无机化学氮族元素及其化合物
- 格式:doc
- 大小:79.00 KB
- 文档页数:11
【本讲教育信息】一. 教学内容:氮族元素及其化合物二. 教学要求:1. 能结合元素周期律解释氮族元素单质及化合物性质的递变规律;2. 掌握氮、氮的氧化物的重要性质,特别是氮的氧化物的重要性质,对氮的氧化物的价态,相互转化关系及NO 、NO 2与HNO 3之间的计量关系要理解并能熟练运算,了解氮的氧化物对大气的污染及其防护;3. 了解磷单质及化合物的性质,了解同素异形体的概念,并能通过比较磷的两种同素异形体,理解同素异形体性质的差异及原因;4. 掌握氨气的性质,实验室制法,了解铵盐的通性,掌握铵根离子的检验;5. 掌握硝酸的性质,了解其用途,从不同角度,不同反应突出硝酸的强氧化性和其还原产物的多样性,熟练运用一些技巧如:电子守恒、质量守恒等对HNO 3参加的反应进行定量计算。
三. 重点、难点:1. 掌握N 2,NO 、NO 2重要性质,NH 3的性质、制法。
2. NH 4+检验。
3. 掌握HNO 3的性质四. 知识分析:1. 元素非金属性与非金属单质活泼性的区别:元素的非金属性是元素的原子吸引电子的能力,影响其强弱的结构因素有: (1)原子半径:原子半径越小,吸引电子能力越强; (2)核电荷数:核电荷数越大,吸引电子能力越强; (3)最外电子层:最外层电子越多,吸引电子能力越强。
但由于某些非金属单质是双原子分子,原子间以强烈的共价键相结合(如N N ≡等),当参加化学反应时,必须消耗很大的能量才能形成原子,表现为单质的稳定性很高。
这种现象不一定说明这种元素的非金属性弱。
强烈的分子内共价键恰是非金属性强的一种表现。
如按元素的非金属性:O Cl N Br >>;,而单质的活泼性:O Cl N Br 2222<<;。
因此氮元素的非金属性虽很强,但氮单质的活动性却极差。
氮元素的非金属很强表现在:① 与Mg 等金属反应生成的化合物一般为离子化合物,如Mg N 32,其电子式为Mg N Mg N Mg 23232+⨯⨯⨯-+⨯⨯⨯-+[...][...]....;② 与O 、F 等非金属性很强的元素一样,可与氢元素形成氢键;③ N -3元素的还原性较弱,不易失e -。
无机化学第17章氮族元素第17章是关于氮族元素的无机化学知识。
氮族元素是元素周期表中第15族的元素,包括氮(N)、磷(P)、砷(As)、锑(Sb)和铋(Bi)。
这些元素在化学中具有许多重要的性质和应用。
在本章中,我们将讨论氮族元素的化学性质、反应、化合物以及它们在生物体系中的重要性。
首先,我们将介绍氮族元素的一些共同性质。
氮族元素的原子半径逐渐增加,而电负性逐渐降低。
氮族元素的价壳层电子配置为ns2np3,其中n代表价壳层的主量子数。
氮族元素通常形成3价阳离子(如NH4+),5价阴离子(如NO3-)和3价中性化合物(如NH3)。
从氮到铋,这种趋势是明显的。
此外,氮族元素的氧化态范围很广,从-3到+5都有。
这种多样性使得氮族元素在化学反应中能够发挥多种不同的角色。
氮族元素最重要的元素之一是氮。
氮气(N2)是地球大气中占据最大比例的气体成分之一、氮气在室温和常压下是稳定的,但它可以通过高温和高压的条件下与氢气反应,形成氨气(NH3)。
氨气是一种重要的化学物质,在肥料、农药和化肥生产中应用广泛。
此外,氨气也是合成其他化学品(如硝酸和尿素)的重要原料。
尤其是,氨气还可以和各种酸反应,形成盐。
这些氨盐可以通过酸碱反应来制备氨化合物,例如铵盐(如氨铵硝酸盐)和亚硝酸(如亚硝基氨)。
亚硝酸是氮族元素的另外一个重要化合物,在食品加工和防腐剂中有广泛应用。
另一个重要的氮族元素是磷。
磷在生物体中起着重要的作用,例如在DNA和RNA的结构中起着关键的作用。
磷也是肥料和家庭清洁剂中的重要成分。
磷的化合物也可以通过与氧气的反应制备。
磷酸盐(如三钠磷酸盐)是广泛存在于自然界中的一个重要矿物。
此外,砷是氮族元素中的另一个重要元素。
砷化氢(AsH3)是砷的重要化合物之一,它是一种无色、有毒的气体。
砷酸盐在过去被广泛应用,但由于砷的毒性,它们现在被禁止在许多国家使用。
锑和铋是氮族元素中较重的元素,它们在化学上与轻量级元素相似。
锑的最常见氧化态是+3,而铋的最常见氧化态是+3和+5、锑和铋的化合物在电子和光学领域有许多应用。
第十四章氮族元素§本章摘要§1.氮和氮的化合物单质氮的氢化物氮的含氧化合物2.磷和磷的化合物单质磷的氢化物磷的含氧化合物磷的卤化物和硫化物3.砷、锑、铋单质砷锑铋的氢化物砷、锑、铋的氧化物及其水§1. 氮和氮的化合物一.单质1 氮气的化学性质常温下N2很稳定,表现出惰性,高温下活泼些。
1°和非金属的反应N 2 + 3H2--2NH3催化剂,一定T.P下反应,高中讨论过。
2°和金属单质的反应高温下和Mg、Ca、Sr、Ba反应3Ca + N2---Ca3N2( Ca:410℃,Sr:380℃ ,Ba:260 ℃)和Li反应250℃就很快了6Li + N2 --- 2Li3N二氮的氢化物1、氨(NH3)1°NH3的分子结构2 °液氨的性质(和H2O相比较):-33.4℃液化,可作非水溶剂。
它是路易斯碱。
故液氨和H2O一样,很难电离和Na反应,H2O 和Na反应迅速,NH3和Na反应极慢,放置时反应如下:H 2逸出后,蒸干得白色固体NaNH2,即氨基钠。
NH3(l)能溶解碱金属,稀溶液显蓝色氨合电子是金属液氨溶液显蓝色的原因,也是金属液氨溶液显强的还原性和导电性的依据。
它的导电性超过任何电解质溶液,类似金属。
3°氨的化学性质A)络合反应氨分子中有一个孤电子对,所以可与许多金属离子配位形成络离子。
B: 杂化,与3个F形成三个键,B中还有一个空的2P轨道,NH3的孤电子对填到B的2P空轨道中。
2、联氨 N2H41°结构N2H4可以看成是NH3中的一个H被NH2取代,联氨又叫肼,N上仍有孤对电子。
2°联氨的性质纯的联氨是无色液体, m.p.1.4 ℃, b.p.113.5 ℃。
A)显碱性其碱性的机理与NH3一样是二元弱碱,比NH3略弱。
B)氧化还原性N2H4N显-2价,既有氧化性又有还原性不论在酸中、碱中,联氨作氧化剂,反应都非常慢,故只是一个好的还原剂。
氮族元素及其化合物1.氮和磷[氮族元素]包括氮(7N)、磷、(15P)、砷(33As)、锑(51Sb)、铋(83Bi)五种元素.氮族元素位于元素周期表中第VA族,其代表元素为氮和磷.[氮族元素的原子结构](1)相似性:①最外层电子数均为5个;②主要化合价:氮有-3、+1、+2、+3、+4、+5价;磷和砷有-3、+3、+5价;锑、铋有+3、+5价.(2)递变规律:按氮、磷、砷、锑、铋的顺序,随着核电荷数的增加,电子层数增多,原子半径增大,失电子能力增强,得电子能力减弱,非金属性减弱,金属性增强.在氮族元素的单质中,氮、磷具有较明显的非金属性;砷虽然是非金属,但有一些金属性;锑、铋为金属.[氮族元素单质的物理性质]N2P As Sb Bi颜色无色白磷:白色或黄色红磷:红棕色灰砷:灰色银白色银白色或微显红色状态气体固体固体固体固体密度逐渐增大熔点、沸点先按N2、P、As的顺序逐渐升高,而后按Sb、Bi的顺序逐渐降低[氮气](1)氮元素在自然界中的存在形式:既有游离态又有化合态.空气中含N278%(体积分数)或75%(质量分数);化合态氮存在于多种无机物和有机物中,氮元素是构成蛋白质和核酸不可缺少的元素.(2)氮气的物理性质:纯净的氮气是无色气体,密度比空气略小.氮气在水中的溶解度很小.在常压下,经降温后,氮气变成无色液体,再变成雪花状固体.(3)氮气的分子结构:氮分子(N2)的电子式为,结构式为N≡N.由于N2分子中的N≡N键很牢固,所以通常情况下,氮气的化学性质稳定、不活泼.(4)氮气的化学性质:①N2与H2化合生成NH3N2 +3H22NH3说明该反应是一个可逆反应,是工业合成氨的原理.②N2与O2化合生成NO:N2 + O22NO说明在闪电或行驶的汽车引擎中会发生以上反应.(5)氮气的用途:①合成氨,制硝酸;②代替稀有气体作焊接金属时的保护气,以防止金属被空气氧化;⑧在灯泡中填充氮气以防止钨丝被氧化或挥发;④保存粮食、水果等食品,以防止腐烂;⑤医学上用液氮作冷冻剂,以便在冷冻麻醉下进行手术;⑥利用液氮制造低温环境,使某些超导材料获得超导性能.[NO、NO2性质的比较]氮的氧化物一氧化氮(NO) 二氧化氮(NO2)物理性质为无色、不溶于水、有毒的气体为红棕色、有刺激性气味、有毒的气体,易溶于水化学性质①极易被空气中的O2氧化:2NO + O2= 2NO2②NO中的氮为+2价,处于中间价态,既有氧化性又有还原性与H2O反应:3NO2 + H 2O=2HNO3 + NO(工业制HNO3原理.在此反应中,NO2同时作氧化剂和还原剂)[自然界中硝酸盐的形成过程](1)电闪雷鸣时:N2+O22NO (2) 2NO + O2= 2NO2(3)下雨时:3NO2 + H2O=2HNO3 + NO(4)生成的硝酸随雨水淋洒到土壤中,并与土壤中的矿物作用生成能被植物吸收的硝酸盐.[光化学烟雾]NO、NO2有毒,是大气的污染物.空气中的NO、NO2污染物主要来自于石油产品和煤燃烧的产物、汽车尾气以及制硝酸工厂的废气.NO2在紫外线照射下,发生一系列光化学反应,产生一种有毒的烟雾——光化学烟雾.因此,NO2是造成光化学烟雾的主要因素.光化学烟雾刺激呼吸器官,使人生病甚至死亡.[磷](1)磷元素在自然界中的存在形式:自然界中无游离态的磷.化合态的磷主要以磷酸盐的形式存在于矿石中.动物的骨骼、牙齿和神经组织,植物的果实和幼芽,生物的细胞里都含有磷.(2)单质磷的化学性质:①与O2反应:4P+5O22P2O5②磷在C12中燃烧:2P+3C12(不足量) 2PCl32P+5Cl2(足量) 2PCl5[磷的同素异形体——白磷与红磷]磷的同素异形体白磷红磷说明物理性质颜色、状态无色蜡状固体红棕色粉末①白磷与红磷的结构不同是物理性质存在差别的原因②由两者物理性质的不同,证明了白磷与红磷是不同的单质密度(g·cm-3)1.822.34溶解性不溶于水,溶于CS2不溶于水,也不溶于CS2毒性剧毒无毒着火点40℃(白磷受到轻微的摩擦就会燃烧;常温时,白磷可被氧化而发光)240℃化学性质白磷、红磷在空气中燃烧,都生成白色的P2O5白磷与红磷燃烧都生成P2O5,证明它们都是由磷元素形成的单质相互转化白磷红磷证明白磷与红磷所含元素相同——互为同素异形体保存方法密封保存,少量白磷保存在水中密封保存,防止吸湿切削白磷应在水中进行用途制造高纯度磷酸;制造燃烧弹、烟幕弹制造高纯度磷酸;制农药、安全火柴[五氧化二磷、磷酸](1)五氧化二磷的性质:五氧化二磷是白色粉末状固体,极易吸水(因此可作酸性气体的干燥剂).P2O5是酸性氧化物,与水反应:P2O5+3H2O2H3PO4(2)磷酸的性质、用途:磷酸(H3PO4)是一种中等强度的三元酸,具有酸的通性.磷酸主要用于制造磷肥,也用于食品、纺织等工业.[氮、磷元素及其单质、化合物性质的比较]元素氮(N)磷(P)自然界中存在的形式游离态和化合态只有化合态单质与O2化合的情况N2+O22NO(易)4P+5O22P2O5(难)单质与H2化合的情况N2 +3H22NH32P(蒸汽) + 3H22PH3单质的化学活泼性及原因单质活泼性:N2<P原因:N2分子中N≡N键很牢固,故N2性质稳定、不活泼氢化物的稳定性NH3>PH3最高价氧化物对应水化物的酸性HNO3>H3PO4非金属性N>P2.铵盐[氨](1)氨的物理性质:①氨是无色、有刺激性气味的气体,比空气轻;②氨易液化.在常压下冷却或常温下加压,气态氨转化为无色的液态氨,同时放出大量热.液态氨气化时要吸收大量的热,使周围的温度急剧下降;③氨气极易溶于水.在常温、常压下,1体积水中能溶解约700体积的氨气(因此,氨气可进行喷泉实验);④氨对人的眼、鼻、喉等粘膜有刺激作用.若不慎接触过多的氨而出现病症,要及时吸入新鲜空气和水蒸气,并用大量水冲洗眼睛.(2)氨分子的结构:NH3的电子式为,结构式为,氨分子的结构为三角锥形,N原子位于锥顶,三个H原子位于锥底,键角107°18′,是极性分子.(3)氨的化学性质:①跟水反应.氨气溶于水时(氨气的水溶液叫氨水),大部分的NH3分子与H2O分子结合成NH3·H2O(叫一水合氨).NH3·H2O为弱电解质,只能部分电离成NH4+和OH-:NH3 + H2O NH3·H2O NH4++ OH-a.氨水的性质:氨水具有弱碱性,使无色酚酞试液变为浅红色,使红色石蕊试液变为蓝色.氨水的浓度越大,密度反而越小(是一种特殊情况).NH3·H2O不稳定,故加热氨水时有氨气逸出:NH4++ OH-NH3↑+ H2Ob.氨水的组成:氨水是混合物(液氨是纯净物),其中含有3种分子(NH3、NH3·H2O、H2O)和3种离子(NH4+和OH-、极少量的H+).c.氨水的保存方法:氨水对许多金属有腐蚀作用,所以不能用金属容器盛装氨水.通常把氨水盛装在玻璃容器、橡皮袋、陶瓷坛或内涂沥青的铁桶里.d.有关氨水浓度的计算:氨水虽然大部分以NH3·H2O形式存在,但计算时仍以NH3作溶质.②跟氯化氢气体的反应:NH3 + HCl =NH4C1说明a.当蘸有浓氨水的玻璃棒与蘸有浓盐酸的玻璃棒靠近时,产生大量白烟.这种白烟是氨水中挥发出来的NH3与盐酸挥发出来的HCl化合生成的NH4C1晶体小颗粒.b.氨气与挥发性酸(浓盐酸、浓硝酸等)相遇,因反应生成微小的铵盐晶体而冒白烟,这是检验氨气的方法之—.c.氨气与不挥发性酸(如H2SO4、H3PO4等)反应时,无白烟生成.③跟氧气反应:4NH3 + 5O24NO + 6H2O说明 这一反应叫做氨的催化氧化(或叫接触氧化),是工业上制硝酸的反应原理之一. (4)氨气的用途:①是氮肥工业及制造硝酸、铵盐、纯碱的原料;②是有机合成工业如合成纤维、塑料、染料、尿素等的常用原料;③用作冰机中的致冷剂. [铵盐]铵盐是由铵离子(NH 4+)和酸根阴离子组成的化合物.铵盐都是白色晶体,都易溶于水. (1)铵盐的化学性质:①受热分解.固态铵盐受热都易分解.根据组成铵盐的酸根阴离子对应的酸的性质的不同,铵盐分解时有以下三种情况:a .组成铵盐的酸根阴离子对应的酸是非氧化性的挥发性酸时,则加热时酸与氨气同时挥发,冷却时又重新化合生成铵盐。
第十四章氮族元素§本章摘要§1.氮和氮的化合物单质氮的氢化物氮的含氧化合物2.磷和磷的化合物单质磷的氢化物磷的含氧化合物磷的卤化物和硫化物3.砷、锑、铋单质砷锑铋的氢化物砷、锑、铋的氧化物及其水合物砷、锑、铋的三卤化物砷、锑、铋的硫化物3B: 杂化,与2也是一种拟卤离子。
反应类似于卤除浅黄色的一般易溶。
盐,生成沉淀物。
但以氧化性为主,N 不等性杂化,大键中电亚硝酸的分子结构阳离子离子电场较弱一个电子形成第十四章氮族元素§本章摘要§1.氮和氮的化合物单质氮的氢化物氮的含氧化合物2.磷和磷的化合物单质磷的氢化物磷的含氧化合物磷的卤化物和硫化物3.砷、锑、铋单质砷锑铋的氢化物砷、锑、铋的氧化物及其水合物砷、锑、铋的三卤化物砷、锑、铋的硫化物: 由于动力学原因,这种歧化只有在碱中才能成为现实。
PH轨道相互成键,+2°氧化物的性质离子形成可溶性配合物所以分析中常用做为的掩蔽剂D)缩合性链聚多磷酸的通式B)、Array B) 歧化反应的鸡蛋清溶液,使蛋白溶按顺序X第十四章 氮族元素§本章摘要§ 1.氮和氮的化合物单质 氮的氢化物 氮的含氧化合物 2.磷和磷的化合物单质 磷的氢化物 磷的含氧化合物 磷的卤化物和硫化物3.砷、锑、铋单质 砷锑铋的氢化物 砷、锑、铋的氧化物及其水合物 砷、锑、铋的三卤化物 砷、锑、铋的硫化物可与F 2反应有五价化合物生成。
,在碱性介质中而在强酸中,即] =1时,可以氧化,在酸介质中却弱酸,碱性比,若用浓盐酸抑制水解,体系中会有存在,但用水解,溶液中也不会有。
则要在浓盐酸中通入只有在浓盐酸中才会有存在,通入H无.。
元素讲义5 主族元素——氮族元素n s 2n p 3 N 、P 、As 、Sb 、Bi氮及其化合物一、氮的化合物:1.[ -3 ]的化合物: NH 3、Na 3N 、Mg 3N 2 、 AlN 、Si 3N 4、 P 3N 5 、S 4N 4、 Cl 3N (1) 原子晶体:AlN 、Si 3N 4、BN 、Ge 3N 4具有高熔点,高强度材料 (2) 氨气作溶剂: 强的离子化溶剂 a .自偶电离 2NH 3NH 4+ + NH 2-NH 4Cl NH 4NO 3在液氨中为强酸,KNH 2、Ba(NH 2)2在液氨中为强碱,Zn(NH 2)2、Al(NH 2)3为两性 b .路易酸碱: KNH 2 + NH 4NO 3 = KNO 3 + 2NH 3 KOH + HNO 3 = KNO 3 + H 2OPCl 5 + 8NH 3 = PN(NH 2)2 + 5NH 4Cl PCl 5 + 9H 2O = (HO)3PO + 5H 3OClSO 2Cl 2 + 4NH 3 = SO 2(NH)2 + 2NH 4Cl SO 2Cl 2 + 4H 2O = SO 2(OH)2 + 2H 3OCl 2K + 2NH 3 = 2KNH 2 + H 2 2K + 2H 2O = 2KOH + H 2Zn(NH 2)2 + 2NH 4Cl = [Zn(NH 3)4]Cl 2 Zn(OH)2 + 2H 3OCl = [Zn(H 2O)4]Cl 2 2KNH 2 + Zn(NH 2)2 = K 2[Zn(NH 2)4] 2KOH + Zn(OH)2 = K 2[Zn(OH)4] (3) 铵盐:a .铵盐中酸根的酸性越强,铵盐的稳定性越大,即NH 4I >NH 4Br >NH 4Cl >NH 4F b . NH 4Cl 可除去金属表面的氧化物,所以NH 4Cl 称为硇砂。
NH 4Cl + 3CuO 3Cu + N 2 + 3H 2O + 2HCl c .铵盐的热分解:(i)一般生成氨和酸: (NH 4)2SO4NH 3↑+ NH 4HSO 4 NH 4ClNH 3↑+ HCl↑(ii) 酸根离子有强氧化性: NH 4NO3N 2O + 2H 2O(NH 4)2Cr 2O7Cr 2O 3 + N 2 + 4H 2O 2NH 4ClO 4N 2 + Cl 2 + 2O 2 + 4H 2O2.[ -2 ]化合物: N 2H 4肼或联氨 (1) 结构:μ ≠ 0,说明结构不对称 (2) 自偶电离: 2N 2H4N 2H 5+ + N 2H 3- K = 2×10-25(3) 是二元弱碱: N 2H 4 + H 2O N 2H 5+ + OH - K b1 = 8.5×10-7 N 2H 5+ + H 2O N 2H 62+ +OH -K b2 = 8.9×10-16(4) 作为单基配体:CoCl 2 + N 2H 4 = Co (N 2H 4)6Cl 2 (5) 是强还原剂,特别是在OH -介质中:4MnO 4- + 5 N 2H 4 + 12H + = 5N 2 + 4Mn 2+ + 16H 2O它与空气混合,可燃烧并放出大量的热,(CH 3)2NNH 2(偏二甲肼)作为火箭燃料 N 2H 4(l) + O 2(g)N 2(g) + 2H 2O(l) ∆c H m = -622kJ·mol -13.[ -1 ]化合物: NH 2OH 羟氨 (1) 结构:HO NH H......(2)性质: a .羟氨是不稳定的白色固体,在15℃左右发生热分解: 碱性下:3NH 2OH = NH 3 + N 2 + 3H 2O 酸性下:4NH 2OH = 2NH 3 + N 2O+ 3H 2Ob .羟氨是一元碱,碱性小于氨 ( K b = 9.1×10-9 ),其水溶液稳定。
14.1 复习笔记氮族元素包括氮、磷、砷、锑和铋。
氮和磷是非金属元素,砷和锑为准金属,铋是金属元素。
氮族元素形成的化合物主要是共价型的,且原子愈小,形成共价键的趋势愈大。
氮族元素氢化物的稳定性从NH3到BiH3依次减弱,碱性也依次减弱,酸性依次增强。
氮族元素氧化物的酸性随原子序数的递增而递减。
一、氮族元素单质氮主要以单质N2存在于大气中。
磷容易被氧化,主要以磷酸盐形式存在于自然界中。
通常将磷酸钙、沙子和焦炭混合加热至1500 ℃制取白磷。
磷的同素异形体有白磷、红磷和黑磷三种。
白磷化学性质活泼,易氧化,能自燃,有剧毒。
砷、锑和铋主要以硫化物存在于自然界中。
通常将硫化物焙烧得到相应的氧化物,然后用碳还原制备相应的单质。
二、氮族元素化合物1.氮的化合物氮原子的价层电子构型为n s2n p3。
氮能形成氧化值为+3和+5的化合物,其中氮原子大多以共价键与其他元素的原子结合。
(1)氨与铵盐氨分子是极性分子,其构型为三角锥。
氨分子间形成氢键,氨的熔点、沸点在同族元素氢化物中反常地高。
氨的主要反应类型为:①氨作为Lewis碱发生加合反应;②氨分子中的氢被取代;③氨作为还原剂被氧化。
铵盐易溶于水,在水中发生水解反应,与强碱作用并加热生成氨。
固体铵盐受热分解的规律为:挥发性酸的铵盐(如(NH4)2CO3等)分解为氨和相应的酸;不挥发性酸的铵盐(如(NH4)3PO4等)分解为氨和相应的酸或酸式盐;氧化性酸的铵盐(如(NH4)2Cr2O7等)分解为氮气等产物。
(2)氮的氧化物、含氧酸及其盐氮可以形成多种氧化值的氧化物:N2O,NO,N2O3,NO2,N2O4,N2O5等。
它们的热稳定性较差。
NO易被O2氧化为NO2,NO用于制取硝酸和硝酸盐。
①亚硝酸:亚硝酸是弱酸,很不稳定,易分解;亚硝酸盐一般易溶于水,碱金属、碱土金属的亚硝酸盐热稳定性较高。
在酸性溶液中亚硝酸盐具有氧化性。
NO2-中,氮原子与氧原子形成σ键,还形成一个三中心四电子的大π键。
氮族元素及其化合物1.氮和磷[氮族元素]包括氮(7N)、磷、(15P)、砷(33As)、锑(51Sb)、铋(83Bi)五种元素.氮族元素位于元素周期表中第VA族,其代表元素为氮和磷.[氮族元素的原子结构](1)相似性:①最外层电子数均为5个;②主要化合价:氮有-3、+1、+2、+3、+4、+5价;磷和砷有-3、+3、+5价;锑、铋有+3、+5价.(2)递变规律:按氮、磷、砷、锑、铋的顺序,随着核电荷数的增加,电子层数增多,原子半径增大,失电子能力增强,得电子能力减弱,非金属性减弱,金属性增强.在氮族元素的单质中,氮、磷具有较明显的非金属性;砷虽然是非金属,但有一些金属性;锑、铋为金属.[氮族元素单质的物理性质]N2P As Sb Bi颜色无色白磷:白色或黄色红磷:红棕色灰砷:灰色银白色银白色或微显红色状态气体固体固体固体固体密度逐渐增大熔点、沸点先按N2、P、As的顺序逐渐升高,而后按Sb、Bi的顺序逐渐降低[氮气](1)氮元素在自然界中的存在形式:既有游离态又有化合态.空气中含N278%(体积分数)或75%(质量分数);化合态氮存在于多种无机物和有机物中,氮元素是构成蛋白质和核酸不可缺少的元素.(2)氮气的物理性质:纯净的氮气是无色气体,密度比空气略小.氮气在水中的溶解度很小.在常压下,经降温后,氮气变成无色液体,再变成雪花状固体.(3)氮气的分子结构:氮分子(N2)的电子式为,结构式为N≡N.由于N2分子中的N≡N键很牢固,所以通常情况下,氮气的化学性质稳定、不活泼.(4)氮气的化学性质:①N2与H2化合生成NH3N2 +3H22NH3说明该反应是一个可逆反应,是工业合成氨的原理.②N2与O2化合生成NO:N2 + O22NO说明在闪电或行驶的汽车引擎中会发生以上反应.(5)氮气的用途:①合成氨,制硝酸;②代替稀有气体作焊接金属时的保护气,以防止金属被空气氧化;⑧在灯泡中填充氮气以防止钨丝被氧化或挥发;④保存粮食、水果等食品,以防止腐烂;⑤医学上用液氮作冷冻剂,以便在冷冻麻醉下进行手术;⑥利用液氮制造低温环境,使某些超导材料获得超导性能.[NO、NO2性质的比较]氮的氧化物一氧化氮(NO) 二氧化氮(NO2)物理性质为无色、不溶于水、有毒的气体为红棕色、有刺激性气味、有毒的气体,易溶于水化学性质①极易被空气中的O2氧化:2NO + O2= 2NO2②NO中的氮为+2价,处于中间价态,既有氧化性又有还原性与H2O反应:3NO2 + H2O=2HNO3 + NO(工业制HNO 3原理.在此反应中,NO2同时作氧化剂和还原剂)[自然界中硝酸盐的形成过程](1)电闪雷鸣时:N2+O22NO (2) 2NO + O2= 2NO2(3)下雨时:3NO2 + H2O=2HNO3 + NO(4)生成的硝酸随雨水淋洒到土壤中,并与土壤中的矿物作用生成能被植物吸收的硝酸盐.[光化学烟雾]NO、NO2有毒,是大气的污染物.空气中的NO、NO2污染物主要来自于石油产品和煤燃烧的产物、汽车尾气以及制硝酸工厂的废气.NO2在紫外线照射下,发生一系列光化学反应,产生一种有毒的烟雾——光化学烟雾.因此,NO2是造成光化学烟雾的主要因素.光化学烟雾刺激呼吸器官,使人生病甚至死亡.[磷](1)磷元素在自然界中的存在形式:自然界中无游离态的磷.化合态的磷主要以磷酸盐的形式存在于矿石中.动物的骨骼、牙齿和神经组织,植物的果实和幼芽,生物的细胞里都含有磷.(2)单质磷的化学性质:①与O2反应:4P+5O22P2O5②磷在C12中燃烧:2P+3C12(不足量) 2PCl32P+5Cl2(足量) 2PCl5[磷的同素异形体——白磷与红磷]磷的同素异形体白磷红磷说明物理性质颜色、状态无色蜡状固体红棕色粉末①白磷与红磷的结构不同是物理性质存在差别的原因②由两者物理性质的不同,证明了白磷与红磷是不同的单质密度(g·cm-3)1.822.34溶解性不溶于水,溶于CS2不溶于水,也不溶于CS2毒性剧毒无毒着火点40℃(白磷受到轻微的摩擦就会燃烧;常温时,白磷可被氧化而发光)240℃化学性质白磷、红磷在空气中燃烧,都生成白色的P2O5白磷与红磷燃烧都生成P2O5,证明它们都是由磷元素形成的单质相互转化白磷红磷证明白磷与红磷所含元素相同——互为同素异形体保存方法密封保存,少量白磷保存在水中密封保存,防止吸湿切削白磷应在水中进行用途制造高纯度磷酸;制造燃烧弹、烟幕弹制造高纯度磷酸;制农药、安全火柴[五氧化二磷、磷酸](1)五氧化二磷的性质:五氧化二磷是白色粉末状固体,极易吸水(因此可作酸性气体的干燥剂).P2O5是酸性氧化物,与水反应:P2O5+3H2O2H3PO4(2)磷酸的性质、用途:磷酸(H3PO4)是一种中等强度的三元酸,具有酸的通性.磷酸主要用于制造磷肥,也用于食品、纺织等工业.[氮、磷元素及其单质、化合物性质的比较]元素氮(N)磷(P)自然界中存在的形式游离态和化合态只有化合态单质与O2化合的情况N2+O22NO(易)4P+5O22P2O5(难)单质与H2化合的情况N2 +3H22NH32P(蒸汽) + 3H22PH3单质的化学活泼性及原因单质活泼性:N2<P原因:N2分子中N≡N键很牢固,故N2性质稳定、不活泼氢化物的稳定性NH3>PH3最高价氧化物对应水化物的酸性HNO3>H3PO4非金属性N>P2.铵盐[氨](1)氨的物理性质:①氨是无色、有刺激性气味的气体,比空气轻;②氨易液化.在常压下冷却或常温下加压,气态氨转化为无色的液态氨,同时放出大量热.液态氨气化时要吸收大量的热,使周围的温度急剧下降;③氨气极易溶于水.在常温、常压下,1体积水中能溶解约700体积的氨气(因此,氨气可进行喷泉实验);④氨对人的眼、鼻、喉等粘膜有刺激作用.若不慎接触过多的氨而出现病症,要及时吸入新鲜空气和水蒸气,并用大量水冲洗眼睛.(2)氨分子的结构:NH3的电子式为,结构式为,氨分子的结构为三角锥形,N原子位于锥顶,三个H原子位于锥底,键角107°18′,是极性分子.(3)氨的化学性质:①跟水反应.氨气溶于水时(氨气的水溶液叫氨水),大部分的NH3分子与H2O分子结合成NH3·H2O(叫一水合氨).NH3·H2O为弱电解质,只能部分电离成NH4+和OH-:NH3 + H2O NH3·H2O NH4++ OH-a.氨水的性质:氨水具有弱碱性,使无色酚酞试液变为浅红色,使红色石蕊试液变为蓝色.氨水的浓度越大,密度反而越小(是一种特殊情况).NH3·H2O不稳定,故加热氨水时有氨气逸出:NH4++ OH-NH3↑+ H2Ob.氨水的组成:氨水是混合物(液氨是纯净物),其中含有3种分子(NH3、NH3·H2O、H2O)和3种离子(NH4+和OH-、极少量的H+).c.氨水的保存方法:氨水对许多金属有腐蚀作用,所以不能用金属容器盛装氨水.通常把氨水盛装在玻璃容器、橡皮袋、陶瓷坛或内涂沥青的铁桶里.d.有关氨水浓度的计算:氨水虽然大部分以NH3·H2O形式存在,但计算时仍以NH3作溶质.②跟氯化氢气体的反应:NH3 + HCl =NH4C1说明a.当蘸有浓氨水的玻璃棒与蘸有浓盐酸的玻璃棒靠近时,产生大量白烟.这种白烟是氨水中挥发出来的NH3与盐酸挥发出来的HCl化合生成的NH4C1晶体小颗粒.b.氨气与挥发性酸(浓盐酸、浓硝酸等)相遇,因反应生成微小的铵盐晶体而冒白烟,这是检验氨气的方法之—.c.氨气与不挥发性酸(如H2SO4、H3PO4等)反应时,无白烟生成.③跟氧气反应:4NH3 + 5O24NO + 6H2O说明 这一反应叫做氨的催化氧化(或叫接触氧化),是工业上制硝酸的反应原理之一. (4)氨气的用途:①是氮肥工业及制造硝酸、铵盐、纯碱的原料;②是有机合成工业如合成纤维、塑料、染料、尿素等的常用原料;③用作冰机中的致冷剂. [铵盐]铵盐是由铵离子(NH 4+)和酸根阴离子组成的化合物.铵盐都是白色晶体,都易溶于水. (1)铵盐的化学性质:①受热分解.固态铵盐受热都易分解.根据组成铵盐的酸根阴离子对应的酸的性质的不同,铵盐分解时有以下三种情况:a .组成铵盐的酸根阴离子对应的酸是非氧化性的挥发性酸时,则加热时酸与氨气同时挥发,冷却时又重新化合生成铵盐。
氮族元素NO和NO2的常见反应NO与空气相遇立即被氧化为红棕色的NO2;2NO + O2 == 2NO2这是个放热反应, 但反应速率随温度变化很特殊, 在温度低时反应快, 温度高时却缓慢。
NO2在常温下压缩或在常压下冷却,会有无色的N2O4生成:2NO2⇌N2O43NO2 + H2O == 2HNO3 + NO4NO2 + O2 + 2H2O == 4HNO34NO + 3O2 +2H2O == 4HNO3NO + NO2 + O2 + H2O == 2HNO3氮的氧化物对大气的污染1. 污染对象:但的氧化物都是大气的污染物,常见的以NO和NO2为主.它们都能刺激和损害呼吸系统,也伤害植物的生长和发育. NO还易与血红蛋白结合,形成亚硝基血红蛋白而失去输氧能力. NO2跟血红蛋白能生成硝基血红蛋白, 同样失去输氧功能. 所以,在空气中浓度大时, 会导致严重的伤害甚至死亡. 在低浓度NO、NO2的空气中时间过长时, 可因NO、NO2在肺中生成HNO3和HNO2而发生病变. NO和NO2在湿空气中产生的硝酸,对金属、机械、建筑物等都有明显的腐蚀作用. NO上升到臭氧层, 也会对臭氧层产生破坏作用.2. 污染来源:污染大气的氮的氧化物, 主要来源是化工燃料(煤、石油)的燃烧废气. 如汽车尾气、喷气飞机尾气和火电厂废气等. 未经处理的硝酸厂和某些工厂的废气排放, 也会产生较高浓度的氮的氧化物.3. 主要防污染发应: 伦敦和洛杉矶化学烟雾事件.2CO + 2NO == N2 + 2CO26NO + 4NH3 == 5N2 + 6H2O6NO2 + 8NH3 == 7N2 + 12H2O这些催化剂比较昂贵, 也容易被含铅汽油的排放物损害. 汽车没有处理废气的设备和使用含铅汽油是极不利于环境保护的.硝酸纯硝酸是无色油状液体, 开盖时有烟雾, 挥发性酸.M.p. -42℃, b.p. 83℃. 密度: 1.5 g/cm3, 与水任意比互溶.常见硝酸a%= 63%-69.2% c= 14-16mol/L. 呈棕色(分析原因) 发烟硝酸. 化学性质: 强腐蚀性: 能严重损伤金属、橡胶和肌肤, 因此不得用胶塞试剂瓶盛放硝酸.不稳定性: 光或热4HNO3 ===== 4NO2 + O2 + 2H2O所以, 硝酸要避光保存.强酸性: 在水溶液里完全电离, 具有酸的通性.强氧化性: 浓度越大, 氧化性越强.与金属反应:在两支试管里分别盛有铜片, 向两支试管理再分别加入浓硝酸和稀硝酸. Cu + 4HNO3(浓) == Cu(NO3)2 + 2NO2↑+ 2H2O3Cu + 8HNO3(稀) == 3Cu(NO3)2 + 2NO↑ + 4H2OAg + 2HNO3(浓) == AgNO3 + NO2↑+H2O3Ag + 4HNO3(稀) == 3AgNO3+ NO ↑+ 2H2O硝酸能与除金、铂、钛等外的大多数金属反应.通常浓硝酸与金属反应时生成NO2, 稀硝酸(<6mol/L)则生成NO.钝化反应: 常温下浓硝酸可使铁、铝、铬(都可呈+3价金属化合物)表面形成具有保护性的氧化膜而钝化. 而稀硝酸则与它们反应.Fe + 4HNO3(稀) == Fe(NO3)3 + NO + 2H2O王水: 1体积浓硝酸与3体积浓盐酸的混合溶液.可溶解金、铂.Au + HNO3 + 4HCl == HAuCl4 + NO + 2H2OM + HNO3(12∽14mol/L) ↗NO2为主.M + HNO3(6∽8mol/L) ↗NO为主M + HNO3(约2mol/L)↗N2O为主, M较活泼.M + HNO3(<2mol/L) ↗NH4+为主(M活泼)M + HNO3还可能有H2产生(M活泼)与非金属反应: 浓硝酸; 需要加热.C + 4HNO3(浓) == CO2 ↑+ 4NO2↑ + 2H2O (实验演示)H2S + 8HNO3(浓) == H2SO4 + 8NO2↑ + 4H2O3H2S + 2HNO3(稀) == 3S + 2NO + 4H2O (冷)SO2 + 2HNO3(浓) == H2SO4 + 2NO23SO2 + 2HNO3(稀) + 2H2O == 3H2SO4 + 2NOH2S、SO2以及S2-、SO32-都不能与硝酸共存.与有机物反应: 生成硝基化合物和硝酸酯.用途: 军火工业、燃料工业、硝酸盐(硝酸铵和制矿山用硝铵炸药)、硝酸银. 硝酸的制法:生成硝酸的措施有哪些? 对比优缺点.(三种)实验室制法: 微热NaNO3(s) + H2SO4(浓) == NaHSO4 + HNO31. 反应温度2. 反应装置:3. 收集装置:氨氧化法制硝酸:4NH3 + 5O2 ==== 4NO + 6H2O (氧化炉中)2NO + O2 == 2NO2 (冷却器中)3NO2 + H2O = 2HNO3 + NO (吸收塔)4NO2 + O2 + 2H2O == 4HNO3 (吸收塔)过程: (1)先将液氨蒸发, 再将氨气与过量空气混合后通入装有铂、铑合金网的氧化炉中, 在800℃左右氨很快被氧化为NO. 该反应放热可使铂铑合金网(催化剂)保持赤热状态.(2)由氧化炉里导出的NO和空气混合气在冷凝器中冷却, NO与O2反应生成NO2.(3) 再将NO2与空气的混合气通入吸收塔. 由塔顶喷淋水, 水流在塔内填充物迂回流下. 塔底导入的NO2和空气的混合气, 它们在填充物上迂回向上. 这样气流与液流相逆而行使接触面增大, 便于气体吸收.从塔底流出的硝酸含量仅达50%, 不能直接用于军工、染料等工业, 必须将其制成98%以上的浓硝酸. 浓缩的方法主要是将稀硝酸与浓硫酸或硝酸镁混合后, 在较低温度下蒸馏而得到浓硝酸, 浓硫酸或硝酸镁在处理后再用.尾气处理: 烧碱吸收氮的氧化物, 使其转化为有用的亚硝酸盐(有毒)即”工业盐”.NO + NO2 + 2NaOH == 2NaNO2 + H2O硝酸盐:特点: 外观美丽(由金属离子决定); KNO3无色、Cu(NO3)2.6H2O宝石蓝色. 水溶性好有明显的氧化性, 稳定性不好.分解有氧气.[实验]1. KNO3的热分解:2. 硝酸铜的热分解并检验气体.2KNO3 == 2KNO2 + O22Cu(NO3)2 == 2CuO + 4NO2 + O22AgNO3 == 2Ag + 2NO2 + O2检验方法: 硝酸盐溶液经浓缩后, 加入浓硫酸和铜屑并加热, 可逸出红棕色气体.磷及其化合物磷单质:1. 磷的物理性质:游离态磷有白磷、红磷和黑磷三种同素异型体.白磷: 分子是由四个磷原子构成的正四面体. 键角60°.白色蜡状, 因常带有黄色, 有叫黄磷.难溶于水, 易溶于非极性溶剂如CS2.密度1.8 熔点44.1℃, 沸点280.5℃, 有剧毒(0.1g∽0.06g致命)着火点40℃所以少量的白磷保存在冷水红磷: 复杂的大分子, 结构尚未完全清除, 但已知其结构中有磷原子构成的环和链.棕红色粉末密度2.2 熔点590℃(43kPa) 基本无毒常压下加热则升华为磷蒸汽, 遇冷凝结为白磷难溶于水和二硫化碳等.黑磷: 黑色有金属光泽的晶体, 它是用白磷在很高压强和较高温度下转化而成的, 使用价值不大.2. 化学性质:磷在氧气中燃烧: 4P + 5O2 == 2P2O5(白烟) (分析P2O5的分子结构) 对比白磷和红磷的着火点,.磷在氯气中燃烧: 白色烟雾(PCl3和PCl5)PCl3是无色油状液体, 可制有机磷农药, 也是重要的化学试剂.2P + 3Ca == Ca3P23Zn + 2P == Zn3P23. 磷的用途:(1) 制高纯度的磷酸(白磷)和农药(2) 安全火柴: 火柴头: 硫、硫化锑、磷的硫化物和氧化剂(KClO3)侧面: 红磷、硫化锑和玻璃粉原理:火柴头在侧面磨擦, 产生的热量把微量的红磷转化为白磷而立即燃烧, 点着火柴头. 如果用合适的配料, 把火柴头制得很长, 就可制成防风火柴.磷的氧化物P2O3 + 3H2O == 2H3PO3(亚磷酸, 二元酸)P2O5 + H2O == 2HPO3 (偏磷酸, 有毒)P2O5 + 3H2O == 2H3PO4(磷酸, 三元酸,无毒)P2O5是吸湿性很强的白色粉末, 是常用的强力干燥剂.P2O3和P2O5的分子结构: 分子式: P4O6和P4O10磷酸及其盐磷酸是无色晶体, 易潮解. 商品磷酸是85%的水溶液, 呈无色粘稠状.三元中强酸,分三步电离:H3PO4⇌ H+ + H2PO4-H2PO4- ⇌ H+ + HPO42-HPO42- ⇌ H+ + PO43-与碱中和时, 根据碱的用量差异, 可得到不同的盐.(OH-和NH3)高沸点非氧化性酸: 制取溴化氢和碘化氢.H3PO4(浓) + KI(固) == KH2PO4 + HI ↑用途: 制化肥和提炼某些金属, 清凉饮料中加入无毒的磷酸作调味剂.磷酸盐: 正盐Ca3(PO4)2难溶若将其施入土壤, 不能被植物吸收, 只有缓慢地在有机物腐败产生的酸性环境下转化为二氢盐后, 才能被植物吸收. 一氢盐CaHPO4较难溶. 二氢盐Ca(H2PO4)2可溶.普钙: Ca(H2PO4)2和CaSO4的混合物.Ca3(PO4)2 + 2H2SO4 == 2CaSO4 + Ca(H2PO4)2重钙:重过磷酸钙Ca(H2PO4)2肥效Ca3(PO4)2 + 3H3PO4 == 3Ca(H2PO4)2Ca3(PO4)2 + 3H2SO4 == 3CaSO4 + 2H3PO4(普通磷酸)使用磷肥切忌与碱性物质混用. 否则会生成难溶的磷酸正盐, 损失肥效. Ca(H2PO4)2 + 2Ca(OH)2 === Ca3(PO4)2 + 4H2O有些洗衣粉里掺入磷酸钠作为辅助剂. 它们水解呈碱性有去污的能力和改善水质的作用. 但这种洗衣粉的废水流入水域会引起水中含磷过多, 杂藻滋生, 即富营养化而造成污染. 因此目前已禁止在洗涤剂和洗衣粉中使用磷酸钠类物质.砷、砒霜和砷化镓砷: 有三种同素异型体, 最稳定的是有金属光泽的灰砷. 另外两种如黑砷和黄砷. 都有毒.与溶碱反应, 也能被浓硫酸和硝酸氧化. 在加热条件下砷与氧化合生成As2O3; 与硫化合成As2S3.砒霜: As2O3(As4O6). 我国古代就知道的剧毒品.白色粉末, 微溶于水, 致死量约0.1g.砒霜用于毒害农田土壤中的有害小动物, 业用来制杀虫剂和含砷的药物. 误食砒霜者的胃液里残留的砒霜, 可用马许验砷法检出. 把胃液残留物与锌、盐酸一起反应, 残留的As2O3被还原, 生成AsH3(胂, 有毒),随氢气导出, 可以在管口处将其点燃, 在火焰上插入瓷片或蒸发皿, 使胂在缺氧条件下分解, 生成游离砷, 附着在瓷片上成为光亮的灰色砷镜.砷化镓: GaAs. 黑灰色晶体, 熔点: 1238℃, 相当稳定.是优良的半导体材料, 其性能比硅、锗更优越. 它的性能好且灵敏, 还具有‘双能谷导带’, 被誉为‘第三代半导体’. 可用于制备发光元件、半导体激发器、微波体较应器件、太阳能电池、高速集成电路等. 广泛用于计算机、雷达、人造卫星、宇宙飞船等尖端技术中.用高纯度的砷跟镓作用, 即可制得砷化镓.11。