最新整理高一数学教案高一数学映射036.docx
- 格式:docx
- 大小:12.38 KB
- 文档页数:3
最新高一数学教学教案(5篇)(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如计划报告、合同协议、心得体会、演讲致辞、条据文书、策划方案、规章制度、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as plan reports, contract agreements, insights, speeches, policy documents, planning plans, rules and regulations, teaching materials, complete essays, and other sample essays. If you would like to learn about different sample formats and writing methods, please stay tuned!最新高一数学教学教案(5篇)想要学好数学,一定要多看例题,在看例题的过程中,大脑会将已有概念具体化,使对知识的理解更深刻,更透彻。
高中数学映射教学教案
教学目标:让学生了解映射的定义、性质和应用,并掌握相关的解题方法。
教学重点和难点:映射的定义和性质、映射的合成和逆映射、映射在几何中的应用。
教学准备:教材、课件、活动设计、练习题等。
教学流程:
一、引入(5分钟)
教师向学生介绍映射的概念,引导学生思考什么是映射,并举例说明。
二、概念理解(15分钟)
1. 讲解映射的定义和符号表示,让学生掌握映射的基本概念。
2. 讲解映射的性质,帮助学生理解映射的基本性质。
三、运用能力培养(20分钟)
1. 给学生一些简单的映射题目,让学生能够灵活运用映射的知识解题。
2. 引导学生进行映射的合成和逆映射的讨论和解题。
四、拓展应用(10分钟)
1. 讲解映射在几何中的应用,如平移、旋转等。
2. 给学生一些实例题目,帮助学生了解映射在几何中的具体应用。
五、总结(5分钟)
教师总结本节课的重点和难点,巩固学生对映射的理解,激发学生对数学的兴趣。
六、作业布置(5分钟)
布置相关的练习题,让学生复习本节课内容,并巩固所学知识。
教学反思:老师可以根据学生的学习情况调整教学内容和方法,确保学生能够有效地掌握映射的相关知识。
同时,鼓励学生多进行实际操作,加深对映射的理解和应用能力。
高中数学映射的教案教学目标:1. 理解数学映射的概念和基本性质。
2. 掌握如何判断一个给定关系是否为映射。
3. 能够在实际问题中应用映射的概念解决问题。
教学重点:1. 映射的定义和基本性质。
2. 判断一个给定关系是否为映射。
3. 应用映射解决实际问题。
教学难点:1. 理解映射和函数的区别。
2. 能够准确地判断一个关系是否为映射。
教学准备:1. 教师备好教材、教具和课件。
2. 学生预先学习相关知识。
3. 教师准备案例题目和练习题。
教学过程:一、导入(5分钟)教师引导学生回顾函数的概念,并告诉学生今天将学习数学映射的内容。
二、讲解映射的概念和基本性质(15分钟)1. 教师讲解映射的定义和基本性质,引导学生理解映射的概念。
2. 教师通过示例说明映射的性质,让学生加深对映射的理解。
三、判断关系是否为映射(15分钟)1. 教师讲解判断一个给定关系是否为映射的方法。
2. 教师通过案例指导学生如何判断一个关系是否为映射。
四、应用映射解决实际问题(10分钟)1. 教师给出一个实际问题,引导学生运用映射的概念解决问题。
2. 学生尝试独立解决问题,教师及时给予指导和反馈。
五、课堂练习(10分钟)学生完成几道与映射相关的练习题,巩固所学知识。
六、总结(5分钟)教师对本节课的重点内容进行总结,并提醒学生对映射的概念进行复习。
七、作业布置(5分钟)布置相关习题作业,督促学生加强练习。
教学反思:本节课主要是对数学映射的基本概念和性质进行讲解,通过案例和练习引导学生深入理解映射的概念。
教学中应注意引导学生掌握映射的判定方法和应用技巧,激发学生对数学的兴趣和学习的动力。
第十三课时 映射的概念[学习导航]知识网络映射⎪⎩⎪⎨⎧映射与函数的关系映射的概念对应的概念学习要求1、了解映射的概念,能够判定一些简单的对应是不是映射。
2、通过对映射特殊化的分析,揭示出映射与函数之间的内在联系。
自学评价1、对应是两个集合元素之间的一种关系,对应关系可用图示或文字描述来表示。
2、一般地设A 、B 两个集合,如果按某种对应法那么f ,对于A 中的每一个元素,在B 中都有唯一的元素与之对应,那么,这样的单值对应叫做集合A 到集合B 的映射,记作:f:A →B3、由映射的概念可以看出,映射是函数概念的推广,特殊在函数概念中,A 、B 为两个非空数集。
[精典X 例]一、判断对应是否为映射例1、以下集合M 到P 的对应f 是映射的是( )A.M={-2,0,2},P={-1,0,4},f :M 中数的平方B.M={0,1},P={-1,0,1},f:M 中数的平方根C.M=Z ,P=Q ,f:M 中数的倒数。
D.M=R ,P=R +,f:M 中数的平方二、映射概念的应用例2、集合A=R ,B={(x,y)|x,y ∈R},f:A →B 是从A 到B 的映射,f:x →(x+1,x 2+1),求A 中的元素2在B 中的象和B 中元素(23,45)在A 中的原象。
思维分析:将x=2代入对应关系,可求出其在B 中对应元素,(23,45)在A 中对应的元素可通过列方程组解出。
三、映射与函数的关系例3、给出以下四个对应的关系①A=N*,B=Z,f:x→y=2x-3;②A={1,2,3,4,5,6},B={y|y∈N*,y ≤5},f:x→y=|x-1|;③A={x|x≥2},B={y|y=x2-4x+3},f:x →y=x-3;④A=N,B={y∈N*|y=2x-1,x∈N*},f:x →y=2x-1。
上述四个对应中是函数的有( )A.①B.①③C.②③ D.③④思维分析:判断两个集合之间的对应是否构成函数,首先应判断能否构成映射,且构成映射的两个集合之间对应必须是非空数集之间的对应。
新版的高一数学教案【5篇】新版的高一数学教案【5篇】教案对于老师是重要的。
《语文园地》包括“交流平台”“词句段运用”“书写提示”和“日积月累”四个板块。
“交流平台”抓住这组课文的共同特点,下面小编给大家带来关于新版的高一数学教案,希望会对大家的工作与学习有所帮助。
新版的高一数学教案【篇1】一、教材《直线与圆的位置关系》是高中人教版必修2第四章第二节的内容,直线和圆的位置关系是本章的重点内容之一。
从知识体系上看,它既是点与圆的位置关系的延续与提高,又是学习切线的判定定理、圆与圆的位置关系的基础。
从数学思想方法层面上看它运用运动变化的观点揭示了知识的发生过程以及相关知识间的内在联系,渗透了数形结合、分类讨论、类比、化归等数学思想方法,有助于提高学生的思维品质。
二、学情学生初中已经接触过直线与圆相交、相切、相离的定义和判定;且在上节的学习过程中掌握了点的坐标、直线的方程、圆的方程以及点到直线的距离公式;掌握利用方程组的方法来求直线的交点;具有用坐标法研究点与圆的位置关系的基础;具有一定的数形结合解题思想的基础。
三、教学目标(一)知识与技能目标能够准确用图形表示出直线与圆的三种位置关系;可以利用联立方程的方法和求点到直线的距离的方法简单判断出直线与圆的关系。
(二)过程与方法目标经历操作、观察、探索、总结直线与圆的位置关系的判断方法,从而锻炼观察、比较、概括的逻辑思维能力。
(三)情感态度价值观目标激发求知欲和学习兴趣,锻炼积极探索、发现新知识、总结规律的能力,解题时养成归纳总结的良好习惯。
四、教学重难点(一)重点用解析法研究直线与圆的位置关系。
(二)难点体会用解析法解决问题的数学思想。
新版的高一数学教案【篇2】教学目标1.了解函数的单调性和奇偶性的概念,掌握有关证明和判断的基本方法.(1)了解并区分增函数,减函数,单调性,单调区间,奇函数,偶函数等概念.(2)能从数和形两个角度认识单调性和奇偶性.(3)能借助图象判断一些函数的单调性,能利用定义证明某些函数的单调性;能用定义判断某些函数的奇偶性,并能利用奇偶性简化一些函数图象的绘制过程.2.通过函数单调性的证明,提高学生在代数方面的推理论证能力;通过函数奇偶性概念的形成过程,培养学生的观察,归纳,抽象的能力,同时渗透数形结合,从特殊到一般的数学思想.3.通过对函数单调性和奇偶性的理论研究,增学生对数学美的体验,培养乐于求索的精神,形成科学,严谨的研究态度.教学建议一、知识结构(1)函数单调性的`概念。
高中数学映射教案
一、教学目标:
1. 理解映射的概念和性质;
2. 掌握映射的表示方法;
3. 能够根据给定的映射找出它的定义域、值域和像;
4. 能够进行映射的复合和逆映射的求解;
二、教学重点:
1. 映射的概念和性质;
2. 映射的表示方法;
3. 映射的定义域、值域和像的确定;
4. 映射的复合和逆映射的求解;
三、教学难点:
1. 映射的复合;
2. 映射的逆映射;
四、教学过程:
1. 映射的概念和性质的介绍(10分钟)
教师简单介绍映射的定义及性质,引导学生理解映射的基本概念。
2. 映射的表示方法(15分钟)
教师通过具体例子演示映射的表示方法,解释映射的不同形式表示。
3. 映射的定义域、值域和像(20分钟)
教师讲解如何确定映射的定义域、值域和像的方法,通过实例进行讲解并进行练习。
4. 映射的复合(15分钟)
教师介绍映射的复合的概念和方法,通过例题演示如何进行映射的复合,并让学生自行练习。
5. 映射的逆映射(15分钟)
教师讲解映射的逆映射的概念和求解方法,通过实例进行演示并让学生进行练习。
6. 练习与检测(15分钟)
教师布置相关练习题让学生巩固所学知识,并进行检测。
五、教学反思:
通过本节课的教学,学生应该能够掌握映射的基本概念、性质和运算方法,能够熟练计算映射的复合和逆映射。
教师应该及时收集学生的反馈意见,对教学过程进行调整和改进。
高一数学教案五篇教案:教学文书教案:电力术语教案:明清来华传教士和教会的案件下面是我为大家整理的高一数学教案五篇,欢迎大家与参考,盼望对大家有所关心。
第1篇: 高一数学教案一、指导思想与理论依据数学是一门培育人的思维,进展人的思维的重要学科。
因此,在教学中,不仅要使同学"知其然'而且要使同学"知其所以然'。
所以在同学为主体,老师为主导的原则下,要充分揭示猎取学问和方法的思维过程。
因此本节课我以建构主义的"创设问题情境提出数学问题尝试解决问题验证解决方法'为主,主要采纳观看、启发、类比、引导、探究相结合的教学方法。
在教学手段上,则采纳多媒体帮助教学,将抽象问题形象化,使教学目标体现的更加完善。
二、教材分析三角函数的诱导公式是一般高中课程标准试验教科书(人教A版)数学必修四,第一章第三节的内容,其主要内容是三角函数诱导公式中的公式(二)至公式(六)。
本节是第一课时,教学内容为公式(二)、(三)、(四)。
教材要求通过同学在已经把握的任意角的三角函数的定义和诱导公式(一)的基础上,利用对称思想发觉任意角、终边的对称关系,发觉他们与单位圆的交点坐标之间关系,进而发觉他们的三角函数值的关系,即发觉、把握、应用三角函数的诱导公式公式(二)、(三)、(四)。
同时教材渗透了转化与化归等数学思想方法,为培育同学养成良好的学习习惯提出了要求。
为此本节内容在三角函数中占有特别重要的地位。
三、学情分析本节课的授课对象是本校高一(1)班全体同学,本班同学水平处于中等偏下,但本班同学具有擅长动手的良好学习习惯,所以采纳发觉的教学方法应当能轻松的完成本节课的教学内容。
四、教学目标(1)基础学问目标:理解诱导公式的发觉过程,把握正弦、余弦、正切的诱导公式;(2)力量训练目标:能正确运用诱导公式求任意角的正弦、余弦、正切值,以及进行简洁的三角函数求值与化简;(3)创新素养目标:通过对公式的推导和运用,提高三角恒等变形的力量和渗透化归、数形结合的数学思想,提高同学分析问题、解决问题的力量;(4)共性品质目标:通过诱导公式的学习和应用,感受事物之间的一般联系规律,运用化归等数学思想方法,揭示事物的本质属性,培育同学的唯物史观。
学习目标 1.了解映射的概念及表示方法;了解彖、原彖的概念;2、结合简单的对应图示,了解一一映射的概念教学重点、难重点:映射的概念难点:映射的概念点教学方法引导探究,讲练结合学习要点及自主学习导引学习心得例2、集合M ={a,b,c},N = {-1,0,1},由M 到N 的映射f 满足条件 f(a) + f (b) = f(c),则这样的映射有—个。
f-x 1 卜|-1 ,试思想方法总典例探究例1、判断下列两个对应是否是集合A 到集合B 的映射?⑴设 A={1, 2, 3, 4}, B={3, 4, 5, 6, 7, 8, 9},对应法则 /:XT 2X + 1(2) 设A = iV*,B = {O,l},对应法则f-.x^x 除以2得的余数(3) A = N , B = {0丄2} , y :xTx 被3除所得的余数(4) 设 X = {1,2,3,4},Y = {1,^-, j,^-} / 取倒数A = {X \X >2,XE N},B = N, / : % 小于兀的最大质数出元素最多时的集合A.4、设A 到B 的映射为匚:x-y=2x+l, B 到C 的映射心: X —y=y?+l,则A 到C 的映射f 是( )A. f:z —4x(x+l)B. f:z — 2x'-lC. f: z^2~x 2D. f: z —4x'+4x+l例3已知集合A 到集合B = 的映射是:例 4 已知映射f :A^-B中,A = B = ^[x,y)\x E R,y E , f :A中的元素(x, y)对应到B中的元素(3x —2y+ l,4x + 3y —1)。
(1)求A中的元素( -1, 2)在f的作用下与之对应的B中的元素。
(2)若A屮的某个元素在f的作用下与之对应的B屮的元素为(-1, 2),求A中的这个元素。
例5、已知 4 = {1,2,3,"?},B = {4,7,”",”2+3”},其中m,n e N* ,若XE A,Y E B,有对应法则f \x^y = px + q是从集合A到集合B 的一个函数,J=L/(l) = 4,f(2) = 7 , ^.^m,n,p,q的值。
芯衣州星海市涌泉学校中学高一数学映射教案〖教学目的〗1、理解映射的概念及表示方法2、理解象、原象的概念,结合简单的对应图示,理解一一映射的概念3、建立集合与映射的思想,掌握映射的三要素及性质〖教学重点〗映射的概念〖教学难点〗映射的概念〖教学过程〗一.导入新课1、回忆第一章中集合的有关知识:属于或者者不属于;包含或者者不包含2.、复习初中已经遇到过的对应:对于任何一个实数a ,数轴上都有唯一的点p 和它对应;对于坐标平面内任何一个点A ,都有唯一的有序实数对(x ,y)和它对应;对于任意一个三角形,都有唯一确定的面积和它对应.二.课前预习检查,作业订正讲评三.讲授新课一般地,设A ,B 是两个集合,假设按照某种对应法那么f ,对于A 中的每一个元素,在集合B 中都有唯一的元素与之对应,那么,这样的单值对应叫做集合A 到集合B 的映射,记着B A f :四、例题分析例1.以下对应中哪些是集合A到集合B的映射?观察图(2),(3),(4)这3个对应有什么一一共同的特点?我们发现,这3个对应的一一共同特点是:对于左边集合A中的任何一个元素,在右边集合B中都有唯一的元素和它对应.图(2),(3),(4)这3个对应,都是集合A到集合的映射。
给定一个集合A到集合B的映射,a∈A,b∈B.假设元素a和元素b对应,那么,我们把元素b叫做元素a的象,元素a叫做元素b的原象.关于映射的定义,要讲清楚以下几点:①有两个集合A,B,它们可以是数集,也可以是点集或者者其他集合.这两个集合有先后次序,A 到B的映射与B到A的映射是截然不同的.②存在一个集合A到集合B的对应法那么ƒ,在对应法那么ƒ的作用下,与A中的元素a对应的B中的元素b叫做a(在ƒ下)的象,a叫做b的原象.③集合A中任何一个元素都有象,并且象是唯一的.例如,设A:{0,1,2},B:{0,1,1/2},对应法那么ƒ是“取倒数〞,这时由于A中的元素0无象,A,B,ƒ不能构成映射.但对于映射来说,A中两个(或者者几个)元素可以允许有一样的象,④不要求集合B中每一个元素都有原象,即B中可能有些元素不是集合A中的元素的象。
最新整理高一数学教案高一数学映射036 课题:§1.2.2映射
教学目的:(1)了解映射的概念及表示方法,了解象、原象的概念;
(2)结合简单的对应图示,了解一一映射的概念.
教学重点:映射的概念.
教学难点:映射的概念.
教学过程:
一、引入课题
复习初中已经遇到过的对应:
1.对于任何一个实数a,数轴上都有唯一的点P和它对应;
2.对于坐标平面内任何一个点A,都有唯一的有序实数对(x,y)和它对应;
3.对于任意一个三角形,都有唯一确定的面积和它对应;
4.某影院的某场电影的每一张电影票有唯一确定的座位与它对应;
5.函数的概念.
二、新课教学
1.我们已经知道,函数是建立在两个非空数集间的一种对应,若将其中的条件“非空数集”弱化为“任意两个非空集合”,按照某种法则可以建立起更为普通的元素之间的对应关系,这种的对应就叫映射(mapping)(板书课题).2.先看几个例子,两个集合A、B的元素之间的一些对应关系
(1)开平方;
(2)求正弦
(3)求平方;
(4)乘以2;
3.什么叫做映射?
一般地,设A、B是两个非空的集合,如果按某一个确定的对应法则f,使对于集合A中的任意一个元素x,在集合B中都有唯一确定的元素y与之对应,那么就称对应f:AB为从集合A到集合B的一个映射(mapping).记作“f:AB”
说明:
(1)这两个集合有先后顺序,A到B的射与B到A的映射是截然不同的.其中f表示具体的对应法则,可以用汉字叙述.
(2)“都有唯一”什么意思?
包含两层意思:一是必有一个;二是只有一个,也就是说有且只有一个的意思。
4.例题分析:下列哪些对应是从集合A到集合B的映射?
(1)A={P|P是数轴上的点},B=R,对应关系f:数轴上的点与它所代表的实数对应;
(2)A={P|P是平面直角体系中的点},B={(x,y)|x∈R,y∈R},对应关系f:平面直角体系中的点与它的坐标对应;
(3)A={三角形},B={x|x是圆},对应关系f:每一个三角形都对应它的内切圆;
(4)A={x|x是新华中学的班级},B={x|x是新华中学的学生},对应关系f:每一个班级都对应班里的学生.
思考:
将(3)中的对应关系f改为:每一个圆都对应它的内接三角形;(4)中的对应关系f改为:每一个学生都对应他的班级,那么对应f:BA是从集合B到集。