华东师大版九年级数学上册第23章 图形的相似练习题-word文档
- 格式:doc
- 大小:54.00 KB
- 文档页数:6
华师大版九年级上册数学第23章图形的相似含答案一、单选题(共15题,共计45分)1、如图,在△ABC中,点D,E分别为AB,AC的中点,则△ADE与四边形BCED 的面积比为()A.1:1B.1:2C.1:3D.1:42、下列两个图形必定相似的是()A.有两条边对应成比例的等腰三角形B.有一个角是25度的等腰三角形 C.有一个角是100度的等腰三角形 D.有一个角相等,两边对应成比例的三角形3、如图所示,长为8cm,宽为6cm的矩形中,截去一个矩形(图中阴影部分),如果剩下矩形与原矩形相似,那么剩下矩形的面积是()A.28cm 2B.27cm 2C.21cm 2D.20cm4、如图,A,B两点的坐标分别为(2,0)(0,1),若将线段AB平移至A 1B1,则a+b的值为()A.5B.4C.3D.25、点G为△ABC的重心(△ABC三条中线的交点),以点G为圆心作⊙G与边AB,AC相切,与边BC相交于点H,K,若AB=4,BC=6,则HK的长为()A. B. C. D.6、如图,平行四边形的对角线,相交于点,为的中点,连接交于点,若,则的长为()A.5B.6C.7D.87、点A(﹣2,1)在()A.第一象限B.第二象限C.第三象限D.第四象限8、如图,在平面直角坐标系中,直线AB与x轴,y轴分别交于A,B,与反比例函数(k>0)在第一象限的图象交于点E,F,过点E作EM⊥y轴于M,过点F作FN⊥x轴于N,直线EM与FN交于点C,若,则△OEF与△CEF的面积之比是()A.2:1B.3:1C.2:3D.3:29、下列实际生活事例,形成位似关系的是()①放电影时,胶片和屏幕上的画面;②放映幻灯片时,幻灯片上的图片与屏幕上的图形;③照相时人物的影像与被缩小在底片上的影像.A.0个B.1个C.2个D.3个10、如图,E(-4,2),F(-1,-1),以O为位似中心,按比例尺1:2,把△EFO缩小,则点E的对应点E`的坐标为()A.(2,-1)或(-2,1)B.(8,-4)或(-8,4)C.(2,-1)D.(8,4)11、如图,四边形ABCD∽四边形EFGH,∠A=80°,∠C=90°,∠F=70°,则∠E的度数为()A.70°B.80°C.90°D.120°12、如图,在正方形ABCD中,边长为1,点E是BC边上的动点,过点E作AE 的垂线交CD边于点F,设,,关于的函数关系图象如图所示,则()A. B.2 C.2.5 D.313、如图,在直角三角形ABC中(∠C=90°),放置边长分别为3,4,x的三个正方形,则x的值为()A.5B.6C.7D.1214、下列四条线段为成比例线段的是()A.a=10,b=5,c=4,d=7B.a=1,b= , c= , d=C.a=8,b=5,c=4,d=3D.a=9,b= , c=3,d=15、点P(m,5)和点Q(m,-1)的连线()A.与x轴平行B.与y轴平行或重合C.与y轴平行D.与x轴的夹角为50°二、填空题(共10题,共计30分)16、如图,在梯形ABCD中,AD∥BC,AC与BD交于O点,DO:BO=1:2,点E在CB的延长线上,如果S△AOD :S△ABE=1:3,那么BC:BE=________.17、点P的坐标是(a,b),从﹣2,﹣1,0,1,2这五个数中任取一个数作为a的值,再从余下的四个数中任取一个数作为b的值,则点P(a,b)在平面直角坐标系中第二象限内的概率是________.18、若点的坐标为,则点关于轴对称的坐标是________。
华师大版九年级上册数学第23章图形的相似含答案一、单选题(共15题,共计45分)1、如图,矩形ABCD中,AB= ,BC= ,点E在对角线BD上,且BE=1.8,连接AE并延长交DC于F,则等于()A. B. C. D.2、如图,在平行四边形ABCD中,AB=6,AD=9,∠BAD的平分线交BC于E,交DC的延长线于F,BG⊥AE于G,BG=,则△EFC的周长为()A.11B.10C.9D.83、一个三角形三边之比为3:5:7,与它相似的三角形的最长边为21cm,则其余两边之和为()A.24cmB.21cmC.13cmD.9cm4、已知2x=3y(y≠0),则下面结论成立的是()A. =B. =C. =D. =5、若点P(x,y)的坐标满足xy=0(x≠y),则点P必在()A.原点上B.x轴上C.y轴上D.x轴上或y轴上(除原点)6、已知2x=3y(y≠0),则下面结论成立的是()A. =B. =C. =D. =7、如图,赵师傅透过平举的放大镜从正上方看水平桌面上的菱形图案的一角,那么∠A与放大镜中的∠C的大小关系是( )A.∠A=∠CB.∠A>∠CC.∠A<∠CD.无法比较8、AD 是△ABC 的中线,E 是 AD 上一点,AE= AD,BE 的延长线交 AC 于F,则的值为()A. B. C. D.9、点(3,-2)关于x轴的对称点是 ( )A.(-3,-2)B.(3,2)C.(-3,2)D.(3,-2)10、在平面直角坐标系xOy中,点A的坐标为(1,2),如果射线OA与x轴正半轴的夹角为α,那么sinα的值是()A. B.2 C. D.11、若,则的值是()A. B. C. D.12、点M(-3,4)离原点的距离是()A.3B.4C.5D.713、如图 ,D,E分别是△ABC的边AB,AC上的点,,则△AED与△ABC的面积之比等于()A.1:2B.1:3C.1:4D.4:914、已知直角坐标系内有一点M(a,b),且ab=0,则点M的位置一定在()A.原点上B.x轴上C.y轴上D.坐标轴上15、如图,在矩形ABCD中,点E在AB上,点F在CD上,且BE=2AE,DF=2CF,G,H是对角线AC的三等分点。
华东师大版九年级数学上册第23章图形的相似单元测试题一、选择题(每小题4分,共24分) 1.若a -b b =23,则a b 的值为( )A.13B.23C.43D.532.在平面直角坐标系中,将线段OA 向左平移2个单位,平移后点O ,A 的对应点分别为点O 1,A 1.若点O 的坐标为(0,0),点A 的坐标为(1,4),则点O 1,A 1的坐标分别是( )A .(0,0),(1,4)B .(0,0),(3,4)C .(-2,0),(1,4)D .(-2,0),(-1,4)3.若一个四边形的各边之比为1∶2∶3∶4,和它相似的另一个四边形的最小边长为5 cm ,则另一个四边形的最大边长为( )A .10 cmB .15 cmC .20 cmD .25 cm4.如图1,点E ,F 分别在菱形ABCD 的边AB ,AD 上,且AE =DF ,BF 交DE 于点G ,延长BF 交CD 的延长线于点H ,若AF DF =2,则HFBG的值为( )图1A.23B.712C.12D.5125.在平面直角坐标系中,已知点E (-4,2),F (-2,-2),以原点O 为位似中心,相似比为12,把△EFO 缩小,则点E 的对应点E ′的坐标是( )A .(-2,1)B .(-8,4)C .(-8,4)或(8,-4)D .(-2,1)或(2,-1)6.如图2,在△ABC 中,中线BE ,CD 相交于点O ,连结DE ,下列结论:①DE BC =12;②S △DOE S △COB=12;③AD AB =OEOB ;④S △DOE S △ADE =13.其中正确的有( )图2A.1个B.2个C.3个D.4个二、填空题(每小题5分,共40分)7.已知△ABC∽△A′B′C′,相似比为3∶4,△ABC的周长为6,则△A′B′C′的周长为________.8.如图3,直线a∥b∥c,B是线段AC的中点,若DE=2,则EF=________.图39.如图4,四边形ABCD和四边形A′B′C′D′是以点O为位似中心的位似图形,若OA∶OA′=2∶3,则四边形ABCD与四边形A′B′C′D′的面积比为________.图410.如图5,D为△ABC外一点,AD与BC边的交点为E,AE=3,DE=5,BE=4,要使△BDE∽△ACE,那么线段CE的长应等于________.图511.阳光通过窗口AB照射到室内,在地面上留下2.7米的亮区DE(如图6所示),已知亮区的E处到窗口下的墙角的距离EC=8.7米,窗口高AB=1.8米,则窗口底边离地面的高BC为________.图612.如图7,正方形OABC与正方形ODEF是位似图形,点O为位似中心,相似比为1∶2,点A的坐标为(0,1),则点E的坐标是________.图713.如图8,在△ABC中,AB=7 cm,BC=6 cm,AC=5 cm,D,E,F分别是AB,BC,AC 的中点,则四边形ADEF的周长等于________cm.图814.如图9,在矩形ABCD中,BE⊥AC交AC,AD分别于点F,E,若AD=1,AB=CF,则AE=________.图9三、解答题(共36分)15.(10分)如图10,在△ABC和△ADB中,∠ABC=∠ADB=90°,AC=5,AB=4,当BD的长是多少时,图中的两个直角三角形相似?图1016.(12分)如图11,在△ABC中,AB=8,BC=4,CA=6,CD∥AB,BD是∠ABC的平分线,BD交AC于点E.求AE的长.图1117.(14分)提出问题(1)如图12①所示,在等边三角形ABC中,M是BC上的任意一点(不含端点B,C),连结AM,以AM为边作等边三角形AMN,连结CN.求证:∠ABC=∠ACN.类比探究(2)如图②所示,在等边三角形ABC中,M是BC延长线上的任意一点(不含端点C),其他条件不变,(1)中结论∠ABC=∠ACN还成立吗?请说明理由.拓展延伸(3)如图③所示,在等腰三角形ABC中,BA=BC,M是BC上的任意一点(不含端点B,C),连结AM,以AM为边作等腰三角形AMN,使顶角∠AMN=∠ABC,连结CN.试探究∠ABC与∠ACN 的数量关系,并说明理由.①②③图121.[解析] D ∵a -b b =23,∴5b =3a ,∴a b =53.2.D3.[解析] C 设它的最大边长为x cm.∵两个四边形相似,∴15=4x ,解得x =20,故选C.4.B 5.D 6.C 7.[答案] 8[解析] ∵△ABC ∽△A ′B ′C ′,∴△ABC 的周长∶△A ′B ′C ′的周长=3∶4.∵△ABC 的周长为6,∴△A ′B ′C ′的周长=6×43=8.8.2 9.4∶9 10.[答案]154[解析] ∵∠AEC =∠BED ,∴当BE AE =DE CE 时,△BDE ∽△ACE ,即43=5CE ,∴CE =154.11.[答案] 4米[解析] 连结AE ,BD .∵光是沿直线传播的,∴AE ∥BD ,∴△BCD ∽△ACE , ∴AC BC =EC DC ,即1.8+BC BC =8.78.7-2.7,解得BC =4(米). 12.[答案] (2,2)[解析] 连结OE .∵正方形OABC 与正方形ODEF 是位似图形,点O 为位似中心,∴OE 一定经过点B .又∵点A 的坐标为(0,1),∴OA =1,∴由勾股定理可求得OB = 2.∵正方形OABC 与正方形ODEF 是位似图形,点O 为位似中心,相似比为1∶2,∴OB ∶OE =1∶2,即OE =2,∴由勾股定理,得DE =EF =2,即点E 的坐标是(2,2).13.[答案] 12[解析] ∵D ,E 分别是AB ,BC 的中点,∴DE ∥AC ,DE =12AC =2.5 cm ,同理,EF ∥AB ,EF=12AB =3.5 cm ,∴四边形ADEF 是平行四边形,∴四边形ADEF 的周长=2×(2.5+3.5)=12(cm),故答案为12.14.[答案]5-12[解析] ∵四边形ABCD 是矩形,∴BC =AD =1,∠EAB =∠ABC =90°,∴∠ABE +∠CBF =90°.∵BE ⊥AC ,∴∠BFC =90°,∴∠FCB +∠CBF =90°,∴∠ABE =∠FCB .在△ABE 和△FCB 中,⎩⎪⎨⎪⎧∠EAB =∠BFC =90°,AB =CF ,∠ABE =∠FCB ,∴△ABE ≌△FCB ,∴BF =AE ,BE =BC =1.∵BE ⊥AC ,∴∠BAF +∠ABF =90°.∵∠ABF +∠AEB =90°,∴∠BAF =∠AEB .∵∠BAE =∠AFB ,∴△ABE ∽△FBA ,∴AB BF =BE AB ,即AB AE =1AB ,∴AE =AB 2.在Rt △ABE 中,BE =1,根据勾股定理,得AB 2+AE 2=BE 2=1,∴AE +AE 2=1.∵AE >0,∴AE =5-12. 15.解:在Rt △ABC 中,BC =AC 2-AB 2=52-42=3. ∵∠ABC =∠ADB =90°,∴当BD BC =BA AC 时,Rt △DBA ∽Rt △BCA ,即BD 3=45,解得BD =125;当BD BA =BAAC时,Rt △DBA ∽Rt △BAC , 即BD 4=45,解得BD =165. 综上所述,当BD 的长是125或165时,图中的两个直角三角形相似.16.解:∵BD 为∠ABC 的平分线, ∴∠ABD =∠DBC .又∵AB ∥CD ,∴∠D =∠ABD , ∴∠DBC =∠D ,∴BC =CD =4. ∵AB ∥CD ,∴△AEB ∽△CED , ∴AB CD =AE CE, ∴AE CE =84=2,∴AE =2CE ,即CE =12AE . ∵AC =AE +CE =6,∴AE +12AE =6,即AE =4.17.解:(1)证明:∵△ABC 与△AMN 均为等边三角形, ∴AB =AC ,AM =AN ,∠BAC =∠MAN =60°, ∴∠BAM =∠CAN , ∴△BAM ≌△CAN (S.A.S.),∴∠ABC=∠ACN.(2)结论∠ABC=∠ACN仍成立.理由:∵△ABC与△AMN均是等边三角形,∴AB=AC,AM=AN,∠BAC=∠MAN=60°,∴∠BAM=∠CAN,∴△BAM≌△CAN,∴∠ABC=∠ACN.(3)∠ABC=∠ACN.理由:∵BA=BC,MA=MN,∠ABC=∠AMN,∴BAMA=BCMN,∠BAC=∠MAN,∴△ABC∽△AMN,∴ABAM=AC AN.又∵∠BAM=∠BAC-∠MAC,∠CAN=∠MAN-∠MAC,∴∠BAM=∠CAN,∴△BAM∽△CAN,∴∠ABC=∠ACN.。
华师大版九年级上册数学第23章图形的相似含答案一、单选题(共15题,共计45分)1、下列说法中正确的是A.位似图形一定是相似图形B.相似图形一定是位似图形C.两个位似图形一定在位似中心的同侧D.位似图形中每对对应点所在的直线必互相平行2、已知,,则直线PQ与x轴、y轴的位置关系分别为()A.相交、相交B.平行、平行C.垂直相交、平行D.平行、垂直相交3、下列食品商标中,既是轴对称图形又是中心对称图形的是()A. B. C. D.4、如图,在平行四边形ABCD中,E为CD上一点,DE∶EC=2∶3,连接AE、BD,且AE、BD交于点F,则DF∶BF等于()A.2∶5B.2∶3C.3∶5D.3∶25、如图,在中,,,,与的平分线交于点,过点作交于点,则()A. B.2 C. D.36、已知,则的值是()A.-B.-C.-D.-7、如图,线段CD两个端点的坐标分别为C(﹣1,﹣2),D(﹣2,﹣1),以原点O为位似中心,在第一象限内将线段CD扩大为原来的2倍,得到线段AB,则线段AB的中点E的坐标为()A.(3,3)B.()C.(2,4)D.(4,2)8、△ABC与△A′B′C′是相似图形,且△ABC与△A′B′C′的相似比是1:2,则△ABC与△A′B′C′的面积比是()A.1:2B.1:C.1:4D.2:19、如图,□ABCD中,E为AD的中点.已知△DEF的面积为S,则△DCF的面积为()A.SB.2SC.3SD.4S10、宽与长的比是(约0.618)的矩形叫做黄金矩形,黄金矩形蕴藏着丰富的美学价值,给我们以协调和匀称的美感.我们可以用这样的方法画出黄金矩形:作正方形ABCD,分别取AD、BC的中点E、F,连接EF:以点F为圆心,以FD为半径画弧,交BC的延长线于点G;作GH⊥AD,交AD的延长线于点H,则图中下列矩形是黄金矩形的是()A.矩形ABFEB.矩形EFCDC.矩形EFGHD.矩形DCGH11、若点到y轴的距离是它到x轴距离的两倍,则().A. B. C. D.12、如图,在矩形ABCD中,E,F分别为,AD与BC的中点,且矩形ABCD矩形AEFB,的值为()A.2B.C.D.13、如图,在正方形网格上有相似三角形△A1B1C1和△A2B2C2,则△A1B1C1和△A2B2C2的面积比为()A.2B.0.5C.4D.0.2514、已知矩形ABCD中,AB=1,在BC上取一点E ,沿AE将△ABE向上折叠,使B点落在AD上的F点,若四边形EFDC与矩形ABCD相似,则AD=().A. B. C. D.215、如图,矩形BCDE的各边分别平行于x轴与y轴,物体甲和物体乙由点A (2,0)同时出发,沿矩形BCDE的边作环绕运动,物体甲按逆时针方向以1个单位/秒匀速运动,物体乙按顺时针方向以2个单位/秒匀速运动,则两个物体运动后的第2018次相遇地点的坐标是()A.(1,﹣1)B.(2,0)C.(﹣1,1)D.(﹣1,﹣1)二、填空题(共10题,共计30分)16、如图,在平面直角坐标系中,正方形ABCD的对称中心与原点重合,顶点A 的坐标为(﹣1,1),顶点B在第一象限,若点B在直线y=kx+3上,则k的值为________.17、若a、b、c、d满足= = ,则=________.18、已知x、y、z满足= = ,那么=________.19、如图,在平面直角坐标系xOy中,已知点A(3,4),将OA绕坐标原点O 逆时针旋转90°至OA′,则点A′的坐标是________.20、在同一时刻,身高1.6m的小明的影长是3.2m,某建筑物的影长是15m,则建筑物的高为________m .21、如图,已知△ABC≌△DCE≌△GEF,三条对应边BC、CE、EF在同一条直线上,连接BG,分别交AC、DC、DE于点P、Q、K,其中S△PQC=3,则图中三个阴影部分的面积和为________.22、如图,在△ABC中,AB=AC ,点D、E在边BC上,∠DAE=∠B=30°,且,那么的值是________.23、在△ABC中,∠ABC=90°,已知AB=3,BC=4,点Q是线段AC上的一个动点,过点Q作AC的垂线交直线AB于点P,当△PQB为等腰三角形时,线段AP 的长为________.24、△ABC与△A′B′C′是位似图形,且△ABC与△A′B′C′的位似比是1:2,已知△ABC的面积是3,则△A′B′C′的面积是________.25、如图,△ABC、△DCE、△GEF都是正三角形,且B、C、E、F在同一直线上,A、D、G也在同一直线上,设△ABC、△DCE、△GEF的面积分别为S1、S2、S 3.当S1=4,S2=6时,S3=________.三、解答题(共5题,共计25分)26、如图,在△ABC中,点D,E分别在边AB,AC上,若DE∥BC,AD=3,AB=5,求的值.27、如图,一次函数y=ax+b的图象与反比例函数y=的图象交于A,B两点,与x轴交于点C,与y轴交于点D,已知OA=,tan∠AOC=,点B的坐标为(m,﹣2).(1)反比例函数的解析式.(2)在y轴上存在一点,使得△PDC与△ODC相似,请你求出点P的坐标.28、如图,已知△ABC中,AC=BC,F为底边AB上一点,BF:AF=m:n(m>0,n >0),取CF的中点D,连结AD并延长交BC于E.求BE:EC的值.29、请在图中补全坐标系及缺失的部分,并在横线上写恰当的内容.图中各点坐标如下:A(1,0),B(6,0),C(1,3),D(6,2).线段AB上有一点M,使△ACM∽△BDM,且相似比不等于1.求出点M的坐标并证明你的结论.M(________,________)证明:∵CA⊥AB,DB⊥AB∴∠CAM=∠DBM=________度.∵CA=AM=3,DB=BM=2∴∠ACM=∠AMC(________),∠BDM=∠BMD(同理),∴∠ACM= (180°﹣________)=45°.∠BDM=45°(同理).∴∠ACM=∠BDM在△ACM与△BDM中,∠CAM=∠DBM________∴△ACM∽△BDM(如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似)30、如图,在直角坐标系中,A(﹣1,5),B(﹣3,0),C(﹣4,3).(1)在图中作出△ABC关于y轴对称的图形△A1B1C1.(2)写出点C1的坐标.参考答案一、单选题(共15题,共计45分)1、A2、C3、A4、A5、A6、D7、A8、C9、B10、D11、C12、C13、C14、B15、D二、填空题(共10题,共计30分)16、17、18、19、20、22、23、24、25、三、解答题(共5题,共计25分)26、28、29、30、。
华师大版九年级上册数学第23章图形的相似含答案一、单选题(共15题,共计45分)1、将△ABC的各个顶点的横坐标不变,纵坐标分别减3,连接三个新的点所成的三角形是由△ABC()A.向左平移3个单位所得B.向右平移3个单位所得C.向上平移3个单位所得D.向下平移3个单位所得2、在平面直角坐标系中,点关于轴对称的点的坐标为()A. B. C. D.3、在平面直角坐标系中,点关于轴对称点的坐标为()A.(1,3)B.(-1,-3)C.(-1,3)D.(1,-3)4、如图,在梯形中,,中位线与对角线交于两点,若cm, cm,则的长等于( )A.10 cmB.13 cmC.20 cmD.26 cm5、如图所示,在菱形ABCD中,点E,F分别是AB,AC的中点,如果菱形的周长为16,那么EF等于()A.4B.8C.12D.26、点A(1,2)先向右平移2个单位长度,再向下平移1个单位长度得到点A′,则点A′的坐标是( )A.(3,3)B.(-1,3)C.(-1,-1)D.(3,1)7、下列命题中假命题是()A.位似图形上的任意一对对应点到位似中心的距离的比等于位似比B.正五边形的每一个内角等于108°C.一组数据的平均数、中位数和众数都只有一个D.方程x 2-6x+9=0有两个实数根8、如图,在锐角△ABC中,∠A=60°,∠ACB=45°,以BC为弦作⊙O,交AC 于点D,OD与BC交于点E,若AB与⊙O相切,则下列结论:①∠BOD=90°;②DO∥AB;③CD=AD;④△BDE∽△BCD;⑤正确的有()A.①②B.①④⑤C.①②④⑤D.①②③④⑤9、在矩形ABCD中,AB=3,BC=10,P是BC上的动点(不与B,C重合),以A 为圆心,AP长为半径作圆A,若经过点P的圆A的切线与线段AD交于点F,则以DF,BP的长为对角线长的菱形的最大面积是()A.4B.8C.12. 5D.1610、如图,点A,B,C,D的坐标分别是(1,7),(1,1),(4,1),(6,1),以C,D,E为顶点的三角形与△ABC相似,则点E的坐标不可能是( )A.(6,0)B.(6,3)C.(6,5)D.(4,2)11、如图所示,为估算某河的宽度,在河对岸的边上选定一个目标点A,在近岸取点B,C,D,使得AB⊥BC,CD⊥BC,点E在BC上,并且点A,E,D在同一条直线上,若测得BE=20m,EC=10m,CD=20m,则河的宽度AB的长为()A.60mB.40mC.30mD.20m12、已知点P到x轴距离为3,到y轴的距离为2,则P点坐标可以为()A.(3,2)B.(2,3)C.(﹣3,﹣2)D.(3,﹣2)13、已知点P在第二象限,且到x轴距离为3,到y轴距离为2,则点P的坐标是()A.(-3,2)B.(-2,3)C.(2,3)D.(2,-3)14、在平面直角坐标系中,将点A(1,﹣2)向上平移3个单位长度,再向左平移2个单位长度,得到点A′,则点A′的坐标是()A.(﹣1,1)B.(﹣1,﹣2)C.(﹣1,2)D.(1,2)15、△ABC与△A′B′C′是位似图形,且△ABC与△A′B′C′位似比是1∶2,已知△ABC的面积是10,则△A′B′C′的面积是()A.10B.20C.40D.80二、填空题(共10题,共计30分)16、如图,已知O是坐标原点,以O点为位似中心在y轴的左侧将△OBC放大两倍(即新图与原图的相似比为2),则B(3,﹣1)的对称点的坐标为________.17、在平面直角坐标系中,若点M(1,3)与点N(x,3)之间的距离是5,则x的值是________.18、如图,在Rt△ACB中,∠ACB=90°,AC=BC,D是AB上的一个动点(不与点A,B重合),连接CD,将CD绕点C顺时针旋转90°得到CE,连接DE,DE 与AC相交于点F,连接AE.下列结论:①△ACE≌△BCD;②若∠BCD=25°,则∠AED=65°;③DE2=2CF•CA;④若AB=3,AD=2BD,则AF= .其中正确的结论是________.(填写所有正确结论的序号)19、如图,在△ABC中,AB=AC,BE、AD分别是边AC、BC上的高,CD=2,AC=6,那么CE=________.20、已知点C是线段AB的黄金分割点,且AC>BC,AB=2,则AC________.21、点P(x﹣3,2x+4)在x轴上,则点P的坐标是________.22、点M(-1,5)向下平移4个单位得N点坐标是________.23、如图,在边长为4的正方形ABCD中,点E是BC的中点,点F在CD上,且CF=3BF,AE,BF相交于点G,则△AGF的面积是________.24、在平面直角坐标系中,点(-3,5)关于y轴对称的点的坐标为________.25、如图为正方形网格中的一片树叶,点E、F、G均在格点上,若点E的坐标为(-1,1),点F的坐标为(2,-1),则点G的坐标为________.三、解答题(共5题,共计25分)26、22.若==≠0,求的值.27、某村计划在新农村改造过程中,拟筹资金2000元,计划在一块上、下底分别为10米、20米的梯形空地上种植花草(如图所示,),村委会想在地带与地带种植单价为10元的太阳花,当地带种满花后,已经花了500元,请你计算一下,若继续在地带种植同样的太阳花,资金是否够用?并说明理由.28、如图,取一根9.5m长的标杆AB,在其上系一活动旗帜C,使标杆的影子落在平地和一堤坝的左斜坡上,拉动旗帜使其影子正好落在斜坡底角顶点D 处.若测得旗高BC=4.5m,影长BD=9m,影长DE=5m,请计算左斜坡的坡比(假设标杆的影子BD,DE均与坝底线DM垂直).29、如图,已知△ABC中,∠ACB=90°,AC=BC,点E、F在AB上,∠ECF=45°.求证:△ACF∽△BEC;30、深圳市民中心广场上有旗杆如图①所示,某学校数学兴趣小组测量了该旗杆的高度.如图②,某一时刻,旗杆AB的影子一部分落在平台上,另一部分落在斜坡上,测得落在平台上的影长BC为16米,落在斜坡上的影长CD为8米,AB⊥BC;同一时刻,太阳光线与水平面的夹角为 45°,1米的标杆EF竖立在斜坡上的影长FG为2米,求旗杆的高度.参考答案一、单选题(共15题,共计45分)1、D2、D3、A4、D5、D6、D7、C8、C9、B10、B11、B12、B14、A15、C二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)27、28、。
华东师大版九年级数学上册《第23章图形的相似》单元测试卷及答案学校:___________班级:___________姓名:___________考号:___________一、单选题1.下列各组中的四条线段成比例的是()1cm2cm4cm6cm、、、A.4cm2cm1cm3cm、、、B.C.25cm35cm45cm55cm、、、D.lcm2cm20cm40cm、、、2.如图,直线a、b、c分别与直线m、n交于点A、B、C、D、E、F。
已知直线a b c∥∥,若2AB=,BC=3,则DEEF的值为()A.23B.32C.25D.353.观察下列每组三角形,不能判定相似的是()A.B.C.D.4.若两个相似三角形的面积之比为1:2,那么这两个三角形对应边上的高之比为()A.1:2B.1:4C.2D.4:15.如图,已知A B C'''与ABC是以点O为位似中心的位似图形,位似比为2:3,下列说法错误的是()A .AC A C ''∥B .3:2OB BB ''=:C .BCO B C O ''∽D .:4:9A B C ABCSS'''=6.已知ABC 在坐标平面内,三个顶点的坐标分别为()0,3A ,()3,4B 和()2,2C .正方形网格中,每个小正方形的边长是1个单位长度,以点B 为位似中心,在网格中画出11A BC ,使11A BC 与ABC 位似,且相似比为2:1,则1C 坐标为( )A .()1,1-B .()1,0C .()2,0D .()1,0-7.如图是某数学兴趣小组设计用手电筒来测量某古城墙高度的示意图,在点P 处放一水平的平面镜,光线从点A 出发经平面镜反射后刚好射到古城墙CD 的顶端C 处,已知AB BD ⊥CD BD ⊥且测得4m AB = 6m BP = 12m PD =那么该古城墙CD 的高度是()m .A .18B .8C .8或18D .108.如图,已知ADE ABC △△∽,相似比为2:3,则BCDE=( )A .3:2B .2:3C .2:1D .不能确定9.如图,在三角形ABC 中,DE//BC ,AD=3BD ,DE=9,则BC 的长为( )A .12B .16C .24D .3610.如图,已知12∠=∠,那么添加下列一个条件后,仍无法判定ABC ADE △△∽的是( )A .B ADE ∠=∠ B .AC BCAE DE= C .AB ACAD AE= D .C E ∠=∠11.如图,在ABCD 中,E 为CD 上一点,连接AE BD 、,且AE BD 、交于点F ,:4:25DEFABFS S=则:DF BF 为( )A .2:5B .2:3C .3:5D .3:212.已知四边形ABCD 为正方形,点E 是边AD 上一点,连接BE ,过点C 作CF BE ⊥于点F ,连接AF .若2AF BF ,则EDCF的值为( )A .12B 5C .23D 5二、填空题13.如图,已知ABC 中,已知点D 、E 分别在边AB 、AC 上,DE//BC ,:1:3AD BD =若DBE 的面积为3,则CBE △的面积为 .14.如图,ABD △和DEC 均为直角三角形,点C 为BD 中点,若25AD CE AB ED ⊥==,,,则BC 的长为 .15.如图,点D 为ABC 的AB 边上一点,AD=2,DB=3.若ABC ACD ∠=∠,则AC 的长为 .16.如图,点E 是平行四边形ABCD 边AD 延长线上一点,BE 交CD 于点H ,如果13DH HC =,那么BOBH= .三、解答题17.已知:如图,ABC中,AB=20cm,BC=15cm,AD=12.5cm,DE//BC.求DE的长.18.如图,D是ABC的边AC上的一点,连接BD,已知ABD C∠=∠,AB=6,AD=4(1)证明ABD ACB∽;(2)求线段CD的长.19.如图,在ABC中,ABC∠的平分线BD交AC边于点D,已知2∠=∠.ADB ABD(1)求证:ABD ACB∽;(2)若22==,求ADC AD∠的度数.20.如图,在矩形ABCD中,AB =8,P为CD边上一点,连接AP.将ADP△沿AP翻折点D恰好落在BC边上(点D),且4CD'=.(1)求证:ABD D CP ''∽△△; (2)求DP 的长; (3)求DPAD的值. 21.如图,在边长为1的正方形网格中建立平面直角坐标系,已知ABC 中()()()1,22,14,5A B C -、、.(1)画出ABC 关于x 轴对称的111A B C △;(2)以原点O 为位似中心,在x 轴的上方画出222A B C △,使222A B C △与ABC 位似,且222A B C △与ABC 相似比为2,并写出2C 的坐标. 22.综合与探究 问题情境:在ABC 中,AB=AC ,在射线AB 上截取线段BD ,在射线CA 上截取线段CE ,连结DE ,DE 所在直线交直线BC 于点M .猜想判断:(1)当点D 在边AB 的延长线上,点E 在边AC 上时,过点E 作EF AB ∥交BC 于点F ,如图①.若BD CE =,则线段DM 、EM 的大小关系为_______.深入探究:(2)当点D 在边AB 的延长线上,点E 在边CA 的延长线上时,如图②.若BD CE =,判断线段DM 、EM 的大小关系,并加以证明.拓展应用:(3)当点D 在边AB 上(点D 不与A 、B 重合),点E 在边CA 的延长线上时,如图③.若BD=1,CE=4,DM=0.7,求EM 的长.参考答案一、单选题1.下列各组中的四条线段成比例的是( )A .4cm 2cm 1cm 3cm 、、、 B .1cm 2cm 4cm 6cm 、、、 C .25cm 35cm 45cm 55cm 、、、 D . lcm 2cm 20cm 40cm 、、、 【答案】D【知识点】成比例线段【分析】根据比例线段的定义 分别计算各选项中最小的数与最大的数的积是否等于另外两个数的积可判断四条线段成比例.本题考查了比例线段:判定四条线段是否成比例 只要把四条线段按大小顺序排列好 判断前两条线段之比与后两条线段之比是否相等即可. 【详解】解:A 4123⨯≠⨯ 故A 选项错误; B 6142⨯≠⨯ 故B 选项错误; C 25553545⨯≠⨯ 故C 选项错误; D 140220⨯=⨯ 故D 选项正确. 故选:D .2.如图 直线a b c 分别与直线m n 交于点A B C D E F .已知直线a b c ∥∥ 若2AB = 3BC = 则DEEF的值为( )A .23B .32C .25D .35【答案】A【知识点】由平行截线求相关线段的长或比值【分析】本题考查的是平行线分线段成比例定理 根据平行线分线段成比例定理得到23DE AB EF BC ==即可得到结论. 【详解】解:直线a b c ∥∥ 2AB = 3BC =∴23DE AB EF BC == 故选:A .3.观察下列每组三角形 不能判定相似的是( )A .B .C .D .【答案】D【知识点】证明两三角形相似【分析】本题考查了相似三角形的判定.熟练掌握相似三角形的判定是解题的关键. 利用相似三角形的判定对各选项进行判断作答即可. 【详解】解:由题意知 A 中46523 2.5==能判定相似 故不符合要求; B 中4623= 5858︒=︒ 能判定相似 故不符合要求; C 中4040︒=︒ 且对顶角相等 能判定相似 故不符合要求; D 中3535︒=︒ 不能判定相似 故符合要求; 故选:D .4.若两个相似三角形的面积之比为1:2 那么这两个三角形对应边上的高之比为( ) A .1:2 B .1:4 C .2D .4:1【答案】C【知识点】利用相似三角形的性质求解【分析】本题主要考查了相似三角形的性质 理解并掌握相似三角形的性质是解题关键.根据两个相似三角形的面积比等于相似比的平方 即可获得答案.【详解】解:若两个相似三角形的面积之比为1:2 则两个相似三角形的相似比为2所以 这两个三角形对应边上的高之比为2 故选:C .5.如图 已知A B C '''与ABC 是以点O 为位似中心的位似图形 位似比为2:3 下列说法错误的是( )A .AC A C ''∥B .3:2OB BB ''=:C .BCO B C O ''∽D .:4:9A B C ABCSS'''=【答案】B【知识点】位似图形相关概念辨析 求两个位似图形的相似比【分析】本题考查的是位似变换的概念和性质 相似三角形的性质.根据位似图形的概念 相似三角形的性质“对应点的连线都经过同一点;对应边平行”进行判断即可.【详解】解:A A B C '''与ABC 是位似图形 则其对应边互相平行 即AC A C ''∥ 原说法正确 本选项不符合题意;B A BC '''与ABC 是以点O 为位似中心的位似图形 位似比为2:3 则:2:3OB OB '=.所以2:1OB BB ''=: 原说法错误 本选项符合题意;C A B C '''与ABC 是位似图形 则其对应边互相平行 即BC B C ''∥ 则BCO B C O ''∽ 原说法正确 本选项不符合题意;D A B C '''与ABC 是相似图形 相似比为2:3 则其面积之比等于相似比的平方 即:4:9A B C ABCSS'''= 原说法正确 本选项不符合题意.故选:B .6.已知ABC 在坐标平面内 三个顶点的坐标分别为()0,3A ()3,4B ()2,2C .正方形网格中 每个小正方形的边长是1个单位长度 以点B 为位似中心 在网格中画出11A BC 使11A BC 与ABC 位似 且相似比为2:1 则1C 坐标为( )A .()1,1-B .()1,0C .()2,0D .()1,0-【答案】B【知识点】在坐标系中画位似图形 求位似图形的对应坐标【分析】本题主要考查了位似的性质 根据()2,2C 位似比为2:1画出图形 得出点1C 坐标即可.【详解】解:延长BA 到点1A 使得12BA BA = 延长BC 到点1C 使得12BC BC = 如图所示:根据作图可知:点1C 的坐标为()1,0. 故选:B .7.如图是某数学兴趣小组设计用手电筒来测量某古城墙高度的示意图 在点P 处放一水平的平面镜 光线从点A 出发经平面镜反射后刚好射到古城墙CD 的顶端C 处 已知AB BD ⊥CD BD ⊥ 且测得4m AB = 6m BP = 12m PD = 那么该古城墙CD 的高度是()m .A.18 B.8 C.8或18 D.10【答案】B【知识点】相似三角形应用举例【分析】本题考查了相似三角形的应用:利用入射与反射的原理构建相似三角形然后利用相似三角形的性质即相似三角形的对应边的比相等解决.利用入射与反射得到APB CPD∠=∠则可判断Rt RtABP CDP∽△△于是根据相似三角形的性质即可求出CD.【详解】解:根据题意得APB CPD∠=∠AB BD⊥CD BD⊥90ABP CDP∴∠=∠=︒Rt RtABP CDP∴∽∴AB PBCD PD=即4612CD=解得:8CD=.∴该古城墙CD的高度为8m.故选:B8.如图已知ADE ABC△△∽相似比为2:3则BCDE=()A.3:2B.2:3C.2:1D.不能确定【答案】A【知识点】利用相似三角形的性质求解【分析】本题考查了相似三角形的性质根据相似三角形的相似比为2:3可得23DEBC=由此即可求解.【详解】解:∵已知ADE ABC △△∽ 相似比为2:3 ∴23DE BC = ∴32BC DE = 故选:A .9.如图 在三角形ABC 中 DE BC ∥ 3AD BD = 9DE = 则BC 的长为( )A .12B .16C .24D .36【答案】A 【知识点】相似三角形的判定与性质综合【分析】本题考查了相似三角形的判定与性质 根据平行线得出ADE ABC ∽ 得出比例式 代入求出即可.【详解】解:∵3AD BD = ∴34AD AB =又∵DE BC ∥∴ADE ABC ∽ ∴DE AD BC AB = 即934BC = 解得:12BC =故选:A .10.如图 已知12∠=∠ 那么添加下列一个条件后 仍无法判定ABC ADE △△∽的是( )A .B ADE ∠=∠B .AC BC AE DE =C .AB AC AD AE = D .C E ∠=∠【答案】B【知识点】选择或补充条件使两个三角形相似【分析】本考查了相似三角形的判定 熟练掌握相似三角形的判定方法是解题的关键.根据相似三角形的判定:①如果两个三角形的三组对应边的比相等 那么这两个三角形相似;②如果两个三角形的两条对应边的比相等 且夹角相等 那么这两个三角形相似;③如果两个三角形的两个对应角相等 那么这两个三角形相似 逐项判断即可.【详解】解:12∠=∠12CAD CAD ∴∠+∠=∠+∠BAC DAE ∴∠=∠A 由两个三角形的两个对应角相等可得ABC ADE △△∽ 故不符合题意;B 不符合两个三角形的两条对应边的比相等 且夹角相等 无法判定ABC ADE △△∽ 故符合题意;C 由两个三角形的两条对应边的比相等 且夹角相等可得ABC ADE △△∽ 故不符合题意;D 由两个三角形的两个对应角相等可得ABC ADE △△∽ 故不符合题意;故选:B .11.如图 在ABCD 中 E 为CD 上一点 连接AE BD 、 且AE BD 、交于点F:4:25DEF ABF S S = 则:DF BF 为( )A .2:5B .2:3C .3:5D .3:2【答案】A 【知识点】利用平行四边形的性质求解 相似三角形的判定与性质综合【分析】本题考查了平行四边形的性质 相似三角形的判定与性质 关键是利用相似三角形的判定与性质;由平行四边形的性质得CD AB ∥ 从而易得DEF BAF △△∽ 利用相似三角形面积的比等于相似比的平方 求得相似比 进而求得结果.【详解】解:∵在ABCD 中 CD AB ∥∴EDF ABF ∠=∠;∵DFE BFA ∠=∠∴DEF BAF △△∽ ∴2425DEF ABF S DF S BF ⎛⎫== ⎪⎝⎭ ∴25DF BF = 即25DF BF =::;故选:A .12.已知四边形ABCD 为正方形 点E 是边AD 上一点 连接BE 过点C 作CF BE ⊥于点F 连接AF .若2AF BF 则ED CF的值为( )A .12B 5C .23D 5【答案】B 【知识点】全等的性质和SAS 综合(SAS ) 用勾股定理解三角形 根据正方形的性质求线段长 相似三角形的判定与性质综合【分析】在CF 上截取CH BF = 利用正方形的性质和直角三角形的性质证明()SAS BCH ABF ≌ 由全等三角形的性质得出AF BH = 结合已知条件设1BF = 则2BH =利用勾股定理分别求出FH 和BC 再证明EAB BFC ∽ 由相似三角形的性质求出EA 进而求出ED最后和CF 相比即可得出答案.【详解】解:在CF 上截取CH BF = 如下图:∵四边形ABCD 为正方形∴AB BC = 90DAB ABC ∠=∠=︒∴90ABF FBC ∠+∠=︒∵CF BE ⊥∴90BFC ∠=︒∴90FBC BCF ∠+∠=︒∴ABF BCF ∠=∠又∵AB BC = CH BF =∴()SAS BCH ABF ≌∴AF BH = ∵2AF BF ∴=2BH BF设1BF = 则2BH 在Rt BFH △中221FH BH BF =-=又1CH BF ==∴2CF CH FH =+=在Rt BFC △中225BC BF CF +∴5AB BC ==∵ABF BCF ∠=∠ 90EAB BFC ∠=∠=︒∴EAB BFC ∽ ∴EAABBF FC =即51EA = ∴5EA =又5AD BC ==∴555DE AD AE =-== ∴5522ED CF ==故选:B .【点睛】本题主要考查了正方形的性质 相似三角形的判定以及性质 全等三角形的判定以及性质 勾股定理 正确画出辅助线是解题的关键.二 填空题13.如图 已知ABC 中 已知点D E 分别在边AB AC 上 DE BC ∥ :1:3AD BD = 若DBE 的面积为3 则CBE △的面积为 .【答案】12【知识点】由平行截线求相关线段的长或比值【分析】本题考查平行线分线段成比例 根据同高三角形的面积比等于底边比 求出ABE 的面积 平行线分线段成比例得到:1:3AE CE = 再根据同高三角形的面积比等于底边比 求出CBE △的面积即可.【详解】解:∵:1:3AD BD =∴::1:3ADE BDE S AD BD S ==∵DBE 的面积为3∴ADE 的面积为1∴ABE 的面积4ADE BDE SS =+= ∵DE BC ∥∴::1:3AE CE AD BD ==∴::1:3ABE CBE S AE EC S ==∴CBE △的面积为12;故答案为:12.14.如图 ABD △和DEC 均为直角三角形 点C 为BD 中点 若25AD CE AB ED ⊥==,, 则BC 的长为 .5【知识点】相似三角形的判定与性质综合【分析】本题考查了相似三角形的判定和性质 根据题意可证ABD CDE ∽ 由相似三角形的性质可得AB BD CD DE= 根据点C 为BD 中点 设BC CD x == 则2BD x = 由此列式求解即可. 【详解】解:根据题意可得 90B CDE ∠=∠=︒∵90E DCE DCE ADC ∠+∠=∠+∠=︒∴E ADC ∠=∠∴ABD CDE ∽ ∴AB BD CD DE= ∵点C 为BD 中点∴设BC CD x == 则2BD x = ∴225x x = 则25x = ∴1255x x =-, ∴5BC =5.15.如图 点D 为ABC 的AB 边上一点 2AD = 3DB =.若ABC ACD ∠=∠ 则AC 的长为 .10【知识点】相似三角形的判定与性质综合【分析】本题考查了相似三角形的性质 熟练运用相似三角形的对应边成比例列出比例式是解题的关键.先证明相似 再利用相似三角形的对应边成比例计算即可.【详解】解:∵ABC ACD ∠=∠ A A ∠=∠ABC ACD ∴∽ ∴AC AD AB AC= 即223AC AC =+10AC ∴=10AC =- 舍去). 1016.如图 点E 是平行四边形ABCD 边AD 延长线上一点 BE 交CD 于点H 如果13DH HC = 那么BO BH = .【答案】47【知识点】相似三角形的判定与性质综合 利用平行四边形的性质求解【分析】本题主要考查了平行四边形的性质 相似三角形的判定与性质等知识 熟练掌握相似三角形的性质是解题关键.首先根据平行四边形的性质可得AB CD ∥ AB CD = 结合13DH HC =可证明43AB CH = 再证明OCH OAB ∽ 由相似三角形的性质可得43BO HO = 即可获得答案.【详解】解:∵四边形ABCD 为平行四边形∴AB CD ∥ AB CD = ∵13DH HC = ∴34CH CD = ∴34CH CH CD AB == ∴43AB CH = ∵AB CD ∥∴OCH OAB ∽ ∴43BO AB HO CH == ∴47BO BH =. 故答案为:47.三 解答题17.已知:如图 ABC 中 20AB cm = 15BC cm = 12.5AD cm = DE BC ∥.求DE 的长.【答案】758cm 【知识点】相似三角形的判定与性质综合【分析】本题主要考查了相似三角形的判定及其性质 证明ADE ABC △△∽ 列出关于线段DE 的比例式 即可解决问题.【详解】解:如图 DE BC ∥ADE ABC ∴△△∽ ∴AD DE AB BC= 又20AB cm = 15BC cm = 12.5AD cm =()12.51575208AD BC DE cm AB ⋅⨯∴===. 即DE 的长为758cm . 18.如图 D 是ABC 的边AC 上的一点 连接BD 已知ABD C ∠=∠ 6AB = 4AD =(1)证明ABD ACB ∽;(2)求线段CD 的长.【答案】(1)见解析(2)5【知识点】证明两三角形相似 利用相似三角形的性质求解【分析】本题考查相似三角形的性质和判定(1)已知ABD ACB ∠=∠ BAD CAB ∠=∠ 根据两组对应角相等的三角形相似证明结论;(2)利用相似三角形对应边成比例先求出AC 的长 再算出CD 的长.【详解】(1)解:∵ABD ACB ∠=∠ BAD CAB ∠=∠ ∴ABD ACB ∽;(2)∵ABD ACB ∽ ∴AB AD AC AB = ∴646AC = 解得9AC = ∴945CD AC AD =-=-=.19.如图 在ABC 中 ABC ∠的平分线BD 交AC 边于点D 已知2ADB ABD ∠=∠.(1)求证:ABD ACB ∽;(2)若22DC AD == 求A ∠的度数.【答案】(1)详见解析(2)90° 详见解析【知识点】等腰三角形的性质和判定 判断三边能否构成直角三角形 相似三角形的判定与性质综合【分析】本题主要考查了相似三角形的判定与性质 等腰三角形的判定与性质 勾股定理的逆定理等知识(1)由2ABC ABD ∠=∠ 2ADB ABD ∠=∠ 得ADB ABC ∠=∠ 而A A ∠=∠ 则ABD ACB ∽△△;(2)由相似三角形的性质得ABD C ∠= 因为ABD DBC ∠=∠ 所以C DBC ∠=∠ 求得2DB DC == 1AD = 所以3AC = 则23AB AD AC =⋅= 21AD = 24DB =,所以222AB AD DB += 则90A ∠=︒;证明ABD ACB ∽△△是解题的关键.【详解】(1)∵BD 平分ABC ∠∴2ABC ABD ∠=∠∵2ADB ABD ∠=∠∴ADB ABC ∠=∠∵A A ∠=∠∴ABD ACB ∽△△;(2)∵ABD ACB ∽△△∴ABD C ∠=∠ AB AD AC AB= ∵ABD DBC ∠=∠∴C DBC ∠=∠∵22DC AD ==∴1AD = 2DB DC ==∴123AC AD DC =+=+= ∵AB AD AC AB= ∴2133AB AD AC =⋅=⨯=∵2211AD == 2224DB ==∴2224AB AD DB +==∴ABD △是直角三角形 且90A ∠=︒∴A ∠的度数是90︒.20.如图 在矩形ABCD 中 8AB = P 为CD 边上一点 连接AP .将ADP △沿AP 翻折点D 恰好落在BC 边上(点D ) 且4CD '=.(1)求证:ABD D CP ''∽△△;(2)求DP 的长;(3)求DP AD的值. 【答案】(1)见解析(2)5 (3)12【知识点】用勾股定理解三角形 矩形与折叠问题 相似三角形的判定与性质综合【分析】对于(1) 根据矩形的性质得90B C D ∠=∠=∠=︒ 进而根据题意得出BAD PD C ''∠=∠ 即可证明;对于(2) 设DP x = 则,8D P DP x PC DC DP x '===-=- 再根据勾股定理列出方程 求出解即可;对于(3) 根据ABD D CP ''∽△△ 可得12PD AD '=' 进而得出答案. 【详解】(1)∵四边形ABCD 是矩形∴90B C D ∠=∠=∠=︒∴90AD B BAD ''∠+∠=︒.∵将ADP △沿着AP 翻折 点D 恰好落在边BC 边上(点D )∴90AD P D '∠=∠=︒∴90AD B PD C ''∠+∠=︒∴BAD PD C ''∠=∠∴ABD D CP ''∽△△;(2)解:设DP x = 则,8D P DP x PC DC DP x '===-=-在Rt PD C '中 222PC D C PD ''+=即22(8)4x x -+=解得5x =即5DP =;(3)∵ABD D CP ''∽△△ ∴4182PD D C AD AB ''==='. 由折叠可知12DP D P AD AD '=='. 【点睛】本题主要考查了矩形与折叠问题 相似三角形的性质和判定 勾股定理等 勾股定理是求线段长的常用方法.21.如图 在边长为1的正方形网格中建立平面直角坐标系 已知ABC 中()()()1,22,14,5A B C -、、.(1)画出ABC 关于x 轴对称的111A B C △;(2)以原点O 为位似中心 在x 轴的上方画出222A B C △ 使222A B C △与ABC 位似 且222A B C △与ABC 相似比为2 并写出2C 的坐标.【答案】(1)画图见解析(2)画图见解析 2()8,10C【知识点】画轴对称图形 求位似图形的对应坐标 在坐标系中画位似图形【分析】此题考查的是作关于x 轴对称的图形和作位似图形 掌握位似图形的性质是解决此题的关键.(1)分别找出A B C 关于x 轴对称点111A B C 、、 然后连接111111A B AC B C 、、 如图所示111A B C △就是所求三角形;(2)连接OA 并延长至2A 使2AA OA =;连接OB 并延长至2B 使2BB OB =;连接OC 并延长至2C 使2CC OC =;连接222222A B A C B C 、、 如图所示 222A B C △就是所求三角形 再结合2C 的位置 可得其坐标.【详解】(1)解:如图 111A B C △即为所求作的三角形;(2)解:如图 222A B C △即为所求作的三角形;∵()()()1,22,14,5A B C -、、 222A B C △与ABC 位似 且位似比为2∴2()8,10C .22.综合与探究问题情境:在ABC 中 AB AC = 在射线AB 上截取线段BD 在射线CA 上截取线段CE 连结DE DE 所在直线交直线BC 于点M .猜想判断:(1)当点D 在边AB 的延长线上 点E 在边AC 上时 过点E 作EF AB ∥交BC 于点F 如图①.若BD CE = 则线段DM EM 的大小关系为_______.深入探究:(2)当点D 在边AB 的延长线上 点E 在边CA 的延长线上时 如图②.若BD CE = 判断线段DM EM 的大小关系 并加以证明.拓展应用:(3)当点D 在边AB 上(点D 不与A B 重合) 点E 在边CA 的延长线上时 如图③.若1BD = 4CE = 0.7DM = 求EM 的长.【答案】(1)=DM EM ;(2)=DM EM 理由见解析;(3) 2.8EM =【知识点】全等三角形综合问题 等腰三角形的性质和判定 相似三角形的判定与性质综合【分析】(1)过点E 作EF AB ∥交BC 于点F 证明()AAS BDM FEM ≌即可得解;(2)过点E 作EF AB ∥交CB 的延长线于点F 证明()AAS BDM FEM ≌即可得解;(3)过点E 作EF AB ∥交CB 的延长线于点F 证明BDM FEM ∽ 由相似三角形的性质即可得解.【详解】(1)解:=DM EM 理由如下:过点E 作EF AB ∥交BC 于点F∵AB AC =ABC C ∴∠=∠∵EF AB ∥EFC ABC ∴∠=∠EFC C ∴∠=∠EF CE ∴=BD CE =BD EF ∴=∵EF AB ∥∴MEF D ∠=∠在BDM 和FEM △中D MEF BMD FME BD EM ∠=∠⎧⎪∠=∠⎨⎪=⎩∴()AAS BDM FEM ≌∴=DM EM ;(2)解:=DM EM理由如下:如图 过点E 作EF AB ∥交CB 的延长线于点F∵EF AB ∥EFC ABC ∴∠=∠ EFM DBM ∠=∠AB AC =ABC C ∴∠=∠EFC C ∴∠=∠EF CE ∴=BD CE =BD EF ∴=在BDM 和FEM △中EFM DBM BMD FME BD EF ∠=∠⎧⎪∠=∠⎨⎪=⎩∴()AAS BDM FEM ≌DM EM ∴=;(3)解:如图过点E作EF AB∥交CB的延长线于点F∵EF AB∥∴∠=∠F ABC=AB AC∴∠=∠ABC C∴∠=∠F CCE=4∴==4EF CE∥BD EF∴∽BDM FEMMD BD∴=ME FEDM=40.7BD=EF=10.71∴=4ME∴=.2.8EM【点睛】本题考查了全等三角形的判定与性质,相似三角形的判定与性质,等腰三角形的判定与性质,平行线的性质等知识点,熟练掌握以上知识点并灵活运用,添加适当的辅助线是解此题的关键.。
第23章检测题时间:100分钟 满分:120分一、选择题(每小题3分,共30分) 1.下列四条线段为成比例线段的是( )A .1 cm ,2 cm ,4 cm ,6 cmB .2 cm ,3 cm ,4 cm ,6 cmC .8 cm ,5 cm ,4 cm ,3 cmD .3 cm ,6 cm ,9 cm ,12 cm 2.如图,已知直线a ∥b ∥c ,直线m 交直线a ,b ,c 于点A ,B ,C ,直线n 交直线a ,b ,c 于点D ,E ,F ,若AB BC =12,则DEEF =( )A .13B .12C .23 D .13.制作一块3 m ×2 m 长方形广告牌的成本是120元,在每平方米制作成本相同的情况下,若将此广告牌的四边都扩大为原来的3倍,那么扩大后长方形广告牌的成本是( )A .360元B .720元C .1080元D .2160元4.在平面直角坐标系中,△OAB 各顶点的坐标分别为:O(0,0),A(1,2),B(0,3),以O 为位似中心,△OA ′B ′与△OAB 位似,若B 点的对应点B′的坐标为(0,-6),则A 点的对应点A′坐标为( )A .(-2,-4)B .(-4,-2)C .(-1,-4)D .(1,-4)5.如图,在△ABC中,点D是边AB上的一点,∠ADC=∠ACB,AD=2,BD=6,则边AC的长为()A.2 B.4 C.6 D.8,第5题图)6.《孙子算经》是中国古代重要的数学著作,成书于约一千五百年前,其中有首歌谣:今有竿不知其长,量得影长一丈五尺,立一标杆,长一尺五寸,影长五寸,问竿长几何?意即:有一根竹竿不知道有多长,量出它在太阳下的影子长一丈五尺,同时立一根一尺五寸的小标杆,它的影长五寸(提示:1丈=10尺,1尺=10寸),则竹竿的长为()A.五丈B.四丈五尺C.一丈D.五尺,第6题图)7.如图,点P是线段AB上一点,AD与BC交于点E,∠CPD =∠A=∠B,BC交PD于点F,AD交PC于点G,则图中相似三角形有()A.1对B.2对C.3对D.4对,第7题图)8.如图,在△ABC中,点D,E分别是边AC,AB的中点,BD与CE交于点O,连结DE.下列结论:①OEOB=ODOC;②DEBC=12;③S△DOES△BOC=12;④S △DOE S △DBE=13.其中正确的个数有( )A .1个B .2个C .3个D .4个,第8题图)9.如图,正方形ABCD 中,E ,F 分别在边AD ,CD 上,AF ,BE 相交于点G ,若AE =3ED ,DF =CF ,则AGGF 的值是( )A .43B .54C .65D .76,第9题图)10.如图,在矩形ABCD 中,∠ADC 的平分线与AB 交于E ,点F 在DE 的延长线上,∠BFE =90°,连结AF ,CF ,CF 与AB 交于G.有以下结论:①AE =BC ;②AF =CF ;③BF 2=FG·FC ;④EG·AE =BG·AB.其中正确的个数是( )A .1B .2C .3D .4,第10题图)二、填空题(每小题3分,共24分) 11.已知:a b =23,则a -2b a +2b的值是 .12.如图所示,点E是平行四边形ABCD的边BC延长线上一点,连结AE,交CD于点F,连结BF.写出图中任意一对相似三角形:.,第12题图)13.若△ABC与△DEF相似且面积之比为25∶16,则△ABC与△DEF的周长之比为.14.如图,在△ABC中,AB=13,BC=12,点D,E分别是AB,BC的中点,连结DE,CD,如果DE=2.5,那么△ACD的周长是.,第14题图)15.如图,已知正方形DEFG的顶点D,E在△ABC的边BC上,顶点G,F分别在边AB,AC上.如果BC=4,△ABC的面积是6,那么这个正方形的边长是.,第15题图)16.如图,在平面直角坐标系中,每个小方格都是边长为1个单位长度的正方形,已知△AOB与△A1OB1位似,位似中心为原点O,且相似比为3∶2,点A,B都在格点上,则点B1的坐标为.,第16题图)17.《九章算术》是我国古代数学名著,书中有下列问题:“今有勾五步,股十二步,问勾中容方几何?”其意思为:“今有直角三角形,勾(短直角边)长为5步,股(长直角边)长为12步,问该直角三角形能容纳的正方形边长最大是多少步?”该问题的答案是步.,第17题图)18.如图,CE是▱ABCD的边AB的垂直平分线,垂足为点O,CE与DA的延长线交于点E.连结AC,BE,DO,DO与AC交于点F,则下列结论:①四边形ACBE是菱形;②∠ACD=∠BAE;③AF∶BE=2∶3;④S四边形AFOE∶S△COD=2∶3.其中正确的结论有.(填写所有正确结论的序号),第18题图)三、解答题(共66分)19.(8分)已知△ABC三个顶点的坐标分别为A(-2,-2),B(-5,-4),C(-1,-5).(1)画出△ABC关于x轴对称的△A1B1C1;(2)以点O为位似中心,将△ABC放大为原来的2倍,得到△A2B2C2,请在网格中画出△A2B2C2,并写出点B2的坐标.20.(8分)如图,已知AB∥CD,AD,BC相交于点E,F为BC 上一点,且∠EAF=∠C.求证:(1)∠EAF=∠B;(2)AF2=FE·FB.21.(8分)如图,在Rt△ABC中,∠C=90°,△ACD沿AD折叠,使得点C落在斜边AB上的点E处.(1)求证:△BDE∽△BAC;(2)已知AC=6,BC=8,求线段AD的长度.22.(8分)某一天,小明和小亮来到一河边,想用遮阳帽和皮尺来测量这条河流的大致宽度,两人在确保无安全隐患的情况下,先在河岸边选择了一点B(点B 与河对岸边上的一棵树的底部点D 所确定的直线垂直于河岸).(1)小明在B 点面向树的方向站好,调整帽檐,使视线通过帽檐正好落在树的底部点D 处,如图所示,这时小亮测得小明眼睛距地面的距离AB =1.7米;(2)小明站在原地转动180°后蹲下,并保持原来的观察姿态(除身体重心下移外,其他姿态不变),这时视线通过帽檐落在了DB 延长线上的点E 处,此时小亮测得BE =9.6米,小明的眼睛距离地面的距离CB =1.2米.根据以上测量过程及测量数据,请你求出河宽BD 是多少米.23.(10分)如图,已知在四边形ABCD 中,AD ∥BC ,E 为边CB 延长线上一点,连结DE 交边AB 于点F ,连结AC 交DE 于点G ,且FG GD =AD CE .(1)求证:AB ∥CD ;(2)如果AD 2=DG·DE ,求证:EG 2CE 2=AGAC .24.(10分)如图,在正方形ABCD中,点E,F分别是边AD,BC的中点,连结DF,过点E作EH⊥DF,垂足为H,EH的延长线交DC于点G.(1)猜想DG与CF的数量关系,并证明你的结论;(2)过点H作MN∥CD,分别交AD,BC于点M,N,若正方形ABCD的边长为10,点P是MN上一点,求△PDC周长的最小值.25.(14分)如图①,在Rt △ABC 中,∠BAC =90°,AD ⊥BC 于点D ,点O 是AC 边上一点,连结BO 交AD 于点F ,OE ⊥OB 交BC 边于点E.(1)求证:△ABF ∽△COE ;(2)当点O 为AC 的中点,AC AB =2时,如图②,求OFOE 的值; (3)当点O 为AC 的中点,AC AB =n 时,请直接写出OFOE 的值.答案:1. B2. B3. C4. A5. B6. B7. C8. B9. C10. C11. -1212. △ADF ∽△ECF13. 5∶414. 1815. 12716. (-2,-23)17. 601718. ①②④19. 解:(1)如图所示:△A 1B 1C 1即为所求 (2)如图所示:△A 2B 2C 2即为所求;B 2(10,8)20. 解:(1)∵AB ∥CD ,∴∠B =∠C ,又∠C =∠EAF ,∴∠EAF =∠B(2)∵∠EAF =∠B ,∠AFE =∠BFA ,∴△AFE ∽△BFA ,则AF BF =FE FA,∴AF 2=FE·FB21. 解:(1)∵∠C =90°,△ACD 沿AD 折叠,∴∠C =∠AED =90°,∴∠DEB =∠C =90°,又∵∠B =∠B ,∴△BDE ∽△BAC(2)由勾股定理得AB =10,由折叠的性质知AE =AC =6,DE =CD ,∠AED =∠C =90°,∴BE =AB -AE =10-6=4.由(1)知△BDE ∽△BAC ,∴DE AC =BE BC ,∴DE =BE BC ·AC =48×6=3,在Rt △ADE中,由勾股定理得AD 2=AE 2+ED 2,即AD 2=62+32,∴AD =3522. 解:易证△EBC ∽△DBA ,则有CB AB =BE BD ,∴1.21.7=9.6BD ,∴BD=13.6.答:河宽BD 是13.6米23. 解:(1)∵AD ∥BC ,∴△ADG ∽△CEG ,∴AD CE =AG CG ,∵FG GD =AD CE ,∴AG CG =FG GD ,∴AB ∥CD (2)AD ∥BC ,∴△ADG ∽△CEG ,∴DG EG =AD CE ,∴EG 2DG 2=CE 2AD 2,∴EG 2CE 2=DG 2AD 2.∵AD 2=DG·DE ,∴EG 2CE 2=DG DE ,∵AD ∥BC ,∴AG AC =DG DE ,∴EG 2CE 2=AG AC24. 解:(1)结论:CF =2DG.理由:∵四边形ABCD 是正方形,∴AD =BC =CD =AB ,∠ADC =∠C =90°,∵DE =AE ,∴AD =CD =2DE ,∵EG ⊥DF ,∴∠DHG =90°,∴∠CDF +∠DGE =90°,∠DGE +∠DEG =90°,∴∠CDF =∠DEG ,∴△DEG ∽△CDF ,∴DG CF =DE DC =12,∴CF =2DG(2)如图,作点C 关于NM 的对称点K ,连结DK 交MN 于点P ,连结PC ,此时△PDC 的周长最短.周长的最小值=CD +PD +PC =CD +PD +PK =CD +DK.由题意,得CD =AD =10,ED =AE =5,DG =52,EG =525,DH =DE·DG EG =5,∴EH =2DH =25,∴HM =DH·EH DE =2,∴DM =CN =NK =DH 2-HM 2=1,在Rt △DCK 中,DK=CD2+CK2=102+22=226,∴△PCD的周长的最小值为10+22625. 解:(1)∵AD⊥BC,∴∠DAC+∠C=90°.∵∠BAC=90°,∴∠DAC+∠BAF=90°,∴∠BAF=∠C.∵OE⊥OB,∴∠BOA+∠COE=90°,∵∠BOA+∠ABF=90°,∴∠ABF=∠COE,∴△ABF∽△COE(2)过点O作AC垂线交BC于点H,则OH∥AB,由(1)得∠ABF=∠COE,∠BAF=∠C,∴∠AFB=∠OEC,∴∠AFO =∠HEO,而∠BAF=∠C,∴∠FAO=∠EHO,∴△OEH∽△OFA,∴OA∶OH=OF∶OE,又∵O为AC的中点,OH∥AB,∴OH为△ABC的中位线,∴OH=12AB,OA=OC=12AC,而ACAB=2,∴OA∶OH=2∶1,∴OF∶OE=2∶1,即OFOE=2(3)OFOE=n。
华东师大版九年级数学上册《第23章图形的相似》单元测试卷及参考答案一、单选题1.在ABC 中,点D 、E 、F 分别在边BC 、AB 、AC 上,连接DE 、DF ,如果DE AC ∥,DF//AB ,且:12AE EB =:那么:AF FC 的值是( ) A .3B .13C .2D .122.下列选项中,能确定物体位置的是( ) A .距离学校500米B .季华路C .东经120︒,北纬30︒D .北偏西60︒3.如图,在ABCD 中,F 为AD 的中点,E 为CD 上的一点,连接EF 交BD 于点G ,交BA 的延长线于点M ,DE=2,CE=4,DG=3,则BD 的长为( )A .12B .15C .16D .4634.如图,在ABCD 中,对角线AC 和BD 相交于O ,BCD ∠的平分线CE 与边AB 相交于E ,若EB EA EC ==,那么下列结论①30ACE ∠=︒,①OE DA ∥,①ABCDSAC AD ⋅=,①CE DB ⊥.其中正确的有( )A .1个B .2个C .3个D .4个5.一个多边形的边长分别为2,3,4,5,6,另一个多边形和这个多边形相似,且最短边长为6,则最长边长为( ) A .18 B .12C .24D .306.如图,在ABC 中,AB =AC ,①A =36°,BD 平分①ABC 交AC 于点D ,CE 平分①ACB 交BD 于点E ,若AD =555,则BE =( )A .4B .557C .155-D .105207.如图,直线1l //l 2//l 3,直线AC 分别交1l ,2l 和3l 于点A ,B ,C ,直线DF 分别交1l ,2l 和3l 于点D ,E ,F 。
若23AB BC =,则DEDF 的值为( )A .23B .25C .35D .528.已知()104a cb d b d ==+≠,则224ac bd ++的值为( )A .116 B .23C .14D .189.如图,反比例函数ky x=的图象上有A ,B 两点,过点B 作BD y ⊥轴于点D ,交OA 于点C .若2AC OC =,BOC 的面积为2,则k 的值为( )A .92B .92-C .72D .72-10.如图,在正方形ABCD 中,点E 为边AD 上的一个动点(与点A 、D 不重合)45EBM ∠=︒,BE 交对角线AC 于点F ,BM 交对角线AC 于点G ,交边CD 于点M ,那么下列结论中,错误的是( )A .AEF CBF ∆∆∽B .CMG BFG ∆∆∽C .ABG CFB ∆∆∽D .ABF CBG ∆∆∽11.如图,在平面直角坐标系中,以原点为位似中心,将线段CD 放大得到线段AB ,若点B 、C 、D 的坐标分别为B (5,0)、C (1,2)、D (2,0),则点A 的坐标是( )A .(2.5,5)B .(2.5,3)C .(3,5)D .(2.5,4)二、填空题12.如图,在平面直角坐标中,正方形ABCD 与正方形BEFG 是以点O 为位似中心的位似图形,且相似比为13,两个正方形在原点O 同侧,点A 、B 、E 在x 轴上,其余顶点在第一象限,若正方形ABCD 的边长为2,则点F 的坐标为 .13.如图,在ABC 中,AD //BC ,OA :OC =1:3,AP =3,则PB 的值是 .14.如图,在ABC 中90BAC ∠=︒,点G 为ABC 的重心,若6AC =,1tan 3ABG ∠=那么AG 的长等于______.15.如图,在Rt ABC 纸板中,AC=4,BC=3,P 是AC 上一点,过点P 沿直线剪一次剪下一个与ABC 相似的小三角形纸板,如果有4种不同的剪法,那么CP 长的取值范围是 .16.如图,AD 是△ABC 的中线,点E 在边AB 上,且DE ①AD ,将△BDE 绕着点D 旋转,使得点B 与点C 重合,点E 落在点F 处,联结AF 交BC 于点G ,如果52AE BE =,那么GF AB的值等于 .17.已知ADC △中90ADC ∠=︒,AB 交CD 于E ,且AB AC = 45BCD ∠=︒ :9:7DE CE = 22BC =则AE 的长度为 .18.如图,在矩形ABCD 中,CD=4,点E 在AD 边上,且43AE =,点F 是边BC 上的一个动点,将四边形ABFE 沿EF 翻折,A 、B 的对应点G 、H 与点C 在同一条直线上,GH 与边AD 交于点O ,当3DO =时,BF 的长为 .19.如图123l l l ∥∥,若1AD =,BE=3,CF=6,则ABBC的值为 .20.如图,在边长为23ABCD 中30B ∠=︒,过点A 作AE BC ⊥于点E ,现将ABE 沿直线AE 翻折至AFE △的位置,AF 与CD 交于点G ,则CG 的长为 .三、解答题21.在正方形ABCD 中,对角线AC 与BD 相交于点O .若点E 是BC 上的一个动点. (1)如图1,若F 为DE 的中点,求证:CF =DF ;(2)如图2,连接DE ,交AC 与点F ,当DE 平分①CDB 时,求证:AF 2;(3)如图3,当点E 是BC 的中点时,过点F 作FG ①BC 于点G ,求证:CG =12BG .22.在①ABC 中,AB=AC=5,BC=6,D,E 分别是边AB,AC 上的两个动点(D 不与A,B 重合),且保持DE①BC ,以DE 为边,在点A 的异侧作正方形DEFG.(1)当FG 与BC 重合时,求正方形DEFG 的边长;(2)设AD=x ,①ABC 与正方形DEFG 重叠部分的面积为y ,试求y 关于x 的函数关系式,并写出x 的取值范围;(3)当①BDG 是等腰三角形时,请直接写出AD 的长.23.已知在菱形ABCD 中60BAD ∠=︒,点M 在AB 上,点E 在线段BD 上,将射线ME 绕点M 顺时针旋60︒,得到射线MF 交直线BC 于点F ,连接EF .【问题发现】(1)如图1,当点M 与点A 重合时,线段ME 和MF 之间的数量关系为__________. 【类比探究】(2)如图2,当点M 在AB 边上时,题(1)中的结论是否成立?并说明理由.【拓展延伸】(3)如图3,当点M 在BA 延长线上时,EF 交线段AB 于点N ,射线ME 和AD 交于点Q ,且经过点C ,若AQ ED =,求BFBM的值. 24.如图,在直角坐标系中,ABC 的三个顶点坐标分别为()()()1,4,4,2,3,5A B C ,请回答下列问题:(1)画出ABC 关于x 轴的对称图形111A B C △. (2)直接写出111A B C 、、的坐标. (3)点P 是y 轴上一点且4=PABS,请求出点P 的坐标.25.如图,四边形ABCD 和四边形AEFG 都是正方形,C ,F ,G 三点在同一直线上,连接AF 并延长交边CD 于点M .(1)求证:MFC MCA △∽△; (2)求BECF的值; (3)若2,4DM CM ==,求正方形AEFG 的边长.题号 1 2 3 4 5 6 7 8 9 10 答案 C C A C A C B D B D 题号 11 答案 A1.C 2.C 3.A 4.C 5.A 6.C 7.B 8.D 9.B 10.D 11.A 12.(9,6) 13.9 141315.904CP ≤≤16.106317.15218.8319.2320.3221.(1)证明见解析;(2)证明见解析;(3)证明见解析. 22.(1)125;(2) ()236,0225y x x =<<或 22424,(25)255y x x x =-+≤<; (3) 12573或2511或207;23.【问题发现】(1)ME MF =;【类比探究】(2)见解析;【拓展延伸】(351-24.(1)见解析(2)()()()1,4,4,2,3,5--- (3)()0,2或220,3⎛⎫ ⎪⎝⎭25.(1)见解析 2 655。
第23章图形的相似一、选择题1. 如图,点A,B,C,D的坐标分别是(1,7),(1,1),(4,1),(6,1),以C,D,E为顶点的三角形与△ABC相似,则点E的坐标不可能是()A.(6,0)B.(6,3)C.(6,5)D.(4,2)2.如图,在直角梯形ABCD中,AD∥BC,∠ABC=90°,AB=8,AD=3,BC=4,点P为AB边上一动点,若△PAD与△PBC是相似三角形,则满足条件的点P的个数是()A.1个B.2个C.3个D.4个3.△ABC与△A′B′C′相似,且△ABC与△A′B′C′的相似比是1:2,已知△ABC的面积是3,则△A′B′C′的面积是()A.3 B.6 C.9 D.124.如图,在□ABCD中,点E为AD的中点,连接BE交AC于点F,则AF∶CF= ()A.1∶2 B.1∶3 C.2∶3 D.2∶55.下面给出了一些关于相似的命题,其中真命题有()(1)菱形都相似;(2)等腰直角三角形都相似;(3)正方形都相似;(4)矩形都相似.A.1个B.2个C.3个D.4个6.如图,在平面直角坐标系中,点C的坐标为(0,4),动点A 以每秒1个单位长的速度,从点O出发沿轴的正方向运动,M是线段AC的中点.将线段AM以点A为中心,沿顺时针方向旋转90°,得到线段AB.过点B作x轴的垂线,垂足为E,过点C作y轴的垂线,交直线BE于点D,运动时间为t秒.当S △BCD =时,t的值为()第 1 页A.2或2+3 B.2或2+3 C.3或3+5 D.3或3+57. 一个铝质三角形框架三条边长分别为24 cm、30 cm、36 cm,要做一个与它相似的铝质三角形框架,现有长为27 cm、45 cm的两根铝材,要求以其中的一根为一边,从另一根上截下两段(允许有余料)作为另外两边,截法有()A.0种B.1种C.2种D.3种8. 某班在布置新年联欢会会场时,需要将直角三角形彩纸裁成长度不等的矩形纸条,如图所示,在Rt △ABC 中,∠C =90°, AC =30 cm , AB =50 cm ,依次裁下宽为1 cm 的纸条a 1 、a 2 、a 3 、…,若使裁得的矩形纸条长度不小于5 cm ,则每张直角三角形彩纸能裁成矩形纸条的条数为()A.24 B.25 26 D.279. 一个铝质三角形框架三条边长分别为24 cm,30 cm,36 cm,要做一个与它相似的铝质三角形框架,现有长为27 cm,45 cm的两根铝材,要求以其中的一根为一边,从另一根上截下两段(允许有余料)作为另外两边.截法有()A.0种 B.1种 C.2种 D.3种10. 如果一个直角三角形的两条边长分别是6和8,另一个与它相似的直角三角形边长分别是3和4及x ,那么x 的值()A.只有1个B.可以有2个C.有2个以上但有限D.有无数个二、填空题11.如图,直线l 1 ∥l 2 ∥l 3 ,另两条直线分别交l 1 、l 2 、l 3 于点A、B、C及点D、E、F,且AB=3,DE=4,DF=6,则BC=.12.如图,在平面直角坐标系中,△ABC的顶点坐标分别为(4,0)(8,2),(6,4)。
华师大版九年级上册数学第23章图形的相似含答案一、单选题(共15题,共计45分)1、小明遇到这样一个问题:如图,矩形纸片ABCD,AB=2,BC=3,现要求将矩形纸片剪两刀后拼成一个与之面积相等的正方形,小明尝试给出了下面四种剪的方法,如图①②③④,图中BE=.其中剪法正确的是()A.①②B.①③C.②③D.③④2、平面直角坐标系中,点P(-2,1)关于y轴对称点P的坐标是()A. B. C. D.3、如图,正方形ABCD的面积为12,M是AB的中点,连接AC、DM,则图中阴影部分的面积是()A.6B.4.8C.4D.34、如图,矩形ABCD的对角线AC与BD交于点O,AD=1,DC=,矩形OGHM 的边OM经过点D,边OG交CD于点P,将矩形OGHM绕点O逆时针方向旋转α(0°<α<60°),OM′交AD于点F,OG′交CD于点E,设DF=y,EP=x,则y与x的关系为()A.y=xB.y=xC.y=xD.y=x5、已知,则代数式的值为()A. B. C. D.6、已知平面直角坐标系中点A的坐标为,则下列结论正确的是()A.点A到x轴的距离为5B.点A到y轴的距离为6C.点A关于x轴对称的点的坐标为D.点A关于y轴对称的点的坐标为7、若a>0,b<-2,则点(a,b+2)应在()A.第一象限B.第二象限C.第三象限D.第四象限8、如图,点A(t,3)在第一象限,OA与x轴所夹的锐角为α,tanα= ,则t的值是()A.1B.1.5C.2D.39、如图,AC是的直径,弦于E,连接BC,过点O作于F,若,,则OF的长度是()A.6B.C.5D.10、已知点P在第二象限,且到x轴距离为3,到y轴距离为2,则点P的坐标是()A.(-3,2)B.(-2,3)C.(2,3)D.(2,-3)11、如图,图中的每个小方格都是边长为1的小正方形,每个小正方形的顶点称为格点.若△ABC与△A1B1C1是位似图形,且顶点都在格点上,则位似中心的坐标是()A.(0,9)B.(8,0)C.(9,0)D.(10,0)12、已知点P在x轴上方,y轴左侧,距x轴2个单位长度,距y轴3个单位长度,则点P的坐标为()A.(3,2)B.(-2,-3)C.(-3,2)D.(3,-2)13、点P(﹣2,3)关于y轴的对称点的坐标是()A.(2,3 )B.(﹣2,﹣3)C.(﹣2,3)D.(﹣3,2)14、由5a=6b(a≠0),可得比例式( ).A. =B. =C.D.15、已知△ABC∽△A´B´C´,且△ABC与△A´B´C´的周长比为,则△ABC与△A´B´C´的面积比为()A. B. C. D.二、填空题(共10题,共计30分)16、如图,为了测量校园内一棵不可攀的树的高度,数学应用实践小组做了如下的探索实践:根据《物理学》中光的反射定律,利用一面镜子和一根皮尺,设计如图的测量方案:把镜子放在离树(AB)9米的点E处,然后沿着直线BE 后退到点D,这时恰好在镜子里看到树梢顶点A,再用皮尺量得DE=2.7米,观察者目高CD=1.8米,则树(AB)的高度为________米.17、如图,中,,于,若,,则的长是________.18、已知点P(a,b)在反比例函数y= 的图象上,若点P关于y轴对称的点在反比例函数y= 的图象上,则k的值为________.19、如图:平行四边形ABCD中,E为AB中点,,连E、F交AC于G,则AG:GC=________;20、如图,点A1, A2在射线OA上,B1在射线OB上,依次作A2B2∥A1B1, A3B2∥A2B1, A3B3∥A2B2, A4B3∥A3B2,….若△A2B1B2和△A3B2B3的面积分别为1、9,则△A1007B1007A1008的面积是________.21、在如图所示方格纸中,已知△DEF是由△ABC经相似变换所得的像,那么△DEF的每条边都扩大到原来的________ 倍.22、如图,已知直线与x轴相交于点A,与直线相交于点P.动点E从原点O出发,以每秒2个单位的速度沿着O→P→A的路线向点A匀速运动,同时动点F从原点O出发,以每秒2个单位的速度沿着射线OA 的方向运动,当点E到达终点A时点F随即停止运动,设运动时间为t秒,当动点E、F所在的直线将△OPA的面积分成1∶2的两部分时,t的值为________。
第二十三章图形的相似1.[2019·兰州]已知2x =3y (y ≠0),则下列结论成立的是( )A.x y =32B.x 3=2yC.x y =23D.x 2=y 32.[2019·河北]若△ABC 的每条边长增加各自的10%得到△A ′B ′C ′,则∠B ′的度数与其对应角∠B 的度数相比( )A .增加了10%B .减少了10%C .增加了(1+10%)D .没有改变3.[2019·哈尔滨]如图23-Y -1,在△ABC 中,D ,E 分别为AB ,AC 边上的点,DE ∥BC ,F 为BC 边上一点,连结AF 交DE 于点G ,则下列结论中一定正确的是( )A.AD AB =AE ECB.AG GF =AE BDC.BD AD =CE AED.AG AF =AC EC图23-Y -14.[2019·眉山]“今有井径五尺,不知其深,立五尺木于井上,从木末望水岸,入径四寸,问井深几何?”这是我国古代《九章算术》中的“井深几何”问题,它的题意可以由图23-Y -2获得,则井深为( )A .1.25尺B .57.5尺C .6.25尺D .56.5尺图23-Y -25.[2019·绵阳]为测量操场上旗杆的高度,小丽同学想到了物理学中平面镜成像的原理.她拿出随身携带的镜子和卷尺,先将镜子放在脚下的地面上,然后后退,直到她站直身子刚好能从镜子里看到旗杆的顶端E ,标记好脚掌中心位置为B ,测得脚掌中心位置B 到镜面中心C 的距离是50 cm ,镜面中心C 距离旗杆底部D 的距离为4 m ,如图23-Y -3所示.已知小丽同学的身高是1.54 m ,眼睛位置A 距离小丽头顶的距离是4 cm ,则旗杆DE 的高度为( )A .10 mB .12 mC .12.4 mD .12.32 m图23-Y -36.[2019·遵义]如图23-Y -4,△ABC 的面积是12,D ,E ,F ,G 分别是BC ,AD ,BE ,CE 的中点,则△AFG 的面积是( )A .4.5B .5C .5.5D .6图23-Y -47.[2019·邵阳]如图23-Y -5所示,三架飞机P ,Q ,R 保持编队飞行,某时刻在平面直角坐标系中的坐标分别为(-1,1),(-3,1),(-1,-1).30秒后,飞机P 飞到点P ′(4,3)的位置,则此时飞机Q ,R 的位置Q ′,R ′分别为( )A .Q ′(2,3),R ′(4,1)B .Q ′(2,3),R ′(2,1)C .Q ′(2,2),R ′(4,1)D .Q ′(3,3),R ′(3,1)图23-Y -58.[2019·海南]如图23-Y -6,在平面直角坐标系中,△ABC 位于第二象限,点A 的坐标是(-2,3),先把△ABC 向右平移4个单位得到△A 1B 1C 1,再作与△A 1B 1C 1关于x 轴对称的△A 2B 2C 2,则点A 的对应点A 2的坐标是( )A .(-3,2)B .(2,-3)C .(1,-2)D .(-1,2)图23-Y -69.[2019·齐齐哈尔]经过三边都不相等的三角形的一个顶点的线段把三角形分成两个小三角形,如果其中一个是等腰三角形,另外一个三角形和原三角形相似,那么把这条线段定义为原三角形的“和谐分割线”.如图23-Y -7,线段CD 是△ABC 的“和谐分割线”,△ACD 为等腰三角形,△CBD 和△ABC 相似,∠A =46°,则∠ACB 的度数为________.图23-Y -710.[2019·潍坊]如图23-Y -8,在△ABC 中,AB ≠AC ,D ,E 分别为边AB ,AC 上的点,AC =3AD ,AB =3AE ,点F 为BC 边上一点,添加一个条件:________,可以使得△FDB 与△ADE 相似.(只需写出一个)图23-Y -811.[2019·内江]如图23-Y -9,四边形ABCD 中,AD ∥BC ,CM 是∠BCD 的平分线,且CM ⊥AB ,M 为垂足,AM =13AB .若四边形ABCD 的面积为157,则四边形AMCD 的面积是________.图23-Y -912.[2019·百色]如图23-Y -10,在正方形OABC 中,O 为坐标原点,点C 在y 轴正半轴上,点A 的坐标为(2,0),将正方形OABC 沿着OB 方向平移12OB 个单位,则点C 的对应点的坐标为________.图23-Y -1013.[2019·绥化]如图23-Y -11,顺次连结腰长为2的等腰直角三角形各边中点得到第1个小三角形,再顺次连结所得的小三角形各边中点得到第2个小三角形,…,如此操作下去,则第n 个小三角形的面积为________.图23-Y -1114.[2019·宿迁]如图23-Y -12,在△ABC 中,AB =AC ,点E 在边BC 上移动(点E 不与点B ,C 重合),满足∠DEF =∠B ,且点D ,F 分别在边AB ,AC 上.(1)求证:△BDE ∽△CEF ;(2)当点E 移动到BC 的中点时,求证:FE 平分∠DFC .图23-Y -1215.[2019·凉山州]如图23-Y -13,在边长为1的正方形网格中建立平面直角坐标系,已知△ABC 三个顶点的坐标分别为A (-1,2),B (2,1),C (4,5).(1)画出△ABC 关于x 轴对称的△A 1B 1C 1;(2)以原点O 为位似中心,在x 轴的上方画出△A 2B 2C 2,使△A 2B 2C 2与△ABC 位似,且相似比为2,并求出△A 2B 2C 2的面积.图23-Y -1316.[2019·泰安]如图23-Y -14,四边形ABCD 中,AB =AC =AD ,AC 平分∠BAD ,P 是AC 延长线上一点,且PD ⊥AD .(1)求证:∠BDC =∠PDC ;(2)若AC 与BD 相交于点E ,AB =1,CE ∶CP =2∶3,求AE 的长.图23-Y -14教师详答1.A [解析] A .两边都除以2y ,得x y =32,故A 符合题意; B .两边除以不同的整式,故B 不符合题意;C .两边都除以2y ,得x y =32,故C 不符合题意; D .两边除以不同的整式,故D 不符合题意.故选A.2.D [解析] ∵△ABC 的每条边长增加各自的10%得△A ′B ′C ′,∴△ABC 与△A ′B ′C ′的三边对应成比例,∴△ABC ∽△A ′B ′C ′,∴∠B =∠B ′.故选D.3.C [解析] A .∵DE ∥BC ,∴△ADE ∽△ABC ,∴AD AB =AE AC,故A 错误; B .∵DE ∥BC ,∴AG GF =AE EC,故B 错误; C .∵DE ∥BC ,∴BD AD =CE AE,故C 正确; D .∵DE ∥BC ,∴△AGE ∽△AFC ,∴AG AF =AE AC,故D 错误.故选C. 4.B [解析] 设AE 与BC 交于点F .依题意有△ABF ∽△ADE ,∴AB ∶AD =BF ∶DE ,即5∶AD =0.4∶5,解得AD =62.5,∴BD =AD -AB =62.5-5=57.5(尺).故选B.5.B [解析] 由题意可得:AB =1.5 m ,BC =50 cm =0.5 m ,DC =4 m ,△ABC ∽△EDC , 则AB DE =BC DC ,即1.5DE =0.54,解得DE =12(m).故选B. 6.A [解析] ∵D ,E ,F ,G 分别是BC ,AD ,BE ,CE 的中点,∴AD 是△ABC 的中线,BE 是△ABD 的中线,CE 是△ACD 的中线,AF 是△ABE 的中线,AG 是△ACE 的中线,∴△AEF 的面积=12×△ABE 的面积=14×△ABD 的面积=18×△ABC 的面积=32, 同理可得△AEG 的面积=32, △BCE 的面积=12×△ABC 的面积=6. 又∵FG 是△BCE 的中位线,∴△EFG 的面积=14×△BCE 的面积=32, ∴△AFG 的面积是32×3=92. 故选A.7.A [解析] 由点P (-1,1)到P ′(4,3)知,编队需向右平移5个单位,再向上平移2个单位,∴点Q (-3,1)的对应点Q ′的坐标为(2,3),点R (-1,-1)的对应点R ′的坐标为(4,1).故选A.8.B [解析] 如图所示.9.113°或92° [解析] ∵△BCD ∽△BAC ,∴∠BCD =∠A =46°.∵△ACD 是等腰三角形,∠ADC >∠BCD ,∴∠ADC >∠A ,即AC ≠CD .①当AC =AD 时,∠ACD =∠ADC =12×(180°-46°)=67°, ∴∠ACB =67°+46°=113°.②当DA =DC 时,∠ACD =∠A =46°,∴∠ACB =46°+46°=92°,故答案为113°或92°.10.答案不唯一,如DF ∥AC 或∠BFD =∠A 等[解析] ∵∠A =∠A ,AD AC =AE AB =13, ∴△ADE ∽△ACB ,∴∠AED =∠B .①当DF ∥AC 时,△BDF ∽△BAC ,∴△BDF ∽△EAD .②当∠BFD =∠A 时,∵∠B =∠AED ,∴△FBD ∽△AED .11.1 [解析] 延长BA ,CD ,交点为E .∵CM 平分∠BCD ,CM ⊥AB ,∴MB =ME .又∵AM =13AB ,∴AE =13AB , ∴AE =14BE . ∵AD ∥BC ,∴△EAD ∽△EBC ,∴S △EAD S △EBC =116, ∴S 四边形ABCD =1516S △EBC =157,∴S △EBC =167, ∴S △EAD =167×116=17, ∴S 四边形AMCD =12S △EBC -S △EAD =12×167-17=1. 故答案为1.12.(1,3) [解析] ∵在正方形OABC 中,O 为坐标原点,点C 在y 轴正半轴上,点A 的坐标为(2,0),∴OC =OA =2,∴C (0,2).∵将正方形OABC 沿着OB 方向平移12OB 个单位,即将正方形OABC 先向右平移1个单位,再向上平移1个单位,∴点C 的对应点的坐标是(1,3).故答案为(1,3).13.122n -1 [解析] 记原来三角形的面积为S ,第一个小三角形的面积为S 1,第二个小三角形的面积为S 2,….∵S 1=14S =122S ,S 2=14S 1=14·14S =124S ,S 3=126S , ∴S n =122n ·S =122n ×12×2×2=122n -1. 故答案为122n -1. 14.[解析] (1)根据等腰三角形的性质得到∠B =∠C ,根据三角形的内角和以及平角的定义得到∠BDE =∠CEF ,于是得到结论;(2)根据相似三角形的性质得到BE CF =DE EF ,等量代换得到CE CF =DE EF,根据相似三角形的性质即可得到结论.证明:(1)∵AB =AC ,∴∠B =∠C .∵∠BDE =180°-∠B -∠DEB ,∠CEF =180°-∠DEF -∠DEB ,又∵∠DEF =∠B ,∴∠BDE =∠CEF ,∴△BDE ∽△CEF .(2)∵△BDE ∽△CEF ,∴BE CF =DE EF. ∵E 是BC 的中点,∴BE =CE ,∴CE CF =DE EF. ∵∠DEF =∠B ,∴∠DEF =∠C ,∴△DEF ∽△ECF ,∴∠DFE =∠CFE ,∴FE 平分∠DFC .15.[解析] (1)画出点A ,B ,C 关于x 轴的对称点A 1,B 1,C 1即可解决问题;(2)连结OB 并延长,使得OB =BB 2,同理可得点A 2,C 2,△A 2B 2C 2就是所求作的三角形. 解:(1)如图所示,△A 1B 1C 1就是所求作的三角形.(2)如图所示,△A 2B 2C 2就是所求作的三角形.∵A (-1,2),B (2,1),C (4,5),△A 2B 2C 2与△ABC 位似,且相似比为2, ∴A 2(-2,4),B 2(4,2),C 2(8,10),∴S △A 2B 2C 2=8×10-12×6×2-12×4×8-12×6×10=28. 16.解:(1)证明:∵AB =AD ,AC 平分∠BAD ,∴AC ⊥BD ,∴∠ACD +∠BDC =90°.∵AC =AD ,∴∠ACD =∠ADC ,∴∠ADC +∠BDC =90°.∵PD ⊥AD ,∴∠ADC +∠PDC =90°,∴∠BDC =∠PDC .(2)过点C 作CM ⊥PD 于点M .∵∠BDC =∠PDC ,∴CE =CM .∵∠CMP =∠ADP =90°,∠P =∠P ,∴△CPM ∽△APD ,∴CM AD =CP AP. 设CM =CE =x ,∵CE ∶CP =2∶3,∴CP =32x . ∵AB =AD =AC =1,∴x 1=32x 32x +1,解得x 1=13,x 2=0(舍去),即CE =13,故AE =1-13=23.。