教材全解2016湘教版七年级数学下册第二章检测题及答案解析
- 格式:doc
- 大小:754.50 KB
- 文档页数:6
湘教版七年级下册数学第2章整式的乘法含答案一、单选题(共15题,共计45分)1、我们约定a⊗b=10a×10b,如2⊗3=102×103=105,那么4⊗9为()A.36B.10 13C.10 36D.13 102、下列运算正确的是()A.3x 2+4x 2=7x 4B.2x 3·3x 3=6x 3C.x 6÷x 3=x 2D.(x 2)4=x 83、计算10ab3÷5ab的结果是()A.2ab 3B.2ab 2C.2b 3D.2b 24、已知多项式x2+kx+是一个完全平方式,则k的值为()A.±1B.-1C.1D.5、计算:(a-b)(a+b)(a2+b2)(a4+b4)的结果是( )A.a 8+2a 4b 4+b 8B.a 8-2a 4b 4+b 8C.a 8+b 8D.a 8-b 86、下列计算正确的是()A. B. C. D.7、下列运算正确的是()A. B. C. D.8、已知a2+b2=6ab且a>b>0,则的值为()A.1B.3C.2D.49、下列计算正确的是()A.(﹣ab 3)2=a 2b 3B.(x+3)2=x 2+9C.(﹣4)0=1D.(﹣1)﹣3=110、化简﹣3a•(2a2﹣a+1)正确的是()A.﹣6a 3+3a 2﹣3aB.﹣6a 3+3a 2+3aC.﹣6a 3﹣3a 2﹣3a D.6a 3﹣3a 2﹣3a11、如图在边长为a的正方形中剪去一个边长为b的小正方形(a>b),把剩下的部分拼成一个梯形,分别计算这两个图形阴影部分面积,可以验证下面一个等式是()A.(a+b) 2=a 2+2ab+b 2B.(a-b) 2=a 2-2ab+b 2C.a 2-b 2=(a+b)(a-b)D.a 2+b 2=[(a+b)²+(a-b)²]12、下列运算正确的是()A.3a+2b=5abB.3a•2b=6abC.(a 3)2=a 5D.(ab 2)3=ab 613、下列运算结果为m2的式子是()A. m 6÷ m 3B. m 4• m -2C.( m -1)2D. m 4- m 214、下列计算正确的是()A. 2﹣1=﹣2B. =±3C. (ab2)2=a2b4D. +=15、一个代数式的2倍与﹣2a+b的和是a+2b,这个代数式是()A.3a+bB.−12a+12bC.32a+32bD.32a+12b二、填空题(共10题,共计30分)16、计算(﹣3a2b)3的结果是________.17、计算:(5+1)(52+1)(54+1)(58+1)=________.18、计算:________19、如图,矩形ABCD的面积为________(用含x的代数式表示).20、(-0.25)2015×42016= ________ .21、若多项式,则的值分别是________.22、计算2a2b(2a﹣3b+1)=________.23、已知(x+y)2﹣2x﹣2y+1=0,则x+y=________.24、若m<0,且x2﹣2mx+9是一个完全平方式,则m的值为________.25、若(x+k)(x﹣2)的积中不含有x的一次项,则k的值为________ .三、解答题(共5题,共计25分)26、计算:27、a+b=5,ab=-2,求:和的值.28、已知(x3+mx+n)(x2﹣3x+4)展开式中不含x3和x2项.(1)求m、n的值;(2)当m、n取第(1)小题的值时,求(m+n)(m2﹣mn+n2)的值.29、先化简,再求值:(2a+3)(a﹣2)﹣a(2a﹣3),其中a=﹣2.30、若△ABC的三边长为a、b、c满足a2+b2+c2+200=12a+16b+20c,试判断△ABC的形状,并说明理由。
2016七年级数学下册第二章检测试题(湘教版有答案)第2章整式的乘法检测题【本检测题满分:100分,时间:90分钟】一、选择题(每小题3分,共24分)1. (2015•江苏连云港中考)下列运算正确的是( ) A.2a+3b=5ab B.5a-2a=3a C. D. 2.下列计算正确的是() A. B. C. D. 3.若,,则的值为() A.5 B.25C.10D.无法确定 4.(2015•南京中考)计算的结果是() A. B. C.D. 5.(2015•广东珠海中考)计算-3 的结果为() A.-3 B.3 C.-3 D.3 6.如果与的乘积中不含常数项,那么的值为() A. B.-2 C.D.0 7.下列说法中正确的有()(1)当为正奇数时,一定有等式成立;(2)式子,无论为何值时都成立;(3)三个式子:都不成立;(4)两个式子:都不一定成立. A.1个 B.2个 C.3个 D.4个 8.现规定一种运算,其中为实数,则等于() A. B. C. D. 二、填空题(每小题3分,共24分) 9. (2015•江苏连云港中考)已知m +n=mn,则(m-1)(n-1)= . 10.当时,的值为. 11.如果,那么 = .12.计算下列各式,然后回答问题. = ; = ; = ; = .(1)从上面的计算中总结规律,写出下面式子的结果. = .(2)运用上述结论,写出下列各式的结果.① = ;② )= . 13.若为奇数,则与的关系为. 14.一个长方形的长为,宽比长少,则这个长方形的面积为. 15.工厂要做一个棱长为的正方体运输箱,则这种运输箱的容积为. 16.人们以分贝为单位来表示声音的强弱.通常说话的声音是50分贝,它表示声音的强度是;摩托车发出的声音是110分贝,它表示声音的强度是.摩托车发出的声音强度是通常说话声音强度的倍.三、解答题(共52分) 17.(6分)计算:(1);(2);(3). 18.(6分)(1)先化简,再求值.,其中.(2)(2015•湖北随州中考)先化简,再求值:(2+a)(2-a)+a(a-5b)+3 ,其中ab=- . (3)已知为正整数,且,则的值是多少? 19.(6分)解下列方程:(1);(2). 20.(6分)已知,能否确定代数式的值?如果能确定,试求出这个值. 21.(7分)某中学扩建教学楼,测量地基时,量得地基长为,宽为,试用表示地基的面积,并计算当时地基的面积. 22.(7分)一块长方形硬纸片,长为,宽为,在它的四个角上分别剪去一个边长为的小正方形,然后折成一个无盖的盒子,请你求出这个无盖盒子的表面积. 23.(7分)李大伯把一块L型的菜地按如图所示的虚线分成面积相等的两个梯形,这两个梯形的上底都是,下底都是,高都是,请你算一算这块菜地的面积是多少,并求出当,时这块菜地的面积.24.(7分)阅读材料并回答问题:第23题图我们知道,完全平方式可以用平面几何图形的面积来表示,实际上还有一些代数恒等式也可以用这种形式表示,如:就可以用图(1)或图(2)等图形的面积表示.(1)(2)(3)第24题图(1)请写出图(3)所表示的代数恒等式:;(2)试画一个几何图形,使它的面积表示为;(3)请仿照上述方法另写一个含有的代数恒等式,并画出与它对应的几何图形.第2章整式的乘法检测题参考答案 1.B解析:∵ 2a和3b不是同类项,∴ 2a和3b不能合并,∴ A项错误;∵ 5a和-2a是同类项,∴ 5a-2a=(5-2)a=3a,∴ B项正确;∵ ,∴ C项错误;∵ ,∴ D项错误. 2.C 解析:A项,,故本选项错误;B项,,故本选项错误;C项,,故本选项正确;D项,,故本选项错误.故选C. 3.B 解析:∵ ,,∴ ,∴ ,∴ .故选B. 4.A解析: 5.A解析: .6.D 解析:,∵ 与的乘积中不含常数项,∴ ,∴ .故选D.7.B 解析:(1)正确.(2)当是偶数时,,故此说法错误. (3),成立,,故此说法错误.(4)当是偶数时,,错误;当是奇数时,= .故第一个式子不一定成立.同理第二个式子也是不一定成立.故此说法正确.所以(1)(4)正确,故选B.8.B 解析:,故选B.9.1 解析:∵ m+n=mn,∴ mn-(m+n)=0,∴ (m-1)(n-1)=mn-m -n+1=mn-(m+n)+1=1. 10.-32 解析: = = = = . 当时,原式. 11.-55 解析:∵ ,∴ ,∴ . 当时,原式 . 12. (1)(2)① ② 解析:; = ; = ; = .(1) = .(2)① = ;② = . 13.互为相反数解析:∵ 为奇数,∴ ,∴ 与的关系为互为相反数. 14. 解析:∵ 一个长方形的长为,宽比长少,∴ 这个长方形的宽为,∴ 这个长方形的面积为.即这个长方形的面积为. 15. 解析:∵ 正方体运输箱的棱长为,∴ 这种运输箱的容积为. 16. 解析:. 17.解:(1)原式= ;(2)原式= = = ;(3)原式= = = . 18.解:(1) = = . 把代入,得原式 . (2)原式=4- -5ab+3ab=4-2ab.当ab=- 时,原式=4-2ab=4-2× =5. (3)∵ ,∴ ,∴ , . 解得,,∴ 的值是8. 19.解:(1)去括号,得 . 合并同类项,得 . 移项,得 . 系数化为1,得 . (2)去括号,得.合并同类项,得 . 移项,得 . 系数化为1,得 . 20.解:原式= = = . 当时,原式= . 21.解:根据题意,得地基的面积是 . 当时,. 22.解:纸片的面积是;小正方形的面积是,则无盖盒子的表面积是. 23.解:根据题意,得菜地的面积是 . 当,时,原式.所以这块菜地的面积为 . 24.解:(1);(2)答案不唯一,如图(1)所示;(1)(2)第24题答图(3)恒等式是,如图(2)所示.(答案不唯一)。
湘教版七年级数学下册第二章测试题(附答案)一、单选题1.下列乘法中,不能运用平方差公式进行运算的是()A. (x-a)(x+a)B. (a+b)(-a+b)C. (﹣x﹣b)(x+b)D. (b+m)(m﹣b)2.如图①,边长为的大正方形中四个边长均为的小正方形,小华将阴影部分拼成一个长方形,(如图②)则这个长方形的面积为()A. B. C. D.3.(2分)若(x﹣5)(x+20)=x2+mx+n,则m、n的值分别为()A. m=﹣15,n=﹣100B. m=25,n=﹣100C. m=25,n=100D. m=15,n=﹣1004.下列各式中,不能够用平方差公式计算的是()A. (y+2x)(2x﹣y)B. (﹣x﹣3y)(x+3y)C. (2x2﹣y2 )(2x2+y2 )D. (4a+b﹣c)(4a﹣b﹣c)5.已知实数满足,且,则a-b的值为()A. 6B. -6C. 14D. -146.下列各式中,不能应用平方差公式进行计算的是()A. (-x+2y)(2y+x)B. (x+y)(x-y)C. (a-b)(-a+b)D. (-2m+n)(-2m-n)7.若(x+3)(2x-n)=2x2+mx-15,则( )A. m=-1,n=5B. m=1,n=-5C. m=-1,n=-5D. m=1,n=58.已知多项式的积中x的一次项系数为零,则m的值是()A. 1B. –1C. –2D.9.如果把多项式分解因式得,那么的值为()A. -1B. 0C. -2D. -310.若x2+(k+2)x+9是完全平方式,则k的值为()A. 4B. ±4C. -8D. 4或-8二、填空题11.计算:(2x+1)(x﹣2)=________.12.若m(m-2)=3,则(m-1)²的值是________13.计算:(2x-y)(x-3y)=________14.已知,,则________,________.15.在的运算结果中不含,且的系数是,那么___,_____16.若是一个完全平方式,则m的值是________.17.化简:________.18.若m,n满足m2+n2=20,mm=3,则(m-n)2=________19.已知(x-2019)2+(x-2021)2=48,则(x-2020)2=________.20.如图为某正方形的房屋结构平面图,其中主卧与客卧都为正方形,其面积之和比其余面积(阴影部分)多25 平方米,则主卧与客卧的周长差为________.三、计算题21.计算.22.计算:9m2﹣4(2m2﹣3mn+n2)+4n2.23.计算:.四、解答题24.如果的展开式中不含x3项,求n的值.25.已知代数式(x2+px+8)(x2−3x+q)的乘积中不含三次项和二次项,求(p−q)(p2+pq+q2)的值.26.如图所示,一个大正方形中剪下一个长方形,留下“L”型的图形(阴影部分),请你根据图中所给的数据,用,的代数式表示阴影部分的面积并化简.答案一、单选题1. C2. A3. D4. B5. A6. C7. D8. D9. A 10. D二、填空题11. 2x2﹣3x﹣2 12. 4 13. 2x2-7xy+3y214. 40;±4 15. 3;16. 12或-1217. 18. 14 19. 23 20. 20三、计算题21. 解:= = =22. 解:原式=.23. 解:= = .四、解答题24. n=025. 解:(x2+px+8)(x2-3x+q)=x4-3x3+qx2+px3-3px2+pqx+8x2-24x+8q=x4+(-3+p)x3+(q-3p+8)x2+(pq-24)x+8q,∵(x2+px+8)(x2-3x+q)的乘积中不含x2与x3的项,∴-3+p=0,q-3p+8=0,解得:p=3,q=1. (p−q)(p2+pq+q2)=(3-1)(9+3+1)=2626. 解:。
第2章整式的乘法单元测试卷一、选择题(每题3分,共30分)1.下列各式中,与其他三个选项可能不相等的是( )A. (a2)3B. (a3)2C. a3·a3D. a3+a32.下列等式错误的是( )A.(2mn)2=4m2n2B.(-2mn)2=4m2n2C.(2m2n2)3=8m6n6D.(-2m2n2)3=-8m5n53.计算(m3n)2的结果是( )A.m6nB.m6n2C.m5n2D.m3n24.已知a m=8,a n=16,则a m+n等于( )A.24B.32C.64D.1285.一个长方体的长、宽、高分别是3x-4,2x-1和x,则它的体积是( )A.6x3-5x2+4xB.6x3-11x2+4xC.6x3-4x2D.6x3-4x2+x+46.已知a+b=3,ab=2,则a2+b2的值为( )A.3B.4C.5D.67.20152-2014×2016的计算结果是( )A.-1B.0C. 1D.4 0308.下面计算(-7+a+b)(-7-a-b)正确的是( )A.原式=[-(7-a-b)][-(7+a+b)]=72-(a+b)2B.原式=[-(7+a)+b][-(7+a)-b]=(7+a)2-b2C.原式=(-7+a+b)[-7-(a+b)]=-72-(a+b)2D.原式=(-7+a+b)[-7-(a+b)]=72+(a+b)29.当x=-1时,代数式x2(x3+2x2+6)-(x3+2x2+6)的值是( )A.32B.-32C.0D.-6410.如图所示的各图形中的三个数之间均具有相同的规律.根据此规律,图形中M与m,n的关系是( )A.M=mnB.M=n(m+1)C.M=mn+1D.M=m(n+1)二、填空题(每题3分,共24分)11.计算:3a·2a2=_________.12.已知ab2=-1,则2a2b·3ab5=_________.13.如果(x-5)(x+20)=x2+mx+n,那么m=_________,n=_________.14.若a2n=3,则2a6n-1=_________.15.若16a2-ka+9是完全平方式,则k=_________.16.若ab=3,a-2b=5,则a2b-2ab2的值是_________.17.要使(x2+ax+1)·(-6x3)的计算结果中不含x4项,则a=_________.18.观察下列各式的规律:(a-b)(a+b)=a2-b2,(a-b)(a2+ab+b2)=a3-b3,(a-b)(a3+a2b+ab2+b3)=a4-b4,…,可得到(a-b)(a2 016+a2 015b+…+ab2 015+b2 016)= _________.三、解答题(19、20题每题8分,其余每题10分,共46分)19.化简:(1)(a-b)2+a(2b-a);(2)(a+2)2+(1-a)(1+a).20.(1)先化简,再求值:(x+1)(x-1)+x(3-x),其中x=2.(2)化简求值:(a+2b+1)·(-a+2b-1)+(a-1)2,其中a=,b=3.21.(1)已知a m=3,a n=6,a k=4,求a m+n+k的值;(2)若a2+3a-1=0,求3a3+10a2+2 013的值.22.对于任意的有理数a,b,c,d,我们规定=ad-bc.如:=(-2)×5-(-4)×3=2.根据这一规定,解答下列问题:(1)化简;(2)若x,y同时满足=5,=8,求x,y的值.23.如果一个正整数能表示为两个连续偶数的平方差,那么称这个正整数为“神秘数”.如:4=22-02,12=42-22,20=62-42,因此4,12,20都是“神秘数”.(1)2 014和2 012这两个数是“神秘数”吗?为什么?(2)说明:由两个连续偶数构造的“神秘数”是4的倍数.参考答案1.【答案】D解:(a2)3=a6,(a3)2=a6,a3·a3=a6,a3+a3=2a3,故选D.2.【答案】D3.【答案】B解:根据积的乘方公式,即可得到答案.4.【答案】D解:a m+n=a m·a n=8×16=128,故选D.5.【答案】B6.【答案】C7.【答案】C解:20152-2014× 016=20152-(2015-1)(2015+1)=20152-20152+1=1,故选C.8.【答案】A 9.【答案】C 10.【答案】D二、11.【答案】6a312.【答案】-6解:2a2b·3ab5=6a3b6=6(ab2)3=6×(-1)=-6.13.【答案】15;-100解:因为(x-5)(x+20)=x2+20x-5x-100=x2+15x-100= x2+mx+n,所以m=15,n=-100.14.【答案】53 15.【答案】±24 16.【答案】1517.【答案】0解:因为(x2+ax+1)·(-6x3)=-6x5-6ax4-6x3,且(x2+ax+1)·(-6x3)的计算结果中不含x4项,所以-6a=0,所以a=0.18.【答案】a2 017-b2 017三、19.解:(1)原式=a2-2ab+b2+2ab-a2=b2.(2)原式=a2+4a+4+1-a2=4a+5.20.解:(1)原式=x2-1+3x-x2=3x-1,当x=2时,原式=3×2-1=5.(2)原式=-[(a+1)+2b]·[(a+1)-2b]+(a-1)2=-[(a+1)2-(2b)2]+(a-1)2=4b2-(a2+ 2a+1)+a2-2a+1=4b2-a2-2a-1+a2-2a+1=4b2-4a.当a=,b=3时,原式=4×32-4×=36-2=34.21.解:(1)a m+n+k=a m·a n·a k=3×6×4=72.本题是同底数幂的乘法法则的逆用,只要把a m+n+k转化为a m ·a n ·a k,代入求值即可.(2)因为a2+3a-1=0,所以a2+3a=1,所以3a3+10a2+2 013=3a(a2+3a)+a2+2 013=3a+a2+2013=1+2013=2014.22.解:(1)=(x+3y)(2x+y)-2x·3y=2x2+xy+3y2.(2)由=5,得3x+2y=5;由=8,得2x-y=8;联立可得方程组解得23.解:(1)2014不是“神秘数”,2012是“神秘数”.理由:假如2 014和2012都是“神秘数”,设2014是x和x-2两数的平方差(x为正整数),则x2-(x-2)2=2014,解得x=504.5,因为504.5不是整数,所以2014不是“神秘数”.设2012是y和y-2两数的平方差(y为正整数),则y2-(y-2)2=2012,解得y=504,y-2=502,即2 012=5042-5022,所以2 012是“神秘数”.(2)设两个连续偶数为2k+2和2k(k取非负整数),则(2k+2)2-(2k)2=(2k+2-2k)(2k+2+2k)=4(2k+1),所以由2k+2和2k构造的“神秘数”是4的倍数,即两个连续偶数构造的“神秘数”是4的倍数.第2章达标测试卷一、选择题(每题3分,共24分)1.下列运算正确的是( )A .3x -x =2B .x 3·x 4=x 7C .(x 3)4=x 7D .(2x )2=2x 22.计算(-3a )3的正确结果是( )A .-3a 3B .27a 3C .-27a 3D .-9a3.计算(-3x 2)·(-4x 3)的结果是( )A .12x 5B .-12x 5C .12x 6D .-7x 54.利用平方差公式计算(a -b +c )(a +b -c ),以下结果正确的是( )A .a 2-(b +c )2B .(a -b )2-c 2C .(a +c )2-b 2D .a 2-(b -c )25.下列各式中,计算错误的是( )A .(x +1)(x +2)=x 2+3x +2B .(x -2)(x +2)=x 2-4C .⎝ ⎛⎭⎪⎫x -12=x 2-x +14 D .(x +y -1)(x +y -2)=(x +y )2-3(x +y )-26.若(x +a )与(x +3)的乘积中不含x 的一次项,则a 的值为( )A .3B .-3C .1D .-17.已知ab 2=-1,则-ab (a 2b 5-ab 3-b )的值等于( )A .-1B .0C .1D .无法确定8.随着数学学习的深入,数系不断扩充,引入新数i ,规定i 2=-1,并且新数i参与的运算满足交换律、结合律和分配律,则(1+i )·(2-i )的运算结果是( )A .3-iB .2+iC .1-iD .3+i二、填空题(每题4分,共32分)9.计算:-2a ·14a 3=________.10.若a 2·a m =a 6,则m =________.11.已知x (x -2)=3,则代数式2x 2-4x -7的值为__________.12.如果一个长方形的长是(x +3y )米,宽是(x -3y )米,那么该长方形的面积是________平方米.13.已知代数式-3x m -1y 3与2x n y m +n 是同类项,则-3x m -1y 3与2x n y m +n 的积是________.14.设A =(x -3)(x -7),B =(x -2)(x -8),则A ,B 的大小关系为A ________B .15.已知m +n =mn ,则(m -1)(n -1)=________.16.已知(x -2 020)2+(x -2 022)2=34,则(x -2 021)2的值是________.三、解答题(第17题18分,第18~20题每题6分,第21题8分,共44分)17.计算:(1)x ·x 3+x 2·x 2;(2)(-a 3)2·(-a 2)3;(3)x 4·x 6-(x 5)2;(4)(a -b )2+a (2b -a );(5)(a +2)2+(1-a )(1+a );(6)(a +2b )(a -2b )-12b (a -8b ).18.用简便方法计算:(1)499×501; (2)2 0202 0202-2 021×2 019.19.先化简,再求值:(1)(x+1)2-(x-1)(x+4),其中x=-2;(2)(a+2b+1)(-a+2b-1)+(a-1)2,其中a=12,b=3.20.试说明:对于任意自然数n,代数式n(n+7)-n(n-5)+6的值都能被6整除.21.对于任意的有理数a ,b ,c ,d ,我们规定⎪⎪⎪⎪⎪⎪a b c d =ad -bc .如⎪⎪⎪⎪⎪⎪-2 -43 5=(-2)×5-(-4)×3=2.根据这一规定,解答下列问题: (1)化简⎪⎪⎪⎪⎪⎪x +3y 2x 3y 2x +y ; (2)若x ,y 同时满足⎪⎪⎪⎪⎪⎪3-2y x =5,⎪⎪⎪⎪⎪⎪x1y 2=8,求x ,y 的值.答案一、1.B 2.C 3.A 4.D 5.D6.B 点拨:(x +a )(x +3)=x 2+(a +3)x +3a ,由结果不含x 的一次项,得a +3=0,解得a =-3. 7.C8.D 点拨:原式=2-i +2i -i 2=2+i -i 2,因为i 2=-1,所以原式=2+i +1=3+i . 二、9.-12a 4 10.4 11.-1 12.(x 2-9y 2) 13.-6x 2y 6点拨:根据同类项概念得⎩⎨⎧m -1=n ,3=m +n ,解得⎩⎨⎧m =2,n =1,所以-3x m -1y 3·2x n y m +n =-3xy 3·2xy 3=-6x 2y 6.14.> 点拨:因为A =(x -3)(x -7)=x 2-10x +21,B =(x -2)(x -8)=x 2-10x +16,所以A -B =x 2-10x +21-(x 2-10x +16)=5>0, 所以A >B .15.1 点拨:(m -1)(n -1)=mn -m -n +1=mn -(m +n )+1 =1. 16.16三、17.解:(1)原式=x 4+x 4=2x 4. (2)原式=a 6·(-a 6)=-a 12. (3)原式=x 10-x 10=0.(4)原式=a 2-2ab +b 2+2ab -a 2=b 2. (5)原式=a 2+4a +4+1-a 2=4a +5. (6)原式=a 2-4b 2-12ab +4b 2=a 2-12ab .18.解:(1)原式=(500-1)(500+1)=5002-1=249 999.(2)原式= 2 0202 0202-(2 020+1)(2 020-1)= 2 0202 0202-2 0202+1=2 020.19.解:(1)原式=(x 2+2x +1)-(x 2+3x -4)=x 2+2x +1-x 2-3x +4=-x +5.当x =-2时,原式=-(-2)+5=7.(2)原式=-[(a +1)+2b ]·[(a +1)-2b ]+(a -1)2=-[(a +1)2-(2b )2]+(a -1)2=4b 2-(a 2+2a +1)+a 2-2a +1=4b 2-a 2-2a -1+a 2-2a +1=4b 2-4a . 当a =12,b =3时,原式=4×32-4×12=36-2=34.20.解:因为n (n +7)-n (n -5)+6=n 2+7n -n 2+5n +6=12n +6=6(2n +1),所以对于任意自然数n ,代数式n (n +7)-n (n -5)+6的值都能被6整除. 21.解:(1)⎪⎪⎪⎪⎪⎪x +3y 2x 3y 2x +y =(x +3y )(2x +y )-2x ·3y =2x 2+xy +3y 2.(2)由⎪⎪⎪⎪⎪⎪3 -2y x =5,得3x +2y =5,由⎪⎪⎪⎪⎪⎪x 1y 2=8,得2x -y =8, 联立可得方程组⎩⎨⎧3x +2y =5,2x -y =8,解得⎩⎨⎧x =3,y =-2.第二章《整式的乘法》单元测试一、填空题1.-xy 的次数是 ___,2ab +3a 2b +4a 2b 2+1是___次___项式.2.将0.00003651用科学记数法表示为___.3.计算:(-b )2·(-b )3·(-b )5=___,-2a (3a -4b )=___.4.(9x +4)(2x -1)=___,(3x +5y )· ___=9x 2-25y 2.5.(x +y )2-___=(x -y )2.6.已知被除式为x 3+3x 2-1,商式是x ,余式是-1,则除式是___.7.若x 2+x +m 2是一个完全平方式,则m =___.8.若2x -y =-3,则4x ÷2y =___.9.有一名同学把一个整式减去多项式xy +5yz +3xz 误认为加上这个多项式,结果答案为 5yz -3xz +2xy ,则原题正确答案为___.10.当a =___,b =___时,多项式a 2+b 2-4a +6b +18有最小值.二、选择题1.下列计算正确的是( )A.22=-a aB.326m m m =÷C.2010201020102x x x =+D.632t t t =⋅2.梁老师给下列四个判断,则其中错误的是( )A.数字 0 也是单项式B.单项式 a 的系数与次数都是 1C.2221y x 是二次单项式 D.32ab -的系数是 32- 3.代数式 2010 ,x 1,xy 2 ,π1,y 21-,2010b a + 中是单项式的个数有( )A.2个B.3个C.4个D.5个4.包老师把一个多项式减去22b a -等于22b a +,则这个多项式为( ) A.22b B.22a C.22b - D.22a -5.如果一个多项式的次数是6,则这个多项式的任何一项的次数都( ) A.不大于6 B.小于6 C.等于6D.不小于66.黎老师做了个长方形教具,其中一边长为b a +2,另一边为b a -,则该长方形周长为( ) A.a 6 B.b a +6C.a 3D.b a -107.下列多项式中是完全平方式的是( ) A.142++x x B.1222+-y x C.2222y xy y x ++ D.41292+-a a8.饶老师给出:2=+b a ,222=+b a , 你能计算出 ab 的值为( ) A.0 B.21-C.1-D.1 9.若22)3(9+=++x ax x ,则a 的值为( ) A.3 B.3± C.6 D.6±10.已知552=a ,443=b ,334=c , 则a 、b 、c 、的大小关系为:( )A.c b a >>B.b c a >>C.a c b >>D.c a b >> 三、细心做一做,马到成功 1.计算下列各式(1)()223211482x y xyz xy ⎛⎫⎛⎫-⋅-÷ ⎪ ⎪⎝⎭⎝⎭(2)()()()2232x y x y y x y +---(3)()()222121a a -+(4)2200720092008⨯-(运用乘法公式)2.先化简,再求值:22[(2)(2)2(2)]()xy xy x y xy +---÷,其中10x =,125y =-.3.菜单位为响应政府发出的全民健身的号召,打算在长宽分别为20米和11米的长方形大厅内修建一长方形健身房ABCD ,该健身房的四面墙壁中有两侧沿用大厅的旧墙壁(如图为平面示意图),已知装修旧墙壁的费用为口元,平方米,比新建(含装修)墙壁的费用每平方米少50元,设健身房的高为3米,一面旧墙壁AB的长为x米,BC为)5x米,则修建健身房墙壁的总投入为多少元?(用含口、(x的代数式表示)参考答案一、1.2、4、四;2.3.651×10-5;3.b 10、-6a 2+8ab ;4.18x 2-x -4、(3x -5y );5.4xy ;6.x 2+3x ;7.±12;8.18.点拨:4x ÷2y =22x ÷2y =22x -y =2-3=18;9.-5yz -9xz .点拨:设这个整式为A ,则A +xy +5yz +3xz =5yz -3xz +2xy , 所以A =xy -6xz ,所以正确的解法为xy -6xz -(xy +5yz +3xz )=-5yz -9xz ; 10.2、-3.点拨:a 2+b 2-4a +6b +18=a 2-4a +4+b 2+6b +9+5=(a -2)2+(b +3)2+5. 二、选择题:1.(1)原式=342411224x y z x y xz ÷=(2)原式222222323624x xy y xy y x y =+--+=+(3)原式=()()()22242212141168 1.a a a a a -+=-=-+⎡⎤⎣⎦(4)原式222(20081)(20081)20082008120081=-⋅+-=-+=- 2.原式2222(424)()x y x y xy =--+÷22()x y xy xy =-÷=-. 当10x =,125y =-时,原式1210255⎛⎫=-⨯-= ⎪⎝⎭. 3.[3(5)3][3(5)3](50)12303007503(25)(250)()x x a x x a ax a x x a +-⨯⨯++-⨯⨯+=-+-=-+元湘教新版七年级下册数学《第2章整式的乘法》单元测试卷一.选择题1.计算:a2•a的结果是()A.a B.a2C.a3D.2a22.计算(﹣x)•(﹣2x2)(﹣4x4)的结果为()A.﹣4x6B.﹣4x7C.4x8D.﹣4x83.今天数学课上,老师讲了单项式乘以多项式,放学回到家,小明拿出课堂笔记复习,发现一道题:﹣3xy(4y﹣2x﹣1)=﹣12xy2+6x2y+□,□的地方被钢笔水弄污了,你认为□内应填写()A.3xy B.﹣3xy C.﹣1D.14.下列运算正确的是()A.2x+3y=5xy B.(a﹣b)2=a2﹣b2C.5m2•m3=5m5D.m2•m3=m65.利用图形中面积的等量关系可以得到某些数学公式.例如,根据图甲,我们可以得到两数和的平方公式:(a+b)2=a2+2ab+b2.你根据图乙能得到的数学公式是()A.(a+b)(a﹣b)=a2﹣b2B.(a﹣b)2=a2﹣2ab+b2C.a(a+b)=a2+ab D.a(a﹣b)=a2﹣ab6.若多项式x2+kx+4是一个完全平方式,则k的值是()A.2B.4C.±2D.±47.3(22+1)(24+1)(28+1)…(232+1)+1的个位数是()A.4B.5C.6D.88.下列运算正确的是()A.2a+3b=5ab B.a2•a3=a5C.(2a)3=6a3D.a6+a3=a99.根据图1的面积可以说明多项式的乘法运算(2a+b)(a+b)=2a2+3ab+b2,那么根据图2的面积可以说明多项式的乘法运算是()A.(a+3b)(a+b)=a2+4ab+3b2B.(a+3b)(a+b)=a2+3b2C.(b+3a)(b+a)=b2+4ab+3a2D.(a+3b)(a﹣b)=a2+2ab﹣3b210.如图,阴影部分是边长为a的大正方形中剪去一个边长为b的小正方形后所得到的图形,将阴影部分通过割、拼,形成新的图形,给出下列3种割拼方法,其中能够验证平方差公式的是()A.①②B.②③C.①③D.①②③二.填空题11.计算:•ab=.12.若(x+m)与(x+3)的乘积中不含x的一次项,则m=.13.已知a+b=3,a2+b2=5,则ab的值是.14.22019×(﹣)2020=.15.若x m=2,x n=5,则x m+n=.16.计算:2a2•3ab=.17.计算:20202﹣2019×2021=.18.如图,边长为2m+3的正方形纸片剪出一个边长为m+3的正方形之后,剩余部分可剪拼成一个长方形,若拼成的长方形一边长为m,则这个长方形的周长为.19.有两个正方形A,B,现将B放在A的内部得图甲,将A,B并列放置后构造新的正方形得图乙.若图甲和图乙中阴影部分的面积分别为1和12,则正方形A,B的边长之和为.20.若多项式x2﹣mx+16是一个完全平方式,则m的值应为.三.解答题21.如果a c=b,那么我们规定(a,b)=c.例如:因为23=8,所以(2,8)=3.(1)根据上述规定,填空:(3,27)=,(4,16)=,(2,16)=.(2)记(3,5)=a,(3,6)=b,(3,30)=c.求证:a+b=c.22.计算:(﹣2a2)2﹣3a4+2a•(﹣3a3)23.老师在黑板上书写了一个正确的演算过程,随后用手掌捂住了一个多项式,形式如下:×(﹣xy)=3x2y﹣xy2+xy(1)求所捂的多项式;(2)若x=,y=,求所捂多项式的值.24.如果a c=b,那么我们规定(a,b)=c,例如:因为23=8,所以(2,8)=3(1)根据上述规定,填空:(3,27)=,(4,1)=(2,0.25)=;(2)记(3,5)=a,(3,6)=b,(3,30)=c.求证:a+b=c.25.如图,某市有一块长为(3a+b)米,宽为(2a+b)米的长方形地块,规划部门计划将阴影部分进行绿化,中间将修建一座雕像,则绿化的面积是多少平方米?并求出当a=6,b =4时的绿化面积.26.回答下列问题(1)填空:x2+=(x+)2﹣=(x﹣)2+(2)若a+=5,则a2+=;(3)若a2﹣3a+1=0,求a2+的值.参考答案与试题解析一.选择题1.解:a2•a=a3.故选:C.2.解:(﹣x)•(﹣2x2)(﹣4x4)=﹣4x7,故选:B.3.解:因为左边=﹣3xy(4y﹣2x﹣1)=﹣12xy2+6x2y+3xy.右边=﹣12xy2+6x2y+□,所以□内上应填写3xy.故选:A.4.解:A、原式不能合并,故选项错误;B、原式=a2﹣2ab+b2,故选项错误;C、原式=5m5,故选项正确;D、原式=m5,故选项错误.故选:C.5.解:左上角正方形的面积=(a﹣b)2,还可以表示为a2﹣2ab+b2,所以(a﹣b)2=a2﹣2ab+b2.故选:B.6.解:因为x2+kx+4是一个完全平方式,所以kx=±2•x•2,解得:k=±4,故选:D.7.解:3(22+1)(24+1)(28+1)…(232+1)+1=(22﹣1)(22+1)(24+1)(28+1)…(232+1)+1=(24﹣1)(24+1)(28+1)…(232+1)+1…=264﹣1+1=264,因为21=2,22=4,23=8,24=16,25=32,…,所以个位上数字以2,4,8,6为循环节循环,因为64÷4=16,所以264个位上数字为6,即原式个位上数字为6.故选:C.8.解:A、2a+3b无法计算,故此选项不合题意;B、a2•a3=a5,正确,符合题意;C、(2a)3=8a3,故此选项不合题意;D、a6+a3,无法计算,故此选项不合题意;故选:B.9.解:根据图2的面积得:(a+3b)(a+b)=a2+4ab+3b2,故选:A.10.解:在图①中,左边的图形阴影部分的面积=a2﹣b2,右边图形中阴影部分的面积=(a+b)(a﹣b),故可得:a2﹣b2=(a+b)(a﹣b),可以验证平方差公式;在图②中,阴影部分的面积相等,左边阴影部分的面积=a2﹣b2,右边阴影部分面积=(2b+2a)•(a﹣b)=(a+b)(a﹣b),可得:a2﹣b2=(a+b)(a﹣b),可以验证平方差公式;在图③中,阴影部分的面积相等,左边阴影部分的面积=a2﹣b2,右边阴影部分面积=(a+b)•(a﹣b),可得:a2﹣b2=(a+b)(a﹣b),可以验证平方差公式.故选:D.二.填空题11.解:•ab=ab2•ab﹣2ab•ab=a2b3﹣a2b2.故答案为:a2b3﹣a2b2.12.解:因为(x+m)(x+3)=x2+3x+mx+3m=x2+(3+m)x+3m,又因为乘积中不含x的一次项,所以3+m=0,解得m=﹣3.故答案为:﹣3.13.解:因为a+b=3,所以(a+b)2=9,即a2+2ab+b2=9,因为a2+b2=5,所以ab=(9﹣5)÷2=2.故答案为:2.14.解:22019×(﹣)2020=[22019×(﹣)2019]×(﹣)=.故答案为:.15.解:因为x m=2,x n=5,所以x m+n=x m•x n=2×5=10.故答案为:10.16.解:2a2•3ab=6a3b,故答案为:6a3b.17.解:20202﹣2019×2021=20202﹣(2020﹣1)×(2020+1)=20202﹣20202+12=1故答案为:1.18.解:因为(2m+3)2=4m2+12m+9,拼成的长方形一边长为m,所以长方形的长为:[4m2+12m+9﹣(m+3)2]÷m=3m+6.所以这个长方形的周长为:2(3m+6+m)=8m+12.故答案为:(8m+12).19.解:设正方形A,B的边长分别为a,b.由题意由②得到ab=6,所以(a+b)2=(a﹣b)2+4ab=1+24=25,因为a+b>0,所以a+b=5,故答案为5.20.解:因为x2﹣mx+16=x2﹣mx+42,所以﹣mx=±2•x•4,解得m=±8.故答案为:±8三.解答题21.解:(1)因为33=27,所以(3,27)=3;因为42=16,所以(4,16)=2;因为24=16,所以(2,16)=4;故答案为:3;2;4;(2)证明:因为(3,5)=a,(3,6)=b,(3,30)=c,所以3a=5,3b=6,3c=30,所以3a×3b=30,所以3a+b=30,因为3c=30,所以3a+b=3c,所以a+b=c.22.解:原式=4a4﹣3a4﹣6a4=﹣5a4.23.解:(1)设多项式为A,则A=(3x2y﹣xy2+xy)÷(﹣xy)=﹣6x+2y﹣1.(2)因为x=,y=,所以原式=﹣6×+2×﹣1=﹣4+1﹣1=﹣4.24.解:(1)(3,27)=3,(4,1)=0,(2,0.25)=﹣2,故答案为:3,0,﹣2;(2)证明:因为(3,5)=a,(3,6)=b,(3,30)=c,所以3a=5,3b=6,3c=30,所以3a×3b=30,所以3a×3b=3c,所以a+b=c.25.解:S=(3a+b)(2a+b)﹣(a+b)2阴影=6a2+3ab+2ab+b2﹣a2﹣2ab﹣b2=5a2+3ab(平方米),当a=6,b=4时,5a2+3ab=5×36+3×6×4=180+72=252(平方米).26.解:(1)2、2.(2)23.(3)因为a2﹣3a+1=0两边同除a得:a﹣3+=0,移项得:a+=3,所以a2+=(a+)2﹣2=7.第二章 整式的乘法知识点总结1.同底数幂的乘法:a m ·a n =a m+n ,底数不变,指数相加.2.幂的乘方与积的乘方:(a m )n =a mn ,底数不变,指数相乘; (ab)n =a n b n ,积的乘方等于各因式乘方的积.3.单项式的乘法:系数相乘,相同字母相乘,只在一个因式中含有的字母,连同指数写在积里.4.单项式与多项式的乘法:m(a+b+c)=ma+mb+mc ,用单项式去乘多项式的每一项,再把所得的积相加.5.多项式的乘法:(a+b)·(c+d)=ac+ad+bc+bd ,先用多项式的每一项去乘另一个多项式的每一项,再把所得的积相加.6.乘法公式:(1)平方差公式:(a+b)(a-b)= a 2-b 2,两个数的和与这两个数的差的积等于这两个数的平方差;(2)完全平方公式:① (a+b)2=a 2+2ab+b 2, 两个数和的平方,等于它们的平方和,加上它们的积的2倍; ② (a-b)2=a 2-2ab+b 2 , 两个数差的平方,等于它们的平方和,减去它们的积的2倍; ※ ③ (a+b-c)2=a 2+b 2+c 2+2ab-2ac-2bc ,略.7.配方:(1)若二次三项式x 2+px+q 是完全平方式,则有关系式:q 2p 2=⎪⎭⎫ ⎝⎛; ※ (2)二次三项式ax 2+bx+c 经过配方,总可以变为a(x-h)2+k 的形式,利用a(x-h)2+k ①可以判断ax 2+bx+c 值的符号; ②当x=h 时,可求出ax 2+bx+c 的最大(或最小)值k.※(3)注意:2x 1x x 1x 222-⎪⎭⎫ ⎝⎛+=+. 8.同底数幂的除法:a m ÷a n =a m-n ,底数不变,指数相减.9.零指数与负指数公式:(1)a 0=1 (a ≠0); a -n =na 1,(a ≠0). 注意:00,0-2无意义; (2)有了负指数,可用科学记数法记录小于1的数,例如:0.0000201=2.01×10-5 .。
湘教版七年级数学下册第2章达标检测卷(本试卷分第Ⅰ卷和第Ⅱ卷,考试时间:120分钟,赋分:120分)第Ⅰ卷(选择题共36分)一、选择题(本大题共12小题,每小题3分,共36分)1.计算(-x3y)2的结果是()A.-x5y B. x6y C. -x3y2 D. x6y22.有下列各式:①-(-a3)4=a12;②(-a n)2=(-a2)n;③(-a-b)3=(a-b)3;④(a-b)4=(-a+b)4.其中正确的个数有()A.1个 B. 2个 C. 3个 D. 4个3.下列计算正确的是()A.(-2a)·(3ab-2a2b)=-6a2b-4a3bB.(2ab2)·(-a2+2b2-1)=-4a3b4C.(abc)·(3a2b-2ab2)=3a3b2-2a2b3D.(ab)2·(3ab2-c)=3a3b4-a2b2c4.(汉阳区期中)如图,在一块长为a米,宽为b米的长方形草地上,有一条弯曲的小路,小路的左边线向右平移2米就是它的右边线,这块草地的绿地面积是(单位:平方米)()A.ab B.(a-2)b C.a(b-2) D.(a-2)(b-2)5.李老师做了个长方形教具,其中一边长为2a+b,另一边长为a-b,则该长方形的面积为()A .6a +bB .2a 2-ab -b 2C .3aD .10a -b6.若(x +a)(x -2)的积中不含x 项,那么a 的值为( )A .2B .-2C .12D .-127.已知M ,N 分别是2次多项式和3次多项式,则M ×N ( )A .一定是5次多项式B .一定是6次多项式C .一定是不高于5次的多项式D .无法确定积的次数8.计算(2x 2-4)⎝ ⎛⎭⎪⎫2x -1-32x 的结果,与下列式子相同的是( ) A .-x 2+2 B .x 3+4C .x 3-4x +4D .x 3-2x 2-2x +49.若M(3x -y 2)=y 4-9x 2,则代数式M 应是( )A .-(3x +y 2)B .y 2-3xC .3x +y 2D .3x -y 210.若(x +1)(x -1)(x 2+1)(x 4+1)=x n -1,则n 等于( )A .16B .8C .6D .411.利用完全平方公式计算992,下列变形中最恰当的是( )A .(100-1)2B .(101-2)2C .(98+1)2D .(50+48)212.若a +b =3,a -b =7,则ab =( )A .-10B .-40C .10D .40第Ⅱ卷(非选择题共84分)二、填空题(本大题共6小题,每小题3分,共18分)13.计算:(-3x)2·2x=.14.已知x n=2,y n=3,则(xy)n=.15.已知m+n=mn,则(m-1)(n-1)=.16.(江阴期中)若二项式a2+(m-1)a+9是一个含a的完全平方式,则m等于.17.★(江阴期中)如图,两个正方形边长分别为a,b,如果a+b=20,ab=30,那么阴影部分的面积为.18.★(彭州期末)在数学综合与实践课上,老师给出了一组等式:1×2×3×4+1=(12+3×1+1)2,2×3×4×5+1=(22+3×2+1)2,3×4×5×6+1=(32+3×3+1)2,…,根据你的观察,则n×(n+1)×(n+2)×(n+3)+1=.三、解答题(本大题共8小题,满分66分,解答应写出文字说明、证明过程或演算步骤)19.(本题满分10分)计算:(1)(5x+2y)(5x-2y)-5x(5x-3y);(2)(2x -3)(x +4)-(x +3)(x -4).20.(本题满分5分)(港南区期末)先化简,再求值:(x -2y)2-x(x +3y)-4y 2,其中x =-4,y =12.21.(本题满分6分)已知甲数为2a ,乙数比甲数的2倍多3,丙数比甲数的2倍少3,求甲,乙,丙三数的积.当a =-2.5时,积是多少?22.(本题满分8分)已知|x +2y -5|+(3x -y -1)2=0.求(2x -y)2-2(2x +y)(2x -y)+(2x +y)2的值.23.(本题满分8分)已知a+b=5,ab=-6,求下列各式的值:(1)a2+b2;(2)a2-ab+b2.24.(本题满分8分)(文山州期末)如图,某小区有一块长为(4a+b)米,宽为(3a +b)米的长方形土地,物业管理公司计划在阴影部分的区域进行绿化,中间修建一个正方形喷水池.(1)求绿化的面积是多少平方米;(2)若a=1,b=2时,求绿化面积.25.(本题满分11分)(杭州期末)观察下列各式:(x-1)(x+1)=x2-1;(x-1)(x2+x+1)=x3-1;(x-1)(x3+x2+x+1)=x4-1;…根据这一规律计算:(1)(x-1)(x4+x3+x2+x+1)=x5-1;(x-1)(x n+x n-1+…+x+1)=x n+1-1;(2)22 020+22 019+22 018+…+22+2+1;(3)32 020-32 019+32 018-32 017+…+32-3+1.26.(本题满分10分)如图,有多个长方形和正方形的卡片,图甲是选取了2块不同的卡片,拼成的一个图形,借助图中阴影部分面积的不同表示可以用来验证等式a(a+b)=a2+ab成立.(1)根据图乙,利用面积的不同表示方法,写出一个恒成立的等式________;(2)试写出一个与(1)中恒成立的等式类似的等式,并用上述拼图的方法说明它的正确性.参考答案第Ⅰ卷(选择题共36分)一、选择题(本大题共12小题,每小题3分,共36分)1.计算(-x3y)2的结果是(D)A.-x5y B. x6y C. -x3y2 D. x6y22.有下列各式:①-(-a3)4=a12;②(-a n)2=(-a2)n;③(-a-b)3=(a-b)3;④(a-b)4=(-a+b)4.其中正确的个数有(A)A.1个 B. 2个 C. 3个 D. 4个3.下列计算正确的是(D)A.(-2a)·(3ab-2a2b)=-6a2b-4a3bB.(2ab2)·(-a2+2b2-1)=-4a3b4C.(abc)·(3a2b-2ab2)=3a3b2-2a2b3D.(ab)2·(3ab2-c)=3a3b4-a2b2c4.(汉阳区期中)如图,在一块长为a米,宽为b米的长方形草地上,有一条弯曲的小路,小路的左边线向右平移2米就是它的右边线,这块草地的绿地面积是(单位:平方米)(B)A.ab B.(a-2)b C.a(b-2) D.(a-2)(b-2)5.李老师做了个长方形教具,其中一边长为2a+b,另一边长为a-b,则该长方形的面积为(B)A.6a+b B.2a2-ab-b2 C.3a D.10a-b6.若(x +a)(x -2)的积中不含x 项,那么a 的值为 ( A )A .2B .-2C .12D .-127.已知M ,N 分别是2次多项式和3次多项式,则M ×N ( A )A .一定是5次多项式B .一定是6次多项式C .一定是不高于5次的多项式D .无法确定积的次数8.计算(2x 2-4)⎝ ⎛⎭⎪⎫2x -1-32x 的结果,与下列式子相同的是 ( D ) A .-x 2+2 B .x 3+4C .x 3-4x +4D .x 3-2x 2-2x +49.若M(3x -y 2)=y 4-9x 2,则代数式M 应是 ( A )A .-(3x +y 2)B .y 2-3xC .3x +y 2D .3x -y 210.若(x +1)(x -1)(x 2+1)(x 4+1)=x n -1,则n 等于( B )A .16B .8C .6D .411.利用完全平方公式计算992,下列变形中最恰当的是 ( A )A .(100-1)2B .(101-2)2C .(98+1)2D .(50+48)212.若a +b =3,a -b =7,则ab = ( A )A .-10B .-40C .10D .40第Ⅱ卷 (非选择题 共84分)二、填空题(本大题共6小题,每小题3分,共18分)13.计算:(-3x)2·2x=18x3.14.已知x n=2,y n=3,则(xy)n=6.15.已知m+n=mn,则(m-1)(n-1)=1.16.(江阴期中)若二项式a2+(m-1)a+9是一个含a的完全平方式,则m等于7或-5.17.★(江阴期中)如图,两个正方形边长分别为a,b,如果a+b=20,ab=30,那么阴影部分的面积为155.18.★(彭州期末)在数学综合与实践课上,老师给出了一组等式:1×2×3×4+1=(12+3×1+1)2,2×3×4×5+1=(22+3×2+1)2,3×4×5×6+1=(32+3×3+1)2,…,根据你的观察,则n×(n+1)×(n+2)×(n+3)+1=(n2+3n+1)2.三、解答题(本大题共8小题,满分66分,解答应写出文字说明、证明过程或演算步骤)19.(本题满分10分)计算:(1)(5x+2y)(5x-2y)-5x(5x-3y);解:原式=25x2-4y2-25x2+15xy=15xy-4y2.(2)(2x-3)(x+4)-(x+3)(x-4).解:原式=2x2+8x-3x-12-(x2+3x-4x-12)=2x 2+5x -12-x 2+x +12=x 2+6x.20.(本题满分5分)(港南区期末)先化简,再求值:(x -2y)2-x(x +3y)-4y 2,其中x =-4,y =12. 解:原式=x 2-4xy +4y 2-x 2-3xy -4y 2=-7xy ,当x =-4,y =12时, 原式=-7×(-4)×12=14.21.(本题满分6分)已知甲数为2a ,乙数比甲数的2倍多3,丙数比甲数的2倍少3,求甲,乙,丙三数的积.当a =-2.5时,积是多少?解:因为甲数为2a ,乙数比甲数的2倍多3,丙数比甲数的2倍少3,所以乙数为4a +3,丙数为4a -3,所以甲,乙,丙三数的积为2a(4a +3)(4a -3)=2a(16a 2-9)=32a 3-18a ,因为a =-2.5,所以32a 3-18a =32×(-2.5)3-18×(-2.5)=-455.22.(本题满分8分)已知|x +2y -5|+(3x -y -1)2=0.求(2x -y)2-2(2x +y)(2x -y)+(2x +y)2的值.解:原式=2[(2x)2+y 2]-2(4x 2-y 2)=4y 2,因为|x +2y -5|+(3x -y -1)2=0,所以⎩⎪⎨⎪⎧x +2y -5=0,3x -y -1=0,解得⎩⎪⎨⎪⎧x =1,y =2.所以原式=4y 2=4×22=16.23.(本题满分8分)已知a +b =5,ab =-6,求下列各式的值:(1)a 2+b 2;(2)a 2-ab +b 2.解:(1) a 2+b 2=(a +b)2-2ab=25+12=37.(2) a 2-ab +b 2=(a +b)2-3ab=52-3×(-6)=25+18=43.24.(本题满分8分)(文山州期末)如图,某小区有一块长为(4a+b)米,宽为(3a +b)米的长方形土地,物业管理公司计划在阴影部分的区域进行绿化,中间修建一个正方形喷水池.(1)求绿化的面积是多少平方米;(2)若a=1,b=2时,求绿化面积.解:(1)由图形可得(4a+b)(3a+b)-(a+b)2=12a2+4ab+3ab+b2-a2-2ab-b2=11a2+5ab.所以绿化的面积是(11a2+5ab)平方米.(2)当a=1,b=2时,绿化面积为11×1+5×1×2=21(平方米).所以当a=1,b=2时,绿化面积为21平方米.25.(本题满分11分)(杭州期末)观察下列各式:(x-1)(x+1)=x2-1;(x-1)(x2+x+1)=x3-1;(x-1)(x3+x2+x+1)=x4-1;…根据这一规律计算:(1)(x-1)(x4+x3+x2+x+1)=x5-1;(x-1)(x n+x n-1+…+x+1)=x n+1-1;(2)22 020+22 019+22 018+…+22+2+1;(3)32 020-32 019+32 018-32 017+…+32-3+1.解:(1)根据规律可得,x5-1,x n+1-1.故答案为x5-1 x n+1-1.(2)(x-1)(x n+x n-1+…+x+1)=x n+1-1,把x=2,n=2 020代入得,22 020+22 019+22 018+…+22+2+1=(2-1)(22 020+22 019+22 018+…+22+2+1)=22 021-1.(3)(x-1)(x n+x n-1+…+x+1)=x n+1-1,把x=-3,n=2 020代入得(-3-1)(32 020-32 019+32 018-32 017+…+32-3+1)=(-3)2 021-1,所以32 020-32 019+32 018-32 017+…+32-3+1=-32 021-1-3-1=32 021+14.26.(本题满分10分)如图,有多个长方形和正方形的卡片,图甲是选取了2块不同的卡片,拼成的一个图形,借助图中阴影部分面积的不同表示可以用来验证等式a(a+b)=a2+ab成立.(1)根据图乙,利用面积的不同表示方法,写出一个恒成立的等式________;(2)试写出一个与(1)中恒成立的等式类似的等式,并用上述拼图的方法说明它的正确性.解:(1)观察图乙得知:长方形的长为a+2b,宽为a+b,所以面积为(a+2b)(a+b)=a2+3ab+2b2.(2)如图所示,恒等式是(a+b)(a+b)=a2+2ab+b2.。
湘教版七年级下册数学第2章整式的乘法含答案一、单选题(共15题,共计45分)1、若x2-2(k+1)x+4是完全平方式,则k的值为()A.±1B.±3C.-1或3D.1或-32、若,,则的值为()A.6B.5C.1D.1.53、下列运算正确的是()A. B. C. D.4、下列运算正确的是()A.5m+2m=7m 2B.﹣2m 2•m 3=2m 5C.(﹣a 2b)3=﹣a 6b 3D.(b+2a)(2a﹣b)=b 2﹣4a 25、下列计算中:①x(2x2﹣x+1)=2x3﹣x2+1;②(a+b)2=a2+b2;③(x﹣4)2=x2﹣4x+16;④(5a﹣1)(﹣5a﹣1)=25a2﹣1;⑤(﹣a﹣b)2=a2+2ab+b2,正确的个数有()A.1个B.2个C.3个D.4个6、代数式(﹣4a)2的值是()A.16aB.4a 2C.﹣4a 2D.16a 27、下列运算正确的是()A. B.C. D.8、计算(﹣ab2)3的结果是()A.a 3b 5B.﹣a 3b 5C.﹣a 3b 6D.a 3b 69、马大哈做题很快,但经常不仔细思考,所以往往错误率很高,有一次做了四个题,但只做对了一个,他做对的是()A.a 8÷a 4=a 2B.a 3•a 4=a 12C. =±2D.2x 3•x 2=2x 510、计算(a2)3的结果是()A.a 5B.a 6C.a 8D.3a 211、下列运算正确的是()A. B. C. D.12、下列运算中,结果正确的是( )A. ÷ =aB.a 2+a 2=a 4C.D.13、下列去括号正确的是()A.﹣(2x+5)=﹣2x+5B.C.D.14、下列运算正确的是()A.3a+2a=5a 2B.a 6÷a 2=a 3C.(﹣3a 3)2=9a 6D.(a+2)2=a 2+415、计算a(1+a)﹣a(1﹣a)的结果为()A.2aB.2a 2C.0D.﹣2a+2a二、填空题(共10题,共计30分)16、计算:________.17、x2+x+b乘以x2﹣ax﹣2的结果不含x3项,则a=________.18、计算________ 。
湘教版七年级下册数学第2章整式的乘法含答案一、单选题(共15题,共计45分)1、若,则的值为()A. B.-2 C. D.2、下列运算,正确的是()A. B. C. D.3、下列计算正确的是()A.a 6÷a 2=a 4B.a 6•a 2=a 12C.a 6•a 2=a 36D.a 2+a 2=a 24、下列计算正确的是()A.a 3+a 3=a 6B. =a 2C.(a 3)2=a 5D.a•a 2=a 35、下列计算正确的是()A.a 3•a 2=a 6B.(π﹣3.14)0=1C.()﹣1=﹣2D.=±36、下列计算正确的是()A. =B.C.D.(≥0,>0)7、下列运算中,正确的是()A. B. C. D.8、下列各式计算正确的是()A.(x+5)(x﹣5)=x 2﹣10x+25B.(2x+3)(x﹣3)=2x 2﹣9C.(3x+2)(3x﹣1)=9x 2+3x﹣2D.(x﹣1)(x+7)=x 2﹣6x﹣79、计算(a2)3,正确结果是()A.a 5B.a 6C.a 8D.a 910、下列计算中,正确的是()A.2 a2+3 a=5 a3B.2 a2•3 a=5 a3C.2 a2÷3 a=a D.(2 a2)3=8 a511、计算(xy3) 2的结果是( )A.xy 6B.x 2y 3C.x 2y 6D.x 2y 512、下列运算不正确是()A.(a2)3÷a4=a2B.(﹣a2)•(﹣2 a)=﹣5 a3 C.(2﹣)0=1 D. a3+ a3=2 a313、如图,在边长为a的正方形中,剪去一个边长为b的小正方形(a>b),将余下部分拼成一个梯形,根据两个图形阴影部分面积的关系,可以得到一个关于a、b的恒等式为()A.a 2-b 2=a 2-2ab+b 2B. (a+b)2=a2+2ab+b2C. a2-b2=(a+b)(a-b)D. a2+ab=a(a+b)14、下列计算结果为x6的是()A.x•x 6B.(x 2)3C.(2x 2)3D.(x 3)4÷x 215、下列计算正确的是()A.a 2+a 4=a 6B.2a+3b=5abC.(a 2)3=a6 D.a 6÷a 3=a 2二、填空题(共10题,共计30分)16、(-x+2y)(-x-2y)等于________;17、计算:=________.18、计算:x2y(x﹣1﹣y﹣1)=________.19、若x2+mx+4是完全平方式,则m=________.20、计算:(﹣16)2016×(﹣)2017=________.21、计算:=________.22、计算(3x+9)(6x+8)=________.23、若,则________;若,则的值为________.24、 ________.25、若(2x﹣3y)•M=9y2﹣4x2,则M表示的式子为________.三、解答题(共5题,共计25分)26、计算:(2a3•3a﹣2a)÷(﹣2a)27、已知 x=2- ,y=2+ ,求代数式x²+2xy+y²的值.28、已知a﹦(+ ),b﹦(﹣),求a2﹣ab+b2的值.29、化简求值,其中,30、已知x2﹣3x﹣4=0,求代数式(x+1)(x﹣1)﹣(x+3)2+2x2的值.参考答案一、单选题(共15题,共计45分)1、A2、C3、A4、D6、D7、C8、C9、B10、C11、C12、B13、C14、B15、C二、填空题(共10题,共计30分)16、17、18、19、21、22、23、24、25、三、解答题(共5题,共计25分)26、27、29、30、。
湘教版七年级数学下册第二章 整式的乘法练习一、单选题1.计算2a a ⋅的结果是( )A .aB .2aC .3aD .32a 2.--a 2-7 等于( -A .-a 14B .a 14C .a 9D .-a 9 3.下列运算结果正确的是( )A .257a b ab +=B .()235a a a -⋅=-C .632a a a ÷=D .()236a a = 4.计算()223ab a c -⋅-的结果是( ) A .33a bc B .523a bc - C .6229a b c D .53a bc - 5.如果(x +1)(2x +m )的乘积中不含x 的一次项,则m 的值为( )A .2B .-2C .0.5D .-0.56.根据图-的面积可以说明多项式的乘法运算(2a+b)(a+b)=2a 2+3ab+b 2,那么根据图-的面积可以说明多项式的乘法运算是 ( )A .(a+3b)(a+b)=a 2+4ab+3b 2B .(a+3b)(a+b)=a 2-4ab+3b 2C .(b+3a)(b+a)=b 2+4ab+3a 2D .(a+3b)(a -b)=a 2+2ab -3b 27.下列多项式的乘法中,能使用平方差公式计算的有( )①(m -n)(-m+n);②(-a -b)(a -b);③(x+y)(-x -y);④(x+3y -z)(x+z -3y)A .1个B .2个C .3个D .4个8.已知216y my -+是关于y 的完全平方式,则m 的值为( )A .9B .±9C .36D .±369.化简:(a+2-2--a-2-2=( )A .2B .4C .8aD .2a 2+2 10.()()()()242212121......21n ++++=( )A .421n -B .421n +C .441n -D .441n +二、填空题 11.若21m x =+,34m y =+,则用含x 的代数式表示y 为______.12.已知x 2+mx -6=(x -3)(x+n),则m n =______.13.计算:2020201920211⨯+=____. 14.以下四个结论正确的是_____________.(填序号)①若()111x x +-=,则x 只能是2②若()()211x x ax -++的运算结果中不含2x 项,则1a =-③若10a b +=,24ab =,则2a b -=或2a b -=-④若4x a =,8y b =,则232x y -可表示为a b三、解答题15.计算(1)()()()235222--- (2)()()432x x x ---(3)()()()34m n n m n m ---16.(1)观察下列各式的规律:222233322344()()()()()()...a b a b a b a b a ab b a b a b a a b ab b a b-+=--++=--+++=- 可得到2018201720172018()(...)a b a a b ab b -++++= .(2)猜想:1221()(...)n n n n a b a a ab b -----++++= .(3)利用(2)猜想的结论计算:98732222...222-+-+-+.17.乘法公式的探究及应用.(1)如图1,可以求出阴影部分的面积是 (写成两数平方差的形式);(2)如图2,若将阴影部分裁剪下来,重新拼成一个矩形,它的宽是 ,长是 ,面积是 (写成多项式乘法的形式);(3)比较图1、图2阴影部分的面积,可以得到公式 ;(4)运用你所得到的公式,计算下列各题:-10.2×9.8,-(2m+n ﹣p )(2m ﹣n+p ).18.图①是一个长为2m 、宽为2n 的长方形,沿图中虚线用剪刀分成四块小长方形,然后按图②的形状拼成一个正方形.(1)请和两种不同的方法求图②中阴影部分的面积.方法1:__方法2:___(2)观察图②请你写出下列三个代数式;22(),(),m n m n +-mn 之间的等量关系;(3)根据(2)题中的等量关系,解决如下问题:①已知:3,2,a b ab -==-求2()a b +的值. ②已知:21a a -=,求2a a+的值.答案1.C2.A3.D4.B5.B6.A7.B8.A9.C10.A11.y=(x -1)2+312.113.1202014.③④.15.(1)102;(2)9x ;(3)()8n m -- 16.(1)a 2019−b 2019(2)a n −b n(3)10223+ 17.(1)a 2﹣b 2(2)a ﹣b ,a+b ,(a+b )(a ﹣b )(3)99.96(4)-99.96-4m 2﹣n 2+2np ﹣p 218.(1)(m +n )2−4mn ;(m−n )2(2)(m +n )2−4mn =(m−n )2(3)①1②±3。
湘教版七年级数学下册第二章测试题(附答案)一、单选题1.若,那么的值分别是()A. m=1,n=3B. m=4,n=5C. m=2,n=-3D. m=-2 ,n=32.中不含项,下列正确的是()A. B. C. D.3.若多项式因式分解的结果为,则常数m的值为( )A. -2B. 2C. -6D. 64.下列运算正确的是()A. B.C. D.5.计算的结果是( )A. B. C. D.6.如图所示,以长方形的各边为直径向外作半圆,若四个半圆的周长之和为,面积之和为,则长方形的面积为( )A. 10B. 20C. 40D. 807.计算的结果是()A. B. C. D.8.若的结果中不含项,则m的值为()A. 4B. -4C. 2D. -29.下列多项式乘法中不能用平方差公式计算的是()A. (a3+b3)(a3﹣b3)B. (a2+b2)(b2﹣a2)C. (2x2y+1)(2x2y﹣1)D. (x2﹣2y)(2x+y2)10.下列各运算中,正确的是()A. (m-2)2=m2-4B. (a+1)(-a-1)=a2-1C. (1+2a)2=1+2a+4a2D. (a+1)(-1+a)=a2-1二、填空题11.计算:=________.12.计算:________.13.计算:2a(-3b)=________.14.若,则=________.15.若,则=________.16.若a m=3,a m+n=9,则a n=________.17.若多项式与乘积的结果中不含的一次项,则m=________.18.计算:=________.19.若,则________.20.已知,则的值为________.三、计算题21.计算:22.计算:(3x+2y)(3x﹣2y)﹣3x(x+2y).23.(1)若3m=6,3n=2,求32m-3n+1的值.(2)已知x2-3x-1=0,求代数式(x-1)(3x+1)-(x+2)2+5的值.四、解答题24.已知:,,求的值.25.某校为了改善校园环境,准备在长宽如图所示的长方形空地上,修建两横纵宽度均为a米的三条小路,其余部分修建花圃.(1)用含a,b的代数式表示花圃的面积并化简。
湘教版七年级数学下册第2章达标测试卷一、选择题(每题3分,共24分)1.下列运算正确的是( )A .3x -x =2B .x 3·x 4=x 7C .(x 3)4=x 7D .(2x )2=2x 22.计算(-3a )3的正确结果是( )A .-3a 3B .27a 3C .-27a 3D .-9a3.计算(-3x 2)·(-4x 3)的结果是( )A .12x 5B .-12x 5C .12x 6D .-7x 54.利用平方差公式计算(a -b +c )(a +b -c ),以下结果正确的是( )A .a 2-(b +c )2B .(a -b )2-c 2C .(a +c )2-b 2D .a 2-(b -c )25.下列各式中,计算错误的是( )A .(x +1)(x +2)=x 2+3x +2B .(x -2)(x +2)=x 2-4C .⎝ ⎛⎭⎪⎫x -12=x 2-x +14 D .(x +y -1)(x +y -2)=(x +y )2-3(x +y )-26.若(x +a )与(x +3)的乘积中不含x 的一次项,则a 的值为( )A .3B .-3C .1D .-17.已知ab 2=-1,则-ab (a 2b 5-ab 3-b )的值等于( )A .-1B .0C .1D .无法确定8.随着数学学习的深入,数系不断扩充,引入新数i ,规定i 2=-1,并且新数i 参与的运算满足交换律、结合律和分配律,则(1+i )·(2-i )的运算结果是( )A .3-iB .2+iC .1-iD .3+i二、填空题(每题4分,共32分)9.计算:-2a ·14a 3=________.10.若a 2·a m =a 6,则m =________.11.已知x (x -2)=3,则代数式2x 2-4x -7的值为__________.12.如果一个长方形的长是(x +3y )米,宽是(x -3y )米,那么该长方形的面积是________平方米.13.已知代数式-3x m -1y 3与2x n y m +n 是同类项,则-3x m -1y 3与2x n y m +n 的积是________.14.设A =(x -3)(x -7),B =(x -2)(x -8),则A ,B 的大小关系为A ________B .15.已知m +n =mn ,则(m -1)(n -1)=________.16.已知(x -2 020)2+(x -2 022)2=34,则(x -2 021)2的值是________.三、解答题(第17题18分,第18~20题每题6分,第21题8分,共44分)17.计算:(1)x ·x 3+x 2·x 2;(2)(-a 3)2·(-a 2)3;(3)x 4·x 6-(x 5)2;(4)(a -b )2+a (2b -a );(5)(a +2)2+(1-a )(1+a );(6)(a +2b )(a -2b )-12b (a -8b ).18.用简便方法计算:(1)499×501; (2)2 0202 0202-2 021×2 019.19.先化简,再求值:(1)(x+1)2-(x-1)(x+4),其中x=-2;(2)(a+2b+1)(-a+2b-1)+(a-1)2,其中a=12,b=3.20.试说明:对于任意自然数n,代数式n(n+7)-n(n-5)+6的值都能被6整除.21.对于任意的有理数a ,b ,c ,d ,我们规定⎪⎪⎪⎪⎪⎪a b c d =ad -bc .如⎪⎪⎪⎪⎪⎪-2 -43 5=(-2)×5-(-4)×3=2.根据这一规定,解答下列问题:(1)化简⎪⎪⎪⎪⎪⎪x +3y 2x 3y 2x +y ; (2)若x ,y 同时满足⎪⎪⎪⎪⎪⎪3-2yx =5,⎪⎪⎪⎪⎪⎪x 1y 2=8,求x ,y 的值.答案一、1.B 2.C 3.A 4.D 5.D6.B 点拨:(x +a )(x +3)=x 2+(a +3)x +3a ,由结果不含x 的一次项,得a +3=0,解得a =-3.7.C8.D 点拨:原式=2-i +2i -i 2=2+i -i 2,因为i 2=-1,所以原式=2+i +1=3+i .二、9.-12a 4 10.4 11.-112.(x 2-9y 2)13.-6x 2y 6点拨:根据同类项概念得⎩⎨⎧m -1=n ,3=m +n ,解得⎩⎨⎧m =2,n =1, 所以-3x m -1y 3·2x n y m +n =-3xy 3·2xy 3=-6x 2y 6.14.> 点拨:因为A =(x -3)(x -7)=x 2-10x +21,B =(x -2)(x -8)=x 2-10x+16,所以A -B =x 2-10x +21-(x 2-10x +16)=5>0,所以A >B .15.1 点拨:(m -1)(n -1)=mn -m -n +1=mn -(m +n )+1 =1.16.16三、17.解:(1)原式=x 4+x 4=2x 4.(2)原式=a 6·(-a 6)=-a 12.(3)原式=x 10-x 10=0.(4)原式=a 2-2ab +b 2+2ab -a 2=b 2.(5)原式=a 2+4a +4+1-a 2=4a +5.(6)原式=a 2-4b 2-12ab +4b 2=a 2-12ab .18.解:(1)原式=(500-1)(500+1)=5002-1=249 999.(2)原式= 2 0202 0202-(2 020+1)(2 020-1)= 2 0202 0202-2 0202+1=2 020. 19.解:(1)原式=(x 2+2x +1)-(x 2+3x -4)=x 2+2x +1-x 2-3x +4=-x +5.当x =-2时,原式=-(-2)+5=7.(2)原式=-[(a +1)+2b ]·[(a +1)-2b ]+(a -1)2=-[(a +1)2-(2b )2]+(a -1)2=4b 2-(a 2+2a +1)+a 2-2a +1=4b 2-a 2-2a -1+a 2-2a +1=4b 2-4a .当a =12,b =3时,原式=4×32-4×12=36-2=34.20.解:因为n (n +7)-n (n -5)+6=n 2+7n -n 2+5n +6=12n +6=6(2n +1),所以对于任意自然数n ,代数式n (n +7)-n (n -5)+6的值都能被6整除.21.解:(1)⎪⎪⎪⎪⎪⎪x +3y 2x 3y 2x +y =(x +3y )(2x +y )-2x ·3y =2x 2+xy +3y 2. (2)由⎪⎪⎪⎪⎪⎪3 -2y x =5,得3x +2y =5,由⎪⎪⎪⎪⎪⎪x 1y 2=8,得2x -y =8, 联立可得方程组⎩⎨⎧3x +2y =5,2x -y =8,解得⎩⎨⎧x =3,y =-2.。
第2章 整式的乘法检测题【本检测题满分:100分,时间:90分钟】一、选择题(每小题3分,共24分)1. (2015•江苏连云港中考)下列运算正确的是( )A.2a +3b =5abB.5a -2a =3aC.236a a a ⋅=D.222()=a b a b ++2.下列计算正确的是( )A.84842a a a a ÷÷==B.21020-=-C.0415⎛⎫= ⎪⎝⎭ D.422()()m m m ÷=--- 3.若1025a =,1104b =,则55a b ÷的值为( ) A.5 B.25 C.10 D.无法确定4.(2015·南京中考)计算32()xy -的结果是( ) A.26x y B.26x y - C.29x y D.29x y -5.(2015·广东珠海中考)计算-323a a ⨯的结果为( )A.-35aB.36aC.-36aD.35a6.如果()x m +与12x ⎛⎫+ ⎪⎝⎭的乘积中不含常数项,那么m 的值为( ) A.12 B.-2 C.12- D.0 7.下列说法中正确的有( ) (1)当m 为正奇数时,一定有等式(4)4m m =--成立;(2)式子(2)m m =--2,无论m 为何值时都成立;(3)三个式子:236326236(),(),[()]a a a a a a ==-=---都不成立;(4)两个式子:34343434(2)2,(2)2m m m m n n n n x y x y x y x y =-=---都不一定成立.A.1个B.2个C.3个D.4个8.现规定一种运算a b ab a b =+-※,其中,a b 为实数,则()a b b a b +-※※等于( )A.2a b -B.2b b -C.2bD.2b a -二、填空题(每小题3分,共24分)9. (2015•江苏连云港中考)已知m +n =mn ,则(m -1)(n -1)= .10.当2a =-时,2244()()()()b a a b a b a b -+++-的值为 .11.如果210a a --=,那么5(3)(4)a a +-= .12.计算下列各式,然后回答问题.(4)(3)a a ++= ;(4)(3)a a +-= ;(4)(3)a a -+= ;(4)(3)a a --= .(1)从上面的计算中总结规律,写出下面式子的结果.()()x a x b ++= .(2)运用上述结论,写出下列各式的结果.①( 2 012)( 1 000)x x +-= ;②( 2 012)( 2 000)x x --)= .13.若m 为奇数,则()()m n a b b a --g 与()m n b a +-的关系为 .14.一个长方形的长为(53) m x +,宽比长少(25) m x +,则这个长方形的面积为 2m .15.工厂要做一个棱长为2710 mm ⨯的正方体运输箱,则这种运输箱的容积为 3mm .16.人们以分贝为单位来表示声音的强弱.通常说话的声音是50分贝,它表示声音的强度是510;摩托车发出的声音是110分贝,它表示声音的强度是1110.摩托车发出的声音强度是通常说话声音强度的 倍.三、解答题(共52分)17.(6分)计算:(1)2(1)(1)x x x -++;(2)225(21)(23)(5)x x x x x -+++---;(3)(3)(3)(3)(43)x y y x x y x y -+-+-.18.(6分)(1)先化简,再求值.22322(1)(2102)x x x x x x x -+-+-,其中12x =-. (2)(2015·湖北随州中考)先化简,再求值:(2+a )(2-a )+a (a -5b )+35322()a b a b ÷-,其中ab =-12. (3)已知,m n 为正整数,且63(5)35m x x x nx +=+,则m n +的值是多少?19.(6分)解下列方程:(1)23(26)3(5)0x x x x ---=-;(2)(24)3(1)5(3)80x x x x x x -+--+=-.20.(6分)已知32x =-,能否确定代数式(2)(2)(2)(4)2(3)x y x y x y y x y y x -++--+-的值?如果能确定,试求出这个值.21.(7分)某中学扩建教学楼,测量地基时,量得地基长为2 m a ,宽为(224) m a -,试用a 表示地基的面积,并计算当25a =时地基的面积.22.(7分)一块长方形硬纸片,长为22(54) m a b +,宽为46 m a ,在它的四个角上分别剪去一个边长为3 m a 的小正方形,然后折成一个无盖的盒子,请你求出这个无盖盒子的表面积.23.(7分)李大伯把一块L 型的菜地按如图所示的虚线分成面积相等的两个梯形,这两个梯形的上底都是 m a ,下底都是 m b ,高都是()m b a -,请你算一算这块菜地的面积是多少,并求出当10 m a =,30 m b =时这块菜地的面积.24.(7分)阅读材料并回答问题: 第23题图 我们知道,完全平方式可以用平面几何图形的面积来表示,实际上还有一些代数恒等式也可以用这种形式表示,如:22(2)()23a b a b a ab b ++=++就可以用图(1)或图(2)等图形的面积表示.(1) (2) (3)第24题图(1)请写出图(3)所表示的代数恒等式: ;(2)试画一个几何图形,使它的面积表示为22()(3)43a b a b a ab b ++=++;(3)请仿照上述方法另写一个含有,a b 的代数恒等式,并画出与它对应的几何图形.第2章 整式的乘法检测题参考答案1.B 解析:∵ 2a 和3b 不是同类项,∴ 2a 和3b 不能合并,∴ A 项错误; ∵ 5a 和-2a 是同类项,∴ 5a -2a =(5-2)a =3a ,∴ B 项正确;∵23235a a a a +⋅==,∴ C 项错误;∵222()=2a b a ab b +++,∴ D 项错误.2.C 解析:A 项,84844a a a a -÷==,故本选项错误;B 项,2110100-=,故本选项错误;C 项,0415⎛⎫= ⎪⎝⎭,故本选项正确;D 项,4222()()()m m m m ÷=-=--,故本选项错误.故选C .3.B 解析:∵ 1025a =,1104b =,∴ 110101025 2541004a b a b -÷==÷=⨯=, ∴ 2a b -=,∴ 2555525a b a b -÷===.故选B . 4.A 解析:()()()2223326.xy x y x y -=-=5.A 解析:23235333a a a a +⨯-=-=-.6.D 解析:2111()222x m x x m x m ⎛⎫⎛⎫++=+++ ⎪ ⎪⎝⎭⎝⎭,∵ ()x m +与12x ⎛⎫+ ⎪⎝⎭的乘积中不含常数项,∴ 102m =, ∴ 0m =.故选D .7.B 解析:(1)正确.(2)当m 是偶数时,(2)2m m =-,故此说法错误.(3)236()a a =--,326()a a =-成立,236[()]a a =---,故此说法错误.(4)当m 是偶数时,3434(2)2m m m m x y x y =-,错误;当m 是奇数时,34(2)m x y -=342m m m x y -.故第一个式子不一定成立.同理第二个式子也是不一定成立.故此说法正确.所以(1)(4)正确,故选B .8.B 解析:2()()()a b b a b ab a b b a b b a b ab a b b ab +-=+-+-⨯+-=+-+-+※※- 2b a b b b --=-,故选B .9.1 解析:∵ m +n =mn ,∴ mn -(m +n )=0,∴ (m -1)(n -1)=mn -m -n +1=mn -(m +n )+1=1.10.-32 解析:2244()()()()b a a b a b a b -+++-=222244()()()b a a b a b ++--=4444()()b a a b -+-=4444b a a b ---=42a -.当2a =-时,原式4422(2)32a =-=⨯=---.11.-55 解析:∵ 210a a -=-,∴ 21a a =-,∴ 225(3)(4)55605()60a a a a a a +-=--=--.当21a a -=时,原式25()60a a =--516055=⨯-=-.12.2712a a ++ 212a a +- 212a a -- 2712a a -+ (1)2()x a b x ab +++(2)①2 1 012 2 012 000x x +- ②2 4 012 4 024 000x x +-解析:2(4)(3)a a a ++=712a ++;(4)(3)a a +-=212a a +-;(4)(3)a a -+=212a a --;(4)(3)a a --=2712a a -+.(1)()()x a x b ++=2()x a b x ab +++.(2)①( 2 012)( 1 000)x x +-=2 1 012 2 012 000x x +-;②( 2 012)( 2 000)x x --=2 4 012 4 024 000x x +-.13.互为相反数 解析:∵ m 为奇数,∴ ()()()()()m n m n m n a b b a b a b a b a +-⋅=⋅=------,∴ ()()m n a b b a -⋅-与()m n b a +-的关系为互为相反数. 14.2(156)x x -- 解析:∵ 一个长方形的长为(53) m x +,宽比长少(25) m x +, ∴ 这个长方形的宽为(53)(25)(32)(m)x x x +-+=-, ∴ 这个长方形的面积为22(53)(32)(156)(m )x x x x +-=--. 即这个长方形的面积为22(156)m x x --. 15.83.4310⨯ 解析:∵ 正方体运输箱的棱长为2710 mm ⨯,∴ 这种运输箱的容积为23683(710)34310 3.4310(mm )⨯=⨯=⨯.16.610 解析:115115*********-÷==.17.解:(1)原式=31x -;(2)原式=32325105(102153)x x x x x x ----+- =32325105102153x x x x x x ---+-+=32771515x x x ---;(3)原式=22229(43129)x y x xy xy y --+-- =2222943129x y x xy xy y ---++=22589x y xy ++.18.解:(1)22322(1)(2102)x x x x x x x -+-+- =432432222(2102)x x x x x x -+--+=38x . 把12x =-代入,得原式3318812x ⎛⎫==⨯-=- ⎪⎝⎭. (2)原式=4-22a a +-5ab +3ab =4-2ab . 当ab =-12时,原式=4-2ab =4-2×12骣÷ç-÷ç÷ç桫=5. (3)∵ 63(5)35m x x x nx +=+,∴ 1631535m x x x nx ++=+,∴ 16m +=,155n =.解得5m =,3n =,∴ m n +的值是8.19.解:(1)去括号,得2236183150x x x x ---+=. 合并同类项,得9180x -=.移项,得918x =.系数化为1,得2x =.(2)去括号,得222243351580x x x x x x -+--++=. 合并同类项,得880x +=.移项,得88x =-.系数化为1,得1x =-.20.解:原式=222224(284)26x y xy x y xy y xy -+--++- =22222428426x y xy x y xy y xy -+--++- =24x -. 当32x =-时,原式=24x -23492⎛⎫=-⨯-=- ⎪⎝⎭. 21.解:根据题意,得地基的面积是222(224)(448)(m )a a a a ⋅-=-. 当25a =时,2224484254825 1 300(m )a a -=⨯-⨯=.22.解:纸片的面积是2246422(54)6(3024)(m )a b a a a b +⋅=+; 小正方形的面积是3262() (m )a a =, 则无盖盒子的表面积是6426642230244(2624)(m )a a b a a a b +-⨯=+. 23.解:根据题意,得菜地的面积是2212 ()()2a b b a b a ⨯+-=-. 当10 m a =,30 m b =时,原式2223010800(m )=-=. 所以这块菜地的面积为2800 m .24.解:(1)22(2)(2)252a b a b a ab b ++=++;(2)答案不唯一,如图(1)所示;(1) (2)第24题答图(3)恒等式是22(2)()32a b a b a ab b ++=++,如图(2)所示.(答案不唯一)。