题时,组合与分解方法可以帮助我们更好地进行分析和解题。
组合和聚合名词解释
当我们谈到高等教育,往往会与两个词语结合起来:组合和聚合。
组合指的是
将不同的元素或集合结合在一起,形成一个新的系统,它具有特别的功能和性质。
而聚合则指把一些具有不同特性(甚至可以包含实体)的元素汇集在一起,形成一种相对完整的结构,具有独特的功能和性质。
在高等教育领域,“组合”的概念可以帮助高校创新课程设置,从而实现专业
多样化而不牺牲质量。
对于每一门课程,高校应该结合社会实际,依据学生们的不同背景和能力,充分结合学科及非学科之间的联系,开发出一种具有完整教学体系的课程。
另一方面,“聚合”更多的是指高校如何将它的教育资源有机地整合起来。
从本科辅导到研究生教育,以及社会知识和文化传播,高校负责利用和维护其许多不同的功能,以确保其能够紧跟时代的步伐,促进更广泛的学习和知识共享。
因此,组合与聚合是高等教育中不可或缺的概念。
它们可以帮助高校实现可持
续发展和长期稳定,拓展教育资源,维护课程质量,提升受众范围,传播社会知识,使世界更加多元化和复杂。
只有将组合和聚合有机地结合在一起,才能促进高等教育的持续发展。
组合的计算公式原理是什么组合是数学中一个重要的概念,它涉及到从给定的元素集合中选择出若干元素的方式。
在实际的问题中,组合的计算公式可以帮助我们快速准确地计算出各种组合的情况,从而解决各种实际问题。
本文将从组合的定义、计算公式原理和实际应用等方面进行探讨。
首先,我们来看一下组合的定义。
在数学中,组合是指从给定的n个元素中选取r个元素的方式。
通常用C(n,r)来表示这种选择的方式,其中n表示总的元素个数,r表示要选择的元素个数。
组合的计算公式原理就是要找到一种方法来计算出C(n,r)的值。
接下来,我们来看一下组合的计算公式原理。
组合的计算公式原理主要涉及到排列组合的概念。
在排列中,我们关心的是元素的顺序,而在组合中,我们只关心元素的选择方式。
因此,组合的计算公式原理就是要找到一种方法来计算出从n个元素中选择r个元素的方式的数量。
在实际的问题中,我们可以利用排列组合的知识来快速计算出各种组合的情况。
在组合的计算公式原理中,最常用的是二项式定理。
二项式定理是用来计算(a+b)^n的展开式的公式,其中a和b是任意的实数,n是一个非负整数。
在二项式定理中,我们可以利用组合的计算公式原理来快速计算出(a+b)^n的展开式,从而得到各种组合的情况。
除了二项式定理之外,我们还可以利用递推关系来计算组合的情况。
递推关系是指通过已知的组合的情况来推导出更高阶的组合的情况。
在实际的问题中,我们可以利用递推关系来快速计算出各种组合的情况,从而解决各种实际问题。
最后,我们来看一下组合的实际应用。
在实际的问题中,组合的计算公式原理可以帮助我们快速准确地计算出各种组合的情况,从而解决各种实际问题。
比如在概率统计中,我们可以利用组合的计算公式原理来计算出各种事件发生的概率;在排队理论中,我们可以利用组合的计算公式原理来计算出各种排队的情况;在密码学中,我们可以利用组合的计算公式原理来计算出各种密码的组合情况等等。
总之,组合的计算公式原理是数学中一个重要的概念,它可以帮助我们快速准确地计算出各种组合的情况,从而解决各种实际问题。
组合的概念
一般地,从n 个不同元素中取出()m m n ≤个元素合成一组,叫做从n 个不同元素中取出m 个元素的一个组合.
对于组合概念的理解,注意下列几点:
(1) 如果两组合中的元素完全相同,那么不管元素的顺序如何,都是相同的组合,只有当两个组
合中的元素不完全相同时,才是不同的组合;
(2) 排列与组合的共同点都是“从n 个不同元素中任取m 个元素”,但排列与m 个元素的顺序
有关,组合与m 个元素的顺序有关;
(3) “组合”与“组合数”是两个不同的概念,组合是从n 个不同元素中,任取m 个元素合成一组,
是一个具体的事件,而组合数是符合条件的所有组合的个数,是一个数.
组合数
(1)组合数的概念
我们可以从集合的角度来理解, 从n 个不同元素中取m 个元素合成一组是一个组合,任取m 个元素组成的组合的全体构成一个集合,例如:从个不同元素,,a b c 中任取2个的所有组合构成的集合为{},,A ab ac bc =.所谓组合数就是这个集合的元素的个数.
(2)组合数公式
从n 个不同元素中取出()m m n ≤个元素的所有组合的个数,叫做从n 个不同元素中取出m
个元素的组合数,用符合m n C 表示. ①(1)(2)(1)!m m
n n
m m A n n n n m C A m ---+== 或②!.!()!m n n C m n m =- 例1.(1)求等式531333
435n n n C C C ---+=中的n 值; (2)已知21111,3x x n n x x n n C C C C +-⎧=⎪⎨=⎪⎩
试求x 、n 的值。
解:原方程可变形为5133191,5
n n C C --+=移项并整理得531314,5n n C C --= 即
(1)(2)(3)(4)(5)14(3)(4)(5)5!53!
n n n n n n n n --------=∙,整理得23540n n --=。
解此一元二次方程得9n =或6n =-(不合题意,舍去)。
9n ∴=为所求。
(2)2,2,x n x x n n n C C C n x x -==∴-=
3n x ∴=,又由11113x x n n C C +-=,得!11!(1)!(1)!3(1)!(1)!
n n x n x x n x =∙+----+,
整理得3(1)()11(1)n x n x x x -+-=+,将3n x =代入,整理得(5)0.x x -=
0x ∴=(舍去),5,315x n x ===
组合数的两个性质
性质1:.m n m n n C C -=
当m >2
n 时,通常不直接计算m n C 而改为计算n m n C -,例如899089190909090.C C C -=== 性质2:11.m m m n n n C C C -+=+
为了使公式.m n m n n C C -=在m n =时也成立,规定0 1.n
C = 例3.求和:(1)2222234100
C C C C ++++ ; (2)9495969796979899
C C C C +++。
(1)解法1:原式322232233410044100
C C C C C C C =++++=+++ 323100100101
C C C ==+= 166650=
解法2:由11.m m m n n n C C C -+=+变形得11.m m m n n n C C C -+=-
∴原式333333343541011001011()()()166650C C C C C C C =+-+-++-==
(2)解:原式222296979899
C C C C =+++ 3333333397969897999810099()()()()C C C C C C C C =-+-+-+-
3310096
C C =- 18820=
组合问题的常见类型及求解方法
应用题中,凡涉及从n 个不同元素中任意取出m 个并成一组,即与顺序无关就可以用组合数列式,但也常常与分类、分类基至与排列综合在一起,应注意加法与乘法的区别,以免出错。
常见的不同类型有:
(1)所选取的组合中“含”或“不含”某个元素,处理这类问题的方法通常是直接法。
如从5个学生中选出3人参加某项法动,若甲学生必须选取,则只能在余下的4人中再选出2
人,即有24C 种选法,若甲学生不能选取,那么在余下的4人中选3人,即有34C 种选法。
(2)“至多”或“至少”问题,这类问题通常采用排除法,也可以用直接法。
如从3名男生、2名女生中选出3人参加某项活动,则至少有1名女生的选法为33
539C C -=(种)或
122123239C C C C +=(种),至多有2名男生参加的选法为33539C C -=(种)或211232329C C C C +=
(3)几何问题
从不同类型的几何问题中抽象出组合问题,往往需寻找一个组合的模型处理,如平面上m 个点构成多少个三角形,即在m 个元素中取出3个元素的组合数(除去共线的情况)就是三角形的个数。
空间中n 个点构成多少个四面体,即与在n 个元素中取出4个元素的组合数(除去共面的情况)相等,若组成多少对异面直线,也可以构造四面体模型处理。
在解决几何问题时,必须注意几何问题本身的限制条件,如共线、共面、交点等。