高一数学映射
- 格式:pdf
- 大小:609.47 KB
- 文档页数:9
高一数学函数及函数的性质1、映射的概念(1)映射是特殊的对应,即是“一对一”的对应和“多对一”的对应,而“一对多”的对应不是映射.(2)给定一个映射f:A→B,则A中的每一个元素都有唯一的象,B的某些元素可以没有原象,如果有原象,也可以不唯一的.2、函数的概念(1)函数是特殊的映射,即集合A、B均为非空数集的映射.(2)构成函数的三要素;对应关系f、定义域A、值域{f(x)|x∈A},其中值域{f(x)|x∈A} B.正确理解函数符号y=f(x):①它表示y是x的函数,绝非f与x的积;②f(a)仅表示函数f(x)在x=a时的函数值,是一常数.(3)确定函数的条件:当对应关系f和定义域A已确定,则函数已确定,判定两个函数是否相同时,就要看定义域和对应法则是否完全一致.(4)函数的定义域,一般是使函数解析式有意义的x值的集合,在具体问题中则应考虑x的实际意义,如时间t,距离d均应为非负数等.求函数定义域的基本方法:①分式中分母不为零;②偶次根式中的被开方式不小于零;③ [f(x)]0中的底f(x)不为零;④如果f(x)是由几个部分的数学式子构成的,那么函数的定义域是使每个部分式子都有意义的实数集合.根据对应法则的性质求定义域,如已知f(x)的定义域为[a,b],则f[ψ(x)]的定义域应为ψ(x)的定义域与a≤ψ(x)≤b的解集的交集.3、函数的表示法:解析法、列表法、图象法.4、函数的值域是全体函数值所组成的集合,有观察法,换元法、配方法、图象法、反求法、判别式法等求值域的基本方法.函数的值域是函数的“三要素”之一,在一个给定的函数中,函数的值域随对应法则和定义域而确定.几个基本初等函数的值域:一次函数y=kx+b(k≠0)的值域:{y|y∈R};二次函数y=ax2+bx+c(a≠0)的值域:当a>0时,;当a<0时,;反比例函数(k≠0)的值域:(-∞,0)∪(0,+∞).求函数值域的基本方法(1)直接法:从自变量x的范围出发,推出y=f(x)的取值范围;例如:的值域为[1,+∞).这是因为x≤3,所以≥0,∴ y≥1.(2)二次函数法:利用换元法将函数转化为二次函数求值域(或最值);(3)反函数法:将求函数值域转化为求反函数的定义域;4)判别式法:运用方程的思想,将函数变形成关于x的二次方程,依据二次方程有实根,求出y 的取值范围;(5)利用函数的单调性求值域;(6)图象法:作出函数的图象,由图象来确定函数的值域.1、判断下列对应是否是从集合A到集合B的映射;(1)A=R,B={x|x>0且x∈R},x∈A,f:x→|x|;(2)A=N,B=N*,x∈A,f:x→|x-1|;(3)A={x|x>0且x∈R},B=R,x∈A,f:x→x2.2、求函数的定义域.1、已知映射f:A→B,则下列说法正确的是()A.A中某一元素的象可能不止一个 B.A中两个不同元素的象必不相同C.B中某一元素的原象可能不止一个 D.B中两个不同元素的原象可能相同2、若A={2,4,6,8},B={-1,-3,-5,-7},下列对应法则:①f:x→9-2x;②f:x→1-x;③f:x→7-x;④f:x→x-9中,能确定A到B的映射的是()A.①②B.②③ C.③④D.②④3、下面四组函数f(x)与g(t)中,表示同一函数的是()A.B.C.D.4、函数的定义域是()A.(4,+∞) B.(2,3)C.(-∞,2)∪(3,+∞) D .(-∞,2)∪(2,3)∪(3,+∞)5、已知f(x)是一次函数,且满足2f(2)-3f(1)=5,2f(0)-f(-1)=1,则f(x)的解析式为()A.3x-2 B.3x+2 C.2x-3 D.2x+36、设函数y=f(x)的定义域为[-],则函数y=f(-2)的定义域是()A.[-,2] B.[2-,2+] C.[6-4,6+4] D.[0,6+4]7、若函数的定义域为A,y=的定义域为B,的定义域为C,则集合A、B、C之间的关系是()A.A∩B=C B.A∩B C C.A∩B C D.A∪B C8、若函数y=f(x)的定义域为[0,1],则函数y=f(x+a)+f(2x+a)(0<a<1)的定义域是()A.B.C.[-a,1-a] D.9.下列图中,画在同一坐标系中,函数与的图象只可能是()A. B.C. D.10、给出四个命题:(1)函数是其定义域到值域的映射;2)是函数;(3)函数y=2x(x∈N)是一次函数;4)与g(x)=x是同一个函数.其中正确的有()A.1个B.2个 C.3个 D.4个11、设(x,y)在映射f:A→B的作用下的象是(),则在f的作用下,元素(-1,1)象是_____________,元素(3,-2)的原象是_____________.12、若f(x+1)=2x2+1,则f(x-1)= _____________.13、(1)f(x)是二次函数,且f(2)=-3,f(-2)=-7,f(0)=-3,求f(x)的表达式;(2)已知:f(2x-1)=4x2-2x,求f(x)的表达式.14、已知函数y=f(x)的定义域为[0,1],设函数F(x)=f(x+a)+f(x-a),求正实数a的取值范围,并求函数F(x)的定义域.15、已知f(x)是二次函数,且f(x+1)+f(x-1)=2x2-4x,求f(1-)的值.6、求下列函数的值域.1、函数的单调性(1)定义: 设函数y=f(x)的定义域为 A :区间,如果对于区间I上的任意两个自变量的值,当时,都有,那么就说f(x)在区间I上是增函数. 区间I称为y=f(x)的单调增区间;如果对于区间I上的任意两个自变量的值,当时,都有,那么就说f(x)在这个区间上是减函数。
高一数学映射知识点数学是一门综合性科学,映射是其中的重要概念之一。
在高一数学学习中,映射是一个需要深入理解和掌握的知识点。
本文将从映射的定义、映射的性质以及映射的应用等方面进行详细介绍。
一、映射的定义映射是一种对应关系,它将一个集合中的每个元素都对应到另一个集合中的唯一元素上。
映射常常用符号“f”表示,表示一个元素或者一组元素通过某种规则对应到另一个集合中。
对于集合A和集合B,如果存在一个映射f,使得对于A中的任意元素a,都有唯一的对应元素b在集合B中,即f(a)=b,那么我们可以说A中的元素通过映射f对应到B中的元素。
二、映射的性质1. 单射:如果映射f中不同的元素在B中有不同的对应元素,即对于任意的a1和a2,如果f(a1)=f(a2),则a1=a2。
这种映射被称为单射或一一映射。
单射保证了映射的唯一性。
2. 满射:如果映射f中的所有元素都有对应的元素存在于B中,即对于任意的b∈B,都存在a∈A,使得f(a)=b。
这种映射被称为满射。
满射保证了映射的完备性。
3. 双射:既是单射又是满射的映射被称为双射。
双射保证了映射的一一对应关系,即A中的每一个元素都有唯一对应的元素在B中,B中的每一个元素也都有唯一对应的元素在A中。
4. 逆映射:如果映射f是一个双射,那么它存在一个逆映射g,使得g(f(a))=a对于任意的a∈A成立,同时f(g(b))=b对于任意的b∈B也成立。
逆映射可以实现映射的互逆。
三、映射的应用映射在数学中的应用非常广泛,尤其在解决实际问题时起到了重要的作用。
以下是映射在几个常见领域的应用示例:1. 函数关系:函数是一种特殊的映射关系,它将一个集合中的每个元素都对应到另一个集合中的唯一元素上。
函数在数学中有着广泛的应用,例如描述物理规律、经济关系以及建立模型等。
2. 图论:映射在图论中有重要作用。
图是由一系列的顶点和边组成的数学模型,而映射则常常用于描述顶点之间的关系,例如在社交网络中描述用户之间的关注关系。
映射定义:设X,Y 是两个非空集合,如果按照一定的对应关系f 使对于集合X 中的任意一个元素x ,在集合Y 中都有唯一的对应元素y 与之对应,那么就称对应f :X →Y 为集合X 到集合Y 的一个映射。
其中,元素y 称为元素x (在映射f 下)的像,记作f (x ),即y=f (x );而元素x 称为元素y (在映射f 下)的一个原像。
映射的三要素:① 定义域:集合X 称为映射f 的定义域,记作fD,即fD=X ;② 值域:集合X 中所有元素的像组成的集合成为映射f 的值域,记作fR或f (x ),且fRY ;③ 对应法则f :使每一个元素x ∈X 都有唯一确定的元素y 与之对应。
注意:对于每一个x ∈X ,与之对应的像y 是唯一的;但对于每一个y ∈fR ,与之对应的原像x 不一定是唯一的。
分类:① 单射:对于集合X 中的任意两个不同元素1x ≠2x ,它们的像f (1x )≠f (2x ),则称f 为X 到Y 单射; ② 满射:若集合Y 中的任意一元素y 都是集合X 中某元素的像,即f R=Y ;③ 双射:若f 既是单射,又是满射,则称f 为一一映射(双射)。
逆映射:若f 是集合X 到集合Y 的单射,则有定义可得,对于每一个y ∈fR,都有唯一的x ∈X 与之对应,我们就可以定义一个新映射g :fR →x 。
对于每个y ∈fR,规定g (y )=x ,且这个x 满足f (x )=y ,就称映射g 为映射f 的逆映射,记作1-f,其定义域1-fD=fR,值域1-fR=X 。
复合映射:设有两个映射f :X →1Y g :2Y→Z,其中1Y⊂2Y,则由映射g 和f 可以定出一个从X 到Z 的对应法则,它将每个x ∈X 映成f [g (x )],这个映射称为映射g 和映射f 的复合映射,记作f 。
g ,即f 。
g :X →Z 。
(注意:映射g 与f 构成复合映射的条件是:g 的值域必须包含在f 的定义域中,即gR⊂fD。
大一高数映射知识点归纳在大一高等数学课程中,映射是一个非常重要且常见的概念。
映射可以理解为一种对应关系,它将一个集合中的元素映射到另一个集合中的元素。
接下来,我将对大一高数中与映射相关的知识点进行归纳总结。
一、映射定义与表示法映射是从一个集合到另一个集合的一个对应关系。
如果集合A 中的每个元素a都对应集合B中的唯一一个元素b,那么我们称A 到B的映射为定义在集合A上的一个映射。
在表示映射时,常用的表示法有:- 将映射写成集合形式,例如:{(x, y) | x∈A, y∈B, y=f(x)}- 使用函数的形式表示映射,例如:f: A → B,其中f表示映射的名称,A为起始集合,B为终止集合。
二、映射的分类1. 单射:如果映射中的每个不同元素a对应的都是不同的元素b,那么称该映射为单射。
也可以说是任意两个不同的元素在映射中的像都不相同。
2. 满射:如果映射中的每个元素b都有对应的元素a,那么称该映射为满射。
也可以说是终止集合B中的每个元素都有源自集合A中的元素与之对应。
3. 双射:如果一个映射既是单射又是满射,那么称该映射为双射。
三、映射的运算1. 复合映射:设有两个映射f: A → B,g: B → C,那么可以通过复合运算得到新的映射h: A → C。
复合映射的运算规则为:h(x) = g(f(x)),即先使用f进行映射,再使用g进行映射。
2. 逆映射:如果一个映射f: A → B是一个双射,那么可以定义其逆映射g: B → A。
逆映射的性质为:g(f(x)) = x,f(g(y)) = y。
四、映射的例子与应用1. 一次函数:一次函数可以表示为f(x) = kx + b的形式,其中k 为不为零的常数,称为斜率,b为常数,称为截距。
一次函数是一种常见的线性映射,常用于描述常量比例关系。
2. 复数平面映射:将复数表示为平面上的点,可以将复数映射到平面上。
3. 矩阵映射:在线性代数中,矩阵可以表示一个线性映射,通过矩阵乘法可以实现向量的变换。