期权定价模型
- 格式:doc
- 大小:31.50 KB
- 文档页数:4
期权的定价期权定价是金融学中重要的一部分,它可以帮助投资者确定期权的合理价值,并基于此做出相应的投资决策。
期权定价模型主要有两种,即BSM模型(Black-Scholes-Merton 模型)和二叉树模型。
BSM模型是最早也是最经典的期权定价模型之一。
该模型是由Fisher Black、Myron Scholes 和 Robert C. Merton于1973年提出的。
该模型的核心思想是建立一个无风险投资组合,其和期权组合有相同的收益率。
通过对组合进行数学推导,可以得到期权价格的解析公式。
BSM模型的前提假设包括:市场不存在摩擦成本、资产价格符合几何布朗运动、市场无风险利率恒定、无红利支付、市场不存在套利机会等。
有了这些假设,可以通过标的资产价格、行权价格、剩余期限、无风险利率、标的资产波动率和期权类型等因素来计算期权的市场价值。
与BSM模型不同,二叉树模型采用离散化的方法进行期权定价。
该模型将剩余期限分为若干个时间步长,并在每个时间步长内考虑标的资产价格的上涨和下跌情况。
通过逐步计算,可以得到期权价格的近似值。
二叉树模型的优点在于它可以应用于各种类型的期权,并且容易理解和计算。
无论是BSM模型还是二叉树模型,期权定价都是基于一定的假设和参数。
其中,最关键的参数是标的资产的波动率。
波动率代表了市场对标的资产未来价格变动的预期。
根据波动率的不同,期权的价格也会有所变化。
其他参数如标的资产价格、行权价格、剩余期限和无风险利率等也会对期权定价产生影响。
需要注意的是,期权定价模型只是对期权价格的估计,并不保证期权的实际市场价格与估计值完全相同。
实际市场存在许多因素都会导致期权价格的变动,例如市场情绪、供需关系、经济指标等。
因此,在进行期权交易时,投资者需要结合市场情况和自身风险偏好做出相应的决策。
总之,期权定价是金融学中的重要内容,通过定价模型可以帮助投资者确定期权的合理价格。
BSM模型和二叉树模型是常用的定价方法,但投资者需要注意,这些模型只是对期权价格的估计,实际市场价格可能有所变动。
期权定价模型期权定价模型是金融衍生品定价领域的重要模型之一,它通过考虑期权的各项特性,将期权的价值与其相关的标的资产、行权价格、到期时间、波动率、无风险利率等一系列因素联系起来,从而确定期权的公平价格。
在期权定价模型中,常用的模型有布莱克-斯科尔斯模型(Black-Scholes Model)和它的改进模型,如布莱克-斯科尔斯-默顿模型(Black-Scholes-Merton Model)。
这些模型基于一些假设,包括市场无摩擦、无风险利率不变、标的资产价格服从几何布朗运动等。
布莱克-斯科尔斯模型是最早的期权定价模型之一,它将期权价格视为标的资产价格的函数,通过假设标的资产价格服从几何布朗运动,并应用风险中性估计,推导出了一个偏微分方程,即著名的布莱克-斯科尔斯方程。
利用该方程可以计算出欧式看涨/看跌期权的价格。
然而,布莱克-斯科尔斯模型在实际应用中存在一些限制,例如假设市场无摩擦和无风险利率不变的条件,并且假设标的资产价格服从几何布朗运动,这些假设在现实市场中并不总是成立。
因此,为了更准确地定价期权,学者们提出了一系列改进的模型。
其中,布莱克-斯科尔斯-默顿模型是对布莱克-斯科尔斯模型的一个重要改进。
该模型引入了对标的资产价格波动率的估计,通过蒙特卡洛模拟或数值方法,可以计算出更加准确的欧式期权价格。
此外,还有许多其他的改进模型,如跳跃扩散模型、随机波动率模型等,针对不同的市场和期权特性提供了更加精确的定价方法。
总之,期权定价模型是金融衍生品定价领域的重要工具,它通过考虑期权的各项特性和相关因素,计算出期权的公平价格。
布莱克-斯科尔斯模型和其改进模型是常用的期权定价模型,但也存在一些假设和限制。
为了更精确地定价期权,学者们提出了一系列改进模型,以适应不同市场和期权特性的需求。
在期权定价领域,除了布莱克-斯科尔斯模型和其改进模型外,还有许多其他的期权定价模型被广泛应用。
这些模型包括跳跃扩散模型、随机波动率模型、二叉树模型等等,它们分别在不同的金融市场和期权类型中发挥着重要的作用。
第9章 期 权9.1 期权的概念期货无选择权:买入期货合约,即使交割时的现货价格低于期货价格,也必须买入而亏损;出售期货合约,即使交割时的现货价格高于期货价格,也必须卖出而亏损。
看涨买权(call option ):到期时的现货价格低于执行价格,持有者可选择不执行合约,以避免亏损;到期时的现货价格高于执行价格,持有者可选择 执行合约,以获得盈利。
看跌卖权(put option ):到期时的现货价格低于执行价格,持有者可选择 执行合约,以获得盈利;到期时的现货价格高于执行价格,持有者可选择不执行合约,以避免亏损。
期权价格(option price ):购买选择权支付的单位成本。
9.2 到期股票期权定价1. 到期期权的价值: 标的资产:股票标的变量:股价 S 也就是 S 元∕股 执行价格: E 或X 比如 100元∕股 到期时间: T 比如 3个月到期时股价: T S 比如 120元∕股,或80元∕股 股票现价: 0S看涨买权到期价值: C T = =)0,max(E S T -例:C T =)0,max(E S T -=)0,100120max(-=20 C T =)0,max(E S T -=)0,10080max(-=0 注:到期价值C T 随到期股价T S 的不同而变化,T S 是自变量,C T 是因变量或函数,并且C T 是T S 的分段函数。
看涨买权到期价值看跌卖权到期价值:)0,max(T T S E P -=看跌卖权到期价值2. 到期期权的盈亏设期初买权价为0C 、期初卖权价为0P ,则到期期权的盈亏为),max(),max(000000P P S E P P C C E S C C T T P T T C ---=-=---=-=ππ(1)购入买权(2)购入卖权例如:购入买权,E =100,100=C , 到期时T S 为115和90的两种情况的盈亏分别为:;10)10,1010090max()90(;5)10,10100115max()115(-=---==---=C C ππ注意: 买权是一个产品,设售出买权的盈亏为C π,则有0=+C C ππ或C πC π-=,即售出和购入买权的盈亏是零和的,原因是,售出买权的一方看跌,售出卖权的一方看涨。
金融学中的期权定价模型在金融学领域中,期权是一种金融工具,赋予持有人在未来某个特定时间以特定价格购买或出售标的资产的权利。
期权定价模型是为了确定期权合理价格的数学模型。
本文将介绍金融学中常用的期权定价模型,包括布莱克-斯科尔斯模型和风险中性定价模型。
布莱克-斯科尔斯模型(Black-Scholes Model)是最为著名和广泛使用的期权定价模型之一。
该模型于1973年由费舍尔·布莱克(Fisher Black)和米伦·斯科尔斯(Myron Scholes)共同提出,并获得了1997年诺贝尔经济学奖。
布莱克-斯科尔斯模型基于一系列假设,包括标的资产价格服从随机几何布朗运动、市场无摩擦、无交易成本等。
根据这些假设,该模型通过偏微分方程推导出了期权的定价公式。
该公式可以用来计算欧式期权的价格,在交易中发挥了重要的作用。
风险中性定价模型(Risk-Neutral Pricing Model)是另一种常用的期权定价模型。
该模型的基本原理是假设市场参与者对风险持中立态度,即市场对未来价格的期望值等于当前价格。
根据这个假设,风险中性定价模型通过建立与衍生品价格相关的风险中性测度,将期权的定价问题转化为风险中性测度下的期望值计算。
相对于布莱克-斯科尔斯模型,风险中性定价模型更加灵活,可以应用于更复杂的市场情况,并且可以解决了一些布莱克-斯科尔斯模型无法解决的问题。
除了布莱克-斯科尔斯模型和风险中性定价模型,金融学中还有其他的期权定价模型,如扩散模型、二叉树模型和蒙特卡洛模拟等。
这些模型都有各自的优势和适用范围,可以根据具体情况选择合适的模型进行期权定价。
需要注意的是,期权定价模型只是一种理论框架,模型的有效性和适用性需要在实践中进行验证。
实际应用中,投资者还需要考虑市场流动性、实际交易成本、波动率预测等因素,并结合自身的投资策略进行决策。
总结而言,金融学中的期权定价模型是为了计算期权的合理价格而设计的数学模型。
金融工程中的期权定价模型一、期权定义期权是金融工具中的一种,是指在未来某个时间,按照约定的价格、数量和期限,有权买入或者卖出某种标的资产的一种金融合约。
通过买入期权,持有人可以在未来某个时间以约定的价格买进标的资产;通过卖出期权,交易人可以获得期权费用,承担未来某个时间按照约定价格进行买卖的义务。
期权的本质是对未来的权利,是一种寄予了未来的期望和信心。
二、期权定价方法期权定价是指通过计算期权价格,来实现期权交易的方法或模型。
期权定价的理论基础主要包括两个主流模型:布莱克-斯科尔斯模型和考克斯-鲁宾斯坦模型。
下面我们分别来介绍一下这两种期权定价模型。
1. 布莱克-斯科尔斯模型布莱克-斯科尔斯模型,是由弗兰克-布莱克和梅伦-斯科尔斯在1973年提出的一种期权定价模型。
这个模型的核心思想是将期权看作是一种债券和股票组成的投资组合,通过对这个投资组合的定价,来推导出期权的价格。
布莱克-斯科尔斯模型的核心公式如下:C = SN(d1) - Xe^(-rt)N(d2)P = Xe^(-rt)N(-d2) - SN(-d1)其中,C表示看涨期权的价格,P表示看跌期权的价格;S表示标的资产的价格,X表示行权价格;N()表示标准正态分布函数的值,其中d1和d2分别表示如下:d1 = [ln(S/X) + (r + σ^2/2)t] / σ√td2 = d1 - σ√t这个模型中,需要考虑的参数有标的资产的价格S、行权价格X、波动率σ、存续期t、无风险利率r。
其中,波动率是最重要的参数,它的大小决定了标的资产的风险水平,因此,布莱克-斯科尔斯模型中的波动率是需要通过历史数据或者其他方法进行计算和估算的。
2. 考克斯-鲁宾斯坦模型考克斯-鲁宾斯坦模型,是由约翰-考克斯和斯蒂芬-鲁宾斯坦在1979年提出的一种期权定价模型。
这个模型的最大特点是引入了离散时间的概念,将连续时间的布莱克-斯科尔斯模型离散化,以适应实际的市场需求。
二、期权价值评估的方法(一)期权估价原理1、复制原理基本思想复制原理的基本思想是:构造一个股票和贷款的适当组合,使得无论股价如何变动投资组合的损益都与期权相同,那么创建该投资组合的成本就是期权的价值。
基本公式每份期权价格(买价)=借钱买若干股股票的投资支出=购买股票支出-借款额计算步骤(1)确定可能的到期日股票价格Su和Sd上行股价Su=股票现价S×上行乘数u下行股价Sd=股票现价S×下行乘数d(2)根据执行价格计算确定到期日期权价值Cu和Cd:股价上行时期权到期日价值Cu=上行股价-执行价格股价下行时期权到期日价值Cd=0(3)计算套期保值率:套期保值比率H=期权价值变化/股价变化=(CU-Cd)/(SU-Sd)(4)计算投资组合的成本(期权价值)=购买股票支出-借款数额购买股票支出=套期保值率×股票现价=H×S0借款数额=价格下行时股票收入的现值=(到期日下行股价×套期保值率)/(1+r)= H×Sd/(1+r)2、风险中性原理基本思想假设投资者对待风险的态度是中性的,所有证券的预期收益率都应当是无风险利率;假设股票不派发红利,股票价格的上升百分比就是股票投资的收益率。
因此:期望报酬率(无风险收益率)=(上行概率×股价上升时股价变动百分比)+(下行概率×股价下降时股价变动百分比)=p×股价上升时股价变动百分比+(1-p)×股价下降时股价变动百分比计算步骤(1)确定可能的到期日股票价格Su和Sd(同复制原理)(2)根据执行价格计算确定到期日期权价值Cu和Cd(同复制原理)(3)计算上行概率和下行概率期望报酬率=(上行概率×股价上升百分比)+(下行概率×股价下降百分比)(4)计算期权价值期权价值=(上行概率×Cu+下行概率×Cd)/(1+r)(二)二叉树期权定价模型1、单期二叉树定价模型基本原理风险中性原理的应用计算公式(1)教材公式期权价格=U=股价上行乘数=1+股价上升百分比d=股价下行乘数=1-股价下降百分比(2)理解公式:(与风险中性原理完全一样)2、两期二叉树模型基本原理把到期时间分成两期,由单期模型向两期模型的扩展,实际上就是单期模型的两次应用。
金融衍生品学中的期权定价模型分析1. 引言金融衍生品是一种基于金融资产的衍生工具,其中期权是最常见的一种。
期权是一种购买或出售标的资产的权利,而非义务。
在金融衍生品学中,期权定价模型是评估期权价格的重要工具。
本文将对期权定价模型进行深入分析。
2. 期权定价理论期权定价理论是通过建立数学模型来计算期权价格的理论框架。
其中最著名的模型是布莱克-斯科尔斯期权定价模型(Black-Scholes Option Pricing Model)。
该模型基于一些假设,如市场无摩擦、无套利机会等,通过对期权价格的随机波动性进行建模,计算出期权的理论价格。
3. 布莱克-斯科尔斯期权定价模型布莱克-斯科尔斯期权定价模型是一种基于随机过程的数学模型,用于计算欧式期权的价格。
它的核心思想是将期权价格与标的资产价格、行权价格、无风险利率、期权到期时间和标的资产价格波动率等因素联系起来。
通过对这些因素的定量分析,可以计算出期权的理论价格。
4. 期权定价模型的应用期权定价模型在金融市场中有广泛的应用。
首先,它可以用于评估期权的合理价格,帮助投资者做出决策。
其次,它可以用于套利交易的策略设计。
通过对期权价格的预测,投资者可以利用价格差异来进行套利交易,从而获得利润。
此外,期权定价模型还可以用于风险管理,帮助投资者对期权的价格波动进行预测和控制。
5. 期权定价模型的局限性尽管期权定价模型在金融市场中有广泛的应用,但它也存在一些局限性。
首先,该模型基于一系列假设,如市场无摩擦、无套利机会等,这些假设在现实市场中并不总是成立。
其次,该模型对标的资产价格波动率的估计非常敏感,对波动率的估计误差会导致期权价格的误差。
此外,该模型只适用于欧式期权,对于其他类型的期权,如美式期权,需要使用其他的定价模型。
6. 其他期权定价模型除了布莱克-斯科尔斯期权定价模型之外,还存在其他的期权定价模型。
例如,考虑了股息支付的期权定价模型(Dividend-adjusted Option Pricing Model)、考虑了波动率的随机性的期权定价模型(Stochastic Volatility Option Pricing Model)等。
如何评估期权的价值期权是一种金融衍生品,它赋予购买者在未来某个特定时间内以特定价格购买或者卖出某一标的资产的权利,而并非义务。
在金融市场中,期权的价值评估对于投资者和交易者来说至关重要。
合理的期权定价模型可以帮助投资者做出明智的决策,并降低投资风险。
本文将详细介绍如何评估期权的价值。
一、期权定价模型期权的价值评估主要使用两种经典的定价模型:Black-Scholes模型和Binomial模型。
1. Black-Scholes模型Black-Scholes模型是最常用的期权定价模型之一,基于以下几个关键因素对期权进行定价:- 标的资产的价格(S):即期权对应的股票、商品或指数的当前价格;- 行权价格(K):即期权买卖方约定的交易价格;- 到期时间(T):即期权有效期限;- 无风险利率(r):市场上的无风险利率,使用国债利率或短期利率作为参考;- 标的资产的波动率(σ):标的资产价格的波动程度。
通过以上因素,Black-Scholes模型可以计算出一个期权理论价格,即市场上合理的期权价格。
2. Binomial模型Binomial模型是另一种常用的期权定价模型,它基于二叉树的计算方法。
该模型通过构建一个期权价格的二叉树,从期权到期时的所有可能价格路径中,使用回溯法计算出期权的价值。
二、评估期权的价值在实际应用中,我们可以使用以下几种方法来评估期权的价值:1. 市价法市价法是最常用的评估期权价值的方法,即根据市场上实际交易的期权价格来确定期权的价值。
这种方法可以反映市场对该期权的整体认知和供需状况,并具有一定的市场有效性。
2. 基于历史波动率的模型在Black-Scholes模型中,波动率是期权定价的一个重要参数。
我们可以根据过去的历史波动率来估计未来的波动率,然后将其代入到Black-Scholes模型中进行计算。
这种方法适用于市场波动率相对稳定的情况下。
3. 基于隐含波动率的模型隐含波动率是指使市场观察到的期权价格与Black-Scholes模型计算得出的价格相匹配的波动率。
期权定价模型
期权定价模型(Option Pricing Mode1)
目录
1 期权定价模型概述
1.1 期权定价模型的前驱
1.2 期权定价模型发展过程
2 期权定价的方法
3 期权定价模型与无套利定价
4 B-S期权定价模型(以下简称B-S模型)及其假设条件
4.1 (一)B-S模型有5个重要的假设
4.2 (二)荣获诺贝尔经济学奖的B-S定价公式
5 期权定价的二项式模型
期权定价模型概述
期权定价模型的前驱
1、巴施里耶(Bachelier,1900)
2、斯普伦克莱(Sprenkle,1961)
3、博内斯(Boness,1964)
4、萨缪尔森(Samuelson,1965)
期权定价模型发展过程
期权是购买方支付一定的期权费后所获得的在将来允许的时间买或卖一定数量的基础商品(underlying assets)的选择权。
期权价格是期权合约中唯一随市场供求变化而改变的变量,它的高低直接影响到买卖双方的盈亏状况,是期权交易的核心问题。
早在1900年法国金融专家劳雷斯·巴舍利耶就发表了第一篇关于期权定价的文章。
此后,各种经验公式或计量定价模型纷纷面世,但因种种局限难于得到普遍认同。
70年代以来,伴随着期权市场的迅速发展,期权定价理论的研究取得了突破性进展。
在国际衍生金融市场的形成发展过程中,期权的合理定价是困扰投资者的一大难题。
随着计算机、先进通讯技术的应用,复杂期权定价公式的运用成为可能。
在过去的20年中,投资者通过运用布莱克——斯克尔斯期权定价模型,将这一抽象的数字公式转变成了大量的财富。
期权定价是所有金融应用领域数学上最复杂的问题之一。
第一个完整的期权定价模型由Fisher Black和Myron Scholes创立并于1973年公之于世。
B—S期权定价模型发表的时间和芝加哥期权交易所正式挂牌交易标准化期权合约几乎是同时。
不久,德克萨斯仪器公司就推出了装有根据这一模型计算期权价值程序的计算器。
现在,几乎所有从事期权交易的经纪人
都持有各家公司出品的此类计算机,利用按照这一模型开发的程序对交易估价。
这项工作对金融创新和各种新兴金融产品的面世起到了重大的推动作用。
斯克尔斯与他的同事、已故数学家费雪·布莱克(Fischer Black)在70年代初合作研究出了一个期权定价的复杂公式。
与此同时,默顿也发现了同样的公式及许多其它有关期权的有用结论。
结果,两篇论文几乎同时在不同刊物上发表。
所以,布莱克—斯克尔斯定价模型亦可称为布莱克—斯克尔斯—默顿定价模型。
默顿扩展了原模型的内涵,使之同样运用于许多其它形式的金融交易。
瑞士皇家科学协会(The Royal Swedish Academyof Sciencese)赞誉他们在期权定价方面的研究成果是今后25年经济科学中的最杰出贡献。
1979年,约翰·考克斯(John Carrington Cox)、斯蒂芬·罗斯(Stephen A. Ross)、马克·鲁宾斯坦(Mark Rubinstein)的论文《期权定价:一种简化方法》提出了二项式模型(Binomial Model),该模型建立了期权定价数值法的基础,解决了美式期权定价的问题。
期权定价的方法
(1)Black—Scholes公式
(2)二项式定价方法
(3)风险中性定价方法
(4)鞅定价方法等
期权定价模型与无套利定价
期权定价模型基于对冲证券组合的思想。
投资者可建立期权与其标的股票的组合来保证确定报酬。
在均衡时,此确定报酬必须得到无风险利率。
期权的这一定价思想与无套利定价的思想是一致的。
所谓无套利定价就是说任何零投入的投资只能得到零回报,任何非零投入的投资,只能得到与该项投资的风险所对应的平均回报,而不能获得超额回报(超过与风险相当的报酬的利润)。
从Black-Scholes期权定价模型的推导中,不难看出期权定价本质上就是无套利定价。
B-S期权定价模型(以下简称B-S模型)及其假设条件
(一)B-S模型有5个重要的假设
1、金融资产收益率服从对数正态分布;
2、在期权有效期内,无风险利率和金融资产收益变量是恒定的;
3、市场无摩擦,即不存在税收和交易成本;
4、金融资产在期权有效期内无红利及其它所得(该假设后被放弃);
5、该期权是欧式期权,即在期权到期前不可实施。
(二)荣获诺贝尔经济学奖的B-S定价公式
C=S•N(D1)-L•E-γT•N(D2)
其中:
D1=1NSL+(γ+σ22)Tσ•T
D2=D1-σ•T
C—期权初始合理价格
L—期权交割价格
S—所交易金融资产现价
T—期权有效期
r—连续复利计无风险利率H
σ2—年度化方差
N()—正态分布变量的累积概率分布函数,在此应当说明两点:
第一,该模型中无风险利率必须是连续复利形式。
一个简单的或不连续的无风险利率(设为r0)一般是一年复利一次,而r要求利率连续复利。
r0必须转化为r方能代入上式计算。
两者换算关系为:r=LN(1+r0)或r0=Er-1。
例如r0=0.06,则r=LN(1+0.06)=0853,即100以583%的连续复利投资第二年将获106,该结果与直接用r0=0.06计算的答案一致。
第二,期权有效期T的相对数表示,即期权有效天数与一年365天的比值。
如果期权有效期为100天,则T=100365=0.274。
期权定价的二项式模型
1979年,科克斯(Cox)、罗斯(Ross)和卢宾斯坦(Rubinsetein)的论文《期权定价:一种简化方法》提出了二项式模型(Binomial Model),该模型建立了期权定价数值法的基础,解决了美式期权定价的问题。
二项式模型的假设主要有:
1、不支付股票红利。
2、交易成本与税收为零。
3、投资者可以以无风险利率拆入或拆出资金。
4、市场无风险利率为常数。
5、股票的波动率为常数。
假设在任何一个给定时间,金融资产的价格以事先规定的比例上升或下降。
如果资产价格在时间t的价格为S,它可能在时间t+△t上升至uS或下降至dS。
假定对应资产价格上升至uS,期权价格也上升至Cu,如果对应资产价格下降至dS,期权价格也降至Cd。
当金融资产只可能达到这两种价格时,这一顺序称为二项程序。