2019-2020年濮阳市濮阳县九年级上册期末模拟数学试卷(含解析)-优选
- 格式:doc
- 大小:745.50 KB
- 文档页数:15
【数学】九年级上册濮阳数学全册期末复习试卷练习(Word 版 含答案)一、选择题1.方程 x 2=4的解是( ) A .x 1=x 2=2B .x 1=x 2=-2C .x 1=2,x 2=-2D .x 1=4,x 2=-42.若关于x 的方程 ()2m 110x mx -+-= 是一元二次方程,则m 的取值范围是( ) A .m 1≠.B .m 1=.C .m 1≥D . m 0≠.3.如图,等腰直角三角形ABC 的腰长为4cm ,动点P 、Q 同时从点A 出发,以1cm/s 的速度分别沿A →B 和A →C 的路径向点B 、C 运动,设运动时间为x (单位:s),四边形PBC Q 的面积为y(单位:cm 2),则y 与x(0≤x≤4)之间的函数关系可用图象表示为( )A .B .C .D .4.若25x y =,则x yy+的值为( ) A .25 B .72C .57D .755.如图,四边形ABCD 内接于⊙O ,已知∠A =80°,则∠C 的度数是( )A .40°B .80°C .100°D .120°6.如图,在△ABC 中,点D 、E 分别在边BA 、CA 的延长线上,ABAD=2,那么下列条件中能判断DE ∥BC 的是( )A .12AE EC = B .2ECAC= C .12DE BC = D .2ACAE= 7.将抛物线23y x =向上平移3个单位,再向左平移2个单位,那么得到的抛物线的解析式为( )A .23(2)3y x =++B .23(2)3y x =-+C .23(2)3y x =+-D .23(2)3y x =-- 8.如图,在平行四边形ABCD 中,点E 在边DC 上,DE :EC=3:1,连接AE 交BD 于点F ,则△DEF 的面积与△BAF 的面积之比为( )A .3:4B .9:16C .9:1D .3:19.分别写有数字﹣4,0,﹣1,6,9,2的六张卡片,除数字外其它均相同,从中任抽一张,则抽到偶数的概率是( ) A .16B .13C .12D .2310.如图示,二次函数2y x mx =-+的图像与x 轴交于坐标原点和()4,0,若关于x 的方程20x mx t -+=(t 为实数)在15x <<的范围内有解,则t 的取值范围是( )A .53t -<<B .5t >-C .34t <≤D .54t -<≤ 11.已知⊙O 的直径为4,点O 到直线l 的距离为2,则直线l 与⊙O 的位置关系是 A .相交B .相切C .相离D .无法判断12.13名同学参加歌咏比赛,他们的预赛成绩各不相同,现取其中前6名参加决赛,小红同学在知道自己成绩的情况下,要判断自己能否进入决赛,还需要知道这13名同学成绩的( ) A .方差B .众数C .平均数D .中位数13.我国传统文化中的“福禄寿喜”图(如图)由四个图案构成.这四个图案中既是轴对称图形,又是中心对称图形的是( )A .B .C .D .14.二次函数y=ax 2+bx+c 的y 与x 的部分对应值如下表: x…134…y … 2 4 2 ﹣2 …则下列判断中正确的是( ) A .抛物线开口向上 B .抛物线与y 轴交于负半轴C .当x=﹣1时y >0D .方程ax 2+bx+c=0的负根在0与﹣1之间15.将抛物线23y x =先向左平移一个单位,再向上平移两个单位,两次平移后得到的抛物线解析式为( )A .23(1)2y x =++B .23(1)2y x =+-C .23(1)2y x =-+D .23(1)2=--y x二、填空题16.已知一组数据为1,2,3,4,5,则这组数据的方差为_____. 17.已知∠A =60°,则tan A =_____.18.已知一组数据:4,4,m ,6,6的平均数是5,则这组数据的方差是______. 19.在比例尺为1∶500 000的地图上,量得A 、B 两地的距离为3 cm ,则A 、B 两地的实际距离为_____km . 20.如图,已知O 的半径为2,ABC ∆内接于O ,135ACB ∠=,则AB =__________.21.如图,用一张半径为10 cm 的扇形纸板做一个圆锥形帽子(接缝忽略不计),如果做成的圆锥形帽子的高为8 cm ,那么这张扇形纸板的弧长是________cm .22.如图,在ABCD 中,13BE DF BC ==,若1BEG S ∆=,则ABF S ∆=__________.23.经过两次连续降价,某药品销售单价由原来的50元降到32元,设该药品平均每次降价的百分率为x ,根据题意可列方程是__________________________. 24.一组数据:2,5,3,1,6,则这组数据的中位数是________.25.圆锥的底面半径是4cm ,母线长是6cm ,则圆锥的侧面积是______cm 2(结果保留π).26.已知圆锥的底面半径是3cm ,母线长是5cm ,则圆锥的侧面积为_____cm 2.(结果保留π)27.设1x 、2x 是关于x 的方程2350x x +-=的两个根,则1212x x x x +-•=__________.28.如图,在Rt ABC ∆中,90ACB ∠=,6AC =,8BC =,D 、E 分别是边BC 、AC 上的两个动点,且4DE =,P 是DE 的中点,连接PA ,PB ,则14PA PB +的最小值为__________.29.如图,将二次函数y =12(x -2)2+1的图像沿y 轴向上平移得到一条新的二次函数图像,其中A (1,m ),B (4,n )平移后对应点分别是A′、B′,若曲线AB 所扫过的面积为12(图中阴影部分),则新的二次函数对应的函数表达是__________________.30.某公园平面图上有一条长12cm 的绿化带.如果比例尺为1:2000,那么这条绿化带的实际长度为_____.三、解答题31.甲、乙两个袋中均装有三张除所标数值外完全相同的卡片,甲袋中的三张卡片上所标有的三个数值为﹣7,﹣1,3.乙袋中的三张卡片所标的数值为﹣2,1,6.先从甲袋中随机取出一张卡片,用x 表示取出的卡片上的数值,再从乙袋中随机取出一张卡片,用y 表示取出卡片上的数值,把x 、y 分别作为点A 的横坐标和纵坐标. (1)用适当的方法写出点A (x ,y )的所有情况. (2)求点A 落在第三象限的概率.32.如图,AB 是⊙O 的直径,弦DE 垂直平分半径OA ,C 为垂足,弦DF 与半径OB 相交于点P ,连结EF 、EO ,若DE=23∠DPA=45°.(1)求⊙O 的半径;(2)求图中阴影部分的面积.33.解方程: (1)x 2-8x +6=0 (2)(x -1)2 -3(x -1) =034.若关于x 的方程()2260x b x b +++-=有两个相等的实数根(1)求b 的值;(2)当b 取正数时,求此时方程的根,35.如图,已知一次函数3y x =-+分别交x 、y 轴于A 、B 两点,抛物线2y x bx c =-++经过A 、B 两点,与x 轴的另一交点为C .(1)求b 、c 的值及点C 的坐标;(2)动点P 从点O 出发,以每秒1个单位长度的速度向点A 运动,过P 作x 轴的垂线交抛物线于点D ,交线段AB 于点E .设运动时间为(0)t t >秒. ①当t 为何值时,线段DE 长度最大,最大值是多少?(如图1)②过点D 作DF AB ⊥,垂足为F ,连结BD ,若BOC 与BDF 相似,求t 的值(如图2)四、压轴题36.研究发现:当四边形的对角线互相垂直时,该四边形的面积等于对角线乘积的一半,如图1,已知四边形ABCD 内接于O ,对角线AC BD =,且AC BD ⊥.(1)求证:AB CD=;(2)若O的半径为8,弧BD的度数为120︒,求四边形ABCD的面积;(3)如图2,作OM BC⊥于M,请猜测OM与AD的数量关系,并证明你的结论.37.如图,在Rt△ABC中,∠A=90°,0是BC边上一点,以O为圆心的半圆与AB边相切于点D,与BC边交于点E、F,连接OD,已知BD=3,tan∠BOD=34,CF=83.(1)求⊙O的半径OD;(2)求证:AC是⊙O的切线;(3)求图中两阴影部分面积的和.38.如图,抛物线y=﹣(x+1)(x﹣3)与x轴分别交于点A、B(点A在B的右侧),与y轴交于点C,⊙P是△ABC的外接圆.(1)直接写出点A、B、C的坐标及抛物线的对称轴;(2)求⊙P的半径;(3)点D在抛物线的对称轴上,且∠BDC>90°,求点D纵坐标的取值范围;(4)E是线段CO上的一个动点,将线段AE绕点A逆时针旋转45°得线段AF,求线段OF的最小值.39.如图,在边长为5的菱形OABC中,sin∠AOC=45,O为坐标原点,A点在x轴的正半轴上,B,C两点都在第一象限.点P以每秒1个单位的速度沿O→A→B→C→O运动一周,设运动时间为t(秒).请解答下列问题:(1)当CP⊥OA时,求t的值;(2)当t<10时,求点P的坐标(结果用含t的代数式表示);(3)以点P为圆心,以OP为半径画圆,当⊙P与菱形OABC的一边所在直线相切时,请直接写出t的值.40.如图,扇形OMN的半径为1,圆心角为90°,点B是上一动点,BA⊥OM于点A,BC⊥ON于点C,点D、E、F、G分别是线段OA、AB、BC、CO的中点,GF与CE相交于点P,DE与AG相交于点Q.(1)当点B移动到使AB:OA=:3时,求的长;(2)当点B移动到使四边形EPGQ为矩形时,求AM的长.(3)连接PQ,试说明3PQ2+OA2是定值.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】【分析】两边开方得到x=±2.【详解】解:∵x2=4,∴x=±2,∴x1=2,x2=-2.故选:C.【点睛】本题考查了解一元二次方程-直接开平方法:形如ax 2+c=0(a≠0)的方程可变形为2=cx a-,当a 、c 异号时,可利用直接开平方法求解. 2.A解析:A 【解析】 【分析】根据一元二次方程的定义可得m ﹣1≠0,再解即可. 【详解】由题意得:m ﹣1≠0, 解得:m≠1, 故选A . 【点睛】此题主要考查了一元二次方程的定义,关键是掌握只含有一个未知数,并且未知数的最高次数是2的整式方程叫一元二次方程.3.C解析:C 【解析】 【分析】先计算出四边形PBCQ 的面积,得到y 与x 的函数关系式,再根据函数解析式确定图象即可. 【详解】 由题意得: 22111448222y x x =⨯⨯-=-+(0≤x≤4), 可知,抛物线开口向下,关于y 轴对称,顶点为(0,8), 故选:C. 【点睛】此题考查二次函数的性质,根据题意列出解析式是解题的关键.4.D解析:D 【解析】 【分析】由已知可得x 与y 的关系,然后代入所求式子计算即可. 【详解】 解:∵25x y =, ∴25x y =,∴2755y yx y y y ++==.故选:D. 【点睛】本题考查了比例的性质,属于基础题型,熟练掌握比例的性质是解题关键.5.C解析:C 【解析】 【分析】根据圆内接四边形的性质得出∠C+∠A=180°,代入求出即可. 【详解】解:∵四边形ABCD 内接于⊙O , ∴∠C+∠A=180°, ∵∠A=80°, ∴∠C=100°, 故选:C . 【点睛】本题考查了圆内接四边形的性质的应用.熟记圆内接四边形对角互补是解决此题的关键.6.D解析:D 【解析】 【分析】 只要证明AC ABAE AD=,即可解决问题. 【详解】 解:A. 12AE EC = ,可得AE :AC=1:1,与已知2AB AD=不成比例,故不能判定 B.2ECAC =,可得AC :AE=1:1,与已知2AB AD=不成比例,故不能判定; C 选项与已知的2ABAD=,可得两组边对应成比例,但夹角不知是否相等,因此不一定能判定; 12DE BC = D.2AC ABAE AD ==,可得DE//BC , 故选D. 【点睛】本题考查平行线的判定,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.解析:A【解析】【分析】直接根据“上加下减,左加右减”的原则进行解答即可.【详解】将抛物线23y x =向上平移3个单位,再向左平移2个单位,根据抛物线的平移规律可得新抛物线的解析式为23(2)3y x =++,故答案选A . 8.B解析:B【解析】【分析】可证明△DFE ∽△BFA ,根据相似三角形的面积之比等于相似比的平方即可得出答案.【详解】∵四边形ABCD 为平行四边形,∴DC ∥AB ,∴△DFE ∽△BFA ,∵DE :EC=3:1,∴DE :DC=3:4,∴DE :AB=3:4,∴S △DFE :S △BFA =9:16.故选B .9.D解析:D【解析】【分析】根据概率公式直接计算即可.【详解】解:在这6张卡片中,偶数有4张, 所以抽到偶数的概率是46=23, 故选:D .【点睛】本题主要考查了随机事件的概率,随机事件A 的概率P (A )=事件A 可能出现的结果数÷所有可能出现的结果数,灵活利用概率公式是解题的关键.10.D解析:D【解析】首先将()4,0代入二次函数,求出m ,然后利用根的判别式和求根公式即可判定t 的取值范围.【详解】将()4,0代入二次函数,得2440m -+=∴4m =∴方程为240x x t -+=∴42x ±= ∵15x <<∴54t -<≤故答案为D .【点睛】此题主要考查二次函数与一元二次方程的综合应用,熟练掌握,即可解题.11.B解析:B【解析】【分析】根据圆心距和两圆半径的之间关系可得出两圆之间的位置关系.【详解】∵⊙O 的直径为4,∴⊙O 的半径为2,∵圆心O 到直线l 的距离是2,∴根据圆心距与半径之间的数量关系可知直线l 与⊙O 的位置关系是相切.故选:B .【点睛】本题考查了直线和圆的位置关系的应用,理解直线和圆的位置关系的内容是解此题的关键,注意:已知圆的半径是r ,圆心到直线的距离是d ,当d =r 时,直线和圆相切,当d >r 时,直线和圆相离,当d <r 时,直线和圆相交.12.D解析:D【解析】【分析】由于有13名同学参加歌咏比赛,要取前6名参加决赛,故应考虑中位数的大小.【详解】共有13名学生参加比赛,取前6名,所以小红需要知道自己的成绩是否进入前六.我们把所有同学的成绩按大小顺序排列,第7名学生的成绩是这组数据的中位数,所以小红知道这组数据的中位数,才能知道自己是否进入决赛.故选D .【点睛】本题考查了用中位数的意义解决实际问题.将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.13.B解析:B【解析】试题分析:根据轴对称图形与中心对称图形的概念求解.解:A 、不是轴对称图形,也不是中心对称图形.故错误;B 、是轴对称图形,也是中心对称图形.故正确;C 、是轴对称图形,不是中心对称图形.故错误;D 、不是轴对称图形,也不是中心对称图形.故错误.故选B .点睛:掌握中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.14.D解析:D【解析】【分析】根据表中的对应值,求出二次函数2y ax bx c =++的表达式即可求解.【详解】解:选取02(,),14(,),32(,)三点分别代入2y ax bx c =++得 24932c a b c a b c =⎧⎪++=⎨⎪++=⎩解得:132a b c =-⎧⎪=⎨⎪=⎩∴二次函数表达式为232y x x =-++∵1a =-,抛物线开口向下;∴选项A 错误;∵2c =函数图象与y 的正半轴相交;∴选项B 错误;当x=-1时,2(1)3(1)220y =--+⨯-+=-<;∴选项C 错误;令0y =,得2320x x -++=,解得:1x =,2x =∵3102--<,方程20ax bx c ++=的负根在0与-1之间; 故选:D .【点睛】本题考查二次函数图象与性质,掌握性质,利用数形结合思想解题是关键.15.A解析:A【解析】【分析】按照“左加右减,上加下减”的规律,进而得出平移后抛物线的解析式即可.【详解】抛物线23y x =先向左平移1个单位得到解析式:()231y x =+,再向上平移2个单位得到抛物线的解析式为:()2312y x =++.故选:A .【点睛】此题考查了抛物线的平移变换以及抛物线解析式的变化规律:左加右减,上加下减. 二、填空题16.【解析】试题分析:先根据平均数的定义确定平均数,再根据方差公式进行计算即可求出答案.由平均数的公式得:(1+2+3+4+5)÷5=3,∴方差=[(1﹣3)2+(2﹣3)2+(3﹣3)2+(4解析:【解析】试题分析:先根据平均数的定义确定平均数,再根据方差公式进行计算即可求出答案. 由平均数的公式得:(1+2+3+4+5)÷5=3,∴方差=[(1﹣3)2+(2﹣3)2+(3﹣3)2+(4﹣3)2+(5﹣3)2]÷5=2.考点:方差.17.【解析】【分析】直接利用特殊角的三角函数值得出答案.【详解】tanA=tan60°=.故答案为:.【点睛】本题主要考查了特殊角的三角函数值,正确记忆相关数据是解题关键.【解析】【分析】直接利用特殊角的三角函数值得出答案.【详解】tan A =tan60°.【点睛】本题主要考查了特殊角的三角函数值,正确记忆相关数据是解题关键.18.8【解析】【分析】根据平均数是5,求m 值,再根据方差公式计算,方差公式为: (表示样本的平均数,n 表示样本数据的个数,S2表示方差.)【详解】解:∵4,4,,6,6的平均数是5,∴4+4解析:8【解析】【分析】根据平均数是5,求m 值,再根据方差公式计算,方差公式为:2222121n S x x x x x x n (x 表示样本的平均数,n 表示样本数据的个数,S 2表示方差.)【详解】解:∵4,4,m ,6,6的平均数是5,∴4+4+m+6+6=5×5,∴m=5,∴这组数据为4,4,m ,6,6,∴22222214545556565=0.85S ,即这组数据的方差是0.8.故答案为:0.8.【点睛】本题考查样本的平均数和方差的定义,掌握定义是解答此题的关键.19.15【解析】【分析】由在比例尺为1:50000的地图上,量得A、B两地的图上距离AB=3cm,根据比例尺的定义,可求得两地的实际距离.【详解】解:∵比例尺为1:500000,量得两地的距离解析:15【解析】【分析】由在比例尺为1:50000的地图上,量得A、B两地的图上距离AB=3cm,根据比例尺的定义,可求得两地的实际距离.【详解】解:∵比例尺为1:500000,量得两地的距离是3厘米,∴A、B两地的实际距离3×500000=1500000cm=15km,故答案为15.【点睛】此题考查了比例尺的性质.注意掌握比例尺的定义,注意单位要统一.20.【解析】分析:根据圆内接四边形对边互补和同弧所对的圆心角是圆周角的二倍,可以求得∠AOB的度数,然后根据勾股定理即可求得AB的长.详解:连接AD、AE、OA、OB,∵⊙O的半径为2,△AB解析:22【解析】分析:根据圆内接四边形对边互补和同弧所对的圆心角是圆周角的二倍,可以求得∠AOB 的度数,然后根据勾股定理即可求得AB的长.详解:连接AD、AE、OA、OB,∵⊙O的半径为2,△ABC内接于⊙O,∠ACB=135°,∴∠ADB=45°,∴∠AOB=90°,∵OA=OB=2,∴2,故答案为:2点睛:本题考查三角形的外接圆和外心,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.21.【解析】【分析】首先求出圆锥的底面半径,然后可得底面周长,问题得解.【详解】解:∵扇形的半径为10cm ,做成的圆锥形帽子的高为8cm ,∴圆锥的底面半径为cm ,∴底面周长为2π×6=12解析:12π【解析】【分析】首先求出圆锥的底面半径,然后可得底面周长,问题得解.【详解】解:∵扇形的半径为10cm ,做成的圆锥形帽子的高为8cm ,6=cm ,∴底面周长为2π×6=12πcm ,即这张扇形纸板的弧长是12πcm ,故答案为:12π.【点睛】本题考查圆锥的计算,用到的知识点为:圆锥的底面周长=侧面展开扇形的弧长. 22.6【解析】【分析】先根据平行四边形的性质证得△BEG∽△FAG,从而可得相似比,然后根据同高的两个三角形的面积等于底边之比可求得,根据相似三角形的性质可求得,进而可得答案.【详解】解:∵四解析:6【解析】【分析】先根据平行四边形的性质证得△BEG ∽△FAG ,从而可得相似比,然后根据同高的两个三角形的面积等于底边之比可求得ABG S ∆,根据相似三角形的性质可求得AFG S ∆,进而可得答案.【详解】解:∵四边形ABCD 是平行四边形,∴AD=BC ,AD ∥BC ,∴△BEG ∽△FAG , ∵13BE DF BC ==, ∴12EG BE AG AF ==, ∴211,24BEG BEG ABG AFG S S EG BE S AG S AF ∆∆∆∆⎛⎫==== ⎪⎝⎭, ∵1BEG S ∆=,∴2ABG S ∆=,4AFG S ∆=,∴6ABF ABG AFG S S S ∆∆∆=+=.故答案为:6.【点睛】本题考查了平行四边形的性质、相似三角形的判定和性质以及三角形的面积等知识,属于常考题型,熟练掌握平行四边形的性质和相似三角形的判定与性质是解答的关键. 23.50(1﹣x )2=32.【解析】由题意可得,50(1−x)²=32,故答案为50(1−x)²=32.解析:50(1﹣x )2=32.【解析】由题意可得,50(1−x)²=32,故答案为50(1−x)²=32.24.3【解析】【分析】根据中位数的定义进行求解即可得出答案.【详解】将数据从小到大排列:1,2,3,5,6,处于最中间的数是3,∴中位数为3,故答案为:3.【点睛】本题考查了中位数的定义,中解析:3【解析】【分析】根据中位数的定义进行求解即可得出答案.【详解】将数据从小到大排列:1,2,3,5,6,处于最中间的数是3,∴中位数为3,故答案为:3.【点睛】本题考查了中位数的定义,中位数是将一组数据从小到大或从大到小排列,处于最中间(中间两数的平均数)的数即为这组数据的中位数.25.24π【解析】【分析】根据圆锥的侧面展开图为扇形,先计算出圆锥的底面圆的周长,然后利用扇形的面积公式计算即可.【详解】解:∵圆锥的底面半径为4cm,∴圆锥的底面圆的周长=2π•4=8π,解析:24π【解析】【分析】根据圆锥的侧面展开图为扇形,先计算出圆锥的底面圆的周长,然后利用扇形的面积公式计算即可.【详解】解:∵圆锥的底面半径为4cm,∴圆锥的底面圆的周长=2π•4=8π,∴圆锥的侧面积=12×8π×6=24π(cm2).故答案为:24π.【点睛】本题考查了圆锥的侧面积的计算:圆锥的侧面展开图为扇形,扇形的弧长为圆锥的底面周长,扇形的半径为圆锥的母线长.也考查了扇形的面积公式:S=12•l•R,(l为弧长).26.15π【解析】【分析】圆锥的侧面积=底面周长×母线长÷2.【详解】解:底面圆的半径为3cm,则底面周长=6πcm,侧面面积=×6π×5=15πcm2.故答案为:15π.【点睛】本题考解析:15π【解析】【分析】圆锥的侧面积=底面周长×母线长÷2.【详解】解:底面圆的半径为3cm ,则底面周长=6πcm ,侧面面积=12×6π×5=15πcm 2. 故答案为:15π.【点睛】本题考查的知识点圆锥的侧面积公式,牢记公式是解此题的关键. 27.2【解析】【分析】根据根与系数的关系确定和,然后代入计算即可.【详解】解:∵∴=-3, =-5∴-3-(-5)=2故答案为2.【点睛】本题主要考查了根与系数的关系,牢记对于(a≠解析:2【解析】【分析】根据根与系数的关系确定12x x +和12x x •,然后代入计算即可.【详解】解:∵2350x x +-=∴12x x +=-3, 12x x •=-5∴1212x x x x +-•=-3-(-5)=2故答案为2.【点睛】本题主要考查了根与系数的关系,牢记对于20ax bx c ++=(a≠0),则有:12b x x a +=-,12c x x a•=是解答本题的关键. 28.【解析】【分析】先在CB 上取一点F ,使得CF=,再连接PF 、AF ,然后利用相似三角形的性质和勾股定理求出AF ,即可解答.【详解】解:如图:在CB 上取一点F ,使得CF=,再连接PF 、AF ,【解析】 【分析】先在CB 上取一点F ,使得CF=12,再连接PF 、AF ,然后利用相似三角形的性质和勾股定理求出AF ,即可解答. 【详解】解:如图:在CB 上取一点F ,使得CF=12,再连接PF 、AF , ∵∠DCE=90°,DE=4,DP=PE , ∴PC=12DE=2, ∵14CF CP =,14CP CB = ∴CF CPCP CB= 又∵∠PCF=∠BCP , ∴△PCF ∽△BCP , ∴14PF CF PB CP == ∴PA+14PB=PA+PF ,∵PA+PF≥AF ,==∴PA+14∴PA+14PB故答案为2.【点睛】本题考查了勾股定理、相似三角形的判定和性质等知识,正确添加常用辅助线、构造相似三角形是解答本题的关键.29.y=0.5(x-2)+5【解析】解:∵函数y=(x﹣2)2+1的图象过点A(1,m),B(4,n),∴m=(1﹣2)2+1=1,n=(4﹣2)2+1=3,∴A(1,1),B(4,3),过A作AC解析:y=0.5(x-2)2+5【解析】解:∵函数y=12(x﹣2)2+1的图象过点A(1,m),B(4,n),∴m=12(1﹣2)2+1=112,n=12(4﹣2)2+1=3,∴A(1,112),B(4,3),过A作AC∥x轴,交B′B的延长线于点C,则C(4,112),∴AC=4﹣1=3.∵曲线段AB扫过的面积为12(图中的阴影部分),∴AC•AA′=3AA′=12,∴AA′=4,即将函数y=12(x﹣2)2+1的图象沿y轴向上平移4个单位长度得到一条新函数的图象,∴新图象的函数表达式是y=12(x﹣2)2+5.故答案为y=0.5(x﹣2)2+5.点睛:本题主要考查了二次函数图象与几何变换以及平行四边形面积求法等知识,根据已知得出AA′是解题的关键.30.240m【解析】【分析】根据比例尺=图上距离∶实际距离可得实际距离,再进行单位换算.【详解】设这条公路的实际长度为xcm,则:1:2000=12:x,解得x=24000,24000c解析:240m【解析】【分析】根据比例尺=图上距离∶实际距离可得实际距离,再进行单位换算.【详解】设这条公路的实际长度为xcm,则:1:2000=12:x,解得x=24000,24000cm=240m.故答案为240m.【点睛】本题考查图上距离实际距离与比例尺的关系,解题的关键是掌握比例尺=图上距离∶实际距离.三、解答题31.(1)(﹣7,﹣2),(﹣1,﹣2),(3,﹣2),(﹣7,1),(﹣1,1),(3,1),(﹣7,6),(﹣1,6),(3,6);(2)2 9 .【解析】【分析】列表法或树状图法,平面直角坐标系中各象限点的特征,概率.(1)直接利用表格或树状图列举即可解答.(2)利用(1)中的表格,根据第三象限点(-,-)的特征求出点A落在第三象限共有两种情况,再除以点A的所有情况即可.【详解】解:(1)列表如下:1 (﹣7,1) (﹣1,1) (3,1) 6(﹣7,6)(﹣1,6)(3,6)(2)∵点A 落在第三象限共有(﹣7,﹣2),(﹣1,﹣2)两种情况, ∴点A 落在第三象限的概率是29. 32.(1) 2 ;(2)π-2. 【解析】 【分析】(1)因为AB ⊥DE ,求得CE 的长,因为DE 平分AO ,求得CO 的长,根据勾股定理求得⊙O 的半径(2)连结OF ,根据S 阴影=S 扇形– S △EOF 求得 【详解】解:(1)∵直径AB ⊥DE∴132CE DE == ∵DE 平分AO∴1122CO AO OE == 又∵90OCE ︒∠= ∴30CEO ︒∠= 在Rt △COE 中,2OE = ∴⊙O 的半径为2 (2)连结OF在Rt △DCP 中, ∵45DPC ︒∠= ∴904545D ︒︒︒∠=-= ∴290EOF D ︒∠=∠= ∵2902360OWF S ππ=⨯⨯=扇形∴S 阴影=2π- 【点睛】本题考查了垂径定理:平分弦的直径平分这条弦,并且平分弦所对的两条弧.也考查了扇形的面积公式、圆周角定理和含30度的直角三角形三边的关系. 33.(1)x 1=104+,x 2=-104+(2) x 1=1,x 2=4. 【解析】 【分析】(1)根据配方法即可求解; (2)根据因式分解法即可求解. 【详解】 (1)x 2-8x +6=0 x 2-8x +16=10 (x-4)2=10 x-4=±10∴x 1=104+,x 2=-104+ (2)(x -1)2 - 3(x -1) =0 (x -1)(x -1-3)=0 (x -1)(x-4)=0 ∴x-1=0或x-4=0 解得x 1=1,x 2=4. 【点睛】此题主要考查一元二次方程的求解,解题的关键是熟知其解法的运用.{题型:3-选择题}{题目}{适用范围:1.七年级}{类别:常考题}{章节:[1-1-3]003}计划开设以下课外活动项目:A 一版画、B 一机器人、C 一航模、D 一园艺种植.为了解学生最喜欢哪一种活动项目,随机抽取了部分学生进行调查(每位学生 必须选且只能选一个项目),并将调查结果绘制成了两幅不完整的统计图,请回答下列问题:(1)这次被调查的学生共有 人;扇形统计图中,选“D 一园艺种植”的学生人数所占圆心角的度数是 °;(2)请你将条形统计图补充完整;(3)若该校学生总数为 1500 人,试估计该校学生中最喜欢“机器人”和最喜欢“航模”项目的总 人数(1)200;72(2)60(人),图见解析(3)1050人.【解析】 【分析】(1)由A 类有20人,所占扇形的圆心角为36°,即可求得这次被调查的学生数,再用360°乘以D 人数占总人数的比例可得;(2)首先求得C 项目对应人数,即可补全统计图; (3)总人数乘以样本中B 、C 人数所占比例可得. 【详解】(1)∵A 类有20人,所占扇形的圆心角为36°, ∴这次被调查的学生共有:20÷36360=200(人); 选“D 一园艺种植”的学生人数所占圆心角的度数是360°×40200=72°, 故答案为:200、72;(2)C 项目对应人数为:200−20−80−40=60(人); 补充如图.(3)1500×8060200+=1050(人), 答:估计该校学生中最喜欢“机器人”和最喜欢“航模”项目的总人数为1050人. 【点睛】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小. 34.(1)b=2或b=10-;(2)x 1=x 2=2; 【解析】 【分析】(1)根据根的判别式即可求出答案.(2)由(1)可知b=2,根据一元二次方程的解法即可求出答案. 【详解】解:(1)由题意可知:△=(b+2)2-4(6-b )=0, ∴28200b b +-= 解得:b=2或b=10-. (2)当b=2时,此时x 2-4x+4=0, ∴2(2)0x -=, ∴x 1=x 2=2; 【点睛】本题考查一元二次方程,解题的关键是熟练运用一元二次方程的解法,本题属于基础题型.35.(1)2,3,()1,0-;(2)①32t =时,DE 长度最大,最大值为94;②32t =或52t =【解析】 【分析】(1)先求得坐标(3,0),(0,3)A B ,把(3,0),(0,3)A B 代入2y x bx c =-++中,利用待定系数法求得系数得出解析式,进一步求解C 点坐标即可;(2)①由题知()2(,0),,23P t D t t t -++、(,3)E t t -+;()223(3)DE t t t =-++--+将函数化为顶点式,即可得到最大值.)②将BF 、DF 用含有t 的代数式表示,分类讨论当BDF CBO △∽△相似,则BF OC DF OB=)2312t t -=,求得t ,当BDF BCO △∽△相似,则BF OB DF OC =()2312t t -=,求得t 即可. 【详解】解:(1)在3y x =-+中令0x =,得3y =,令0y =,得3x =,∴(3,0),(0,3)A B ,把(3,0),(0,3)A B 代入2y x bx c =-++中,得:93010b c b c -++=⎧⎨--+=⎩,解得23b c =⎧⎨=⎩,∴抛物线的解析式为2y x 2x 3=-++, ∴C 点坐标为()1,0-;(2)①由题知()2(,0),,23P t D t t t -++、(,3)E t t -+;∴()223(3)DE t t t =-++--+23t t =-+239()24t =--+∴当32t =时,DE 长度最大,最大值为94.②∵()()3,0,0,3A B , ∴OA OB =, ∴45BAO ∠=︒,在Rt PAE 中,45PAE ∠=︒,)AE t ==-;在Rt DEF △中,45DEF ∠=︒,2)DF EF t t ===-;∴))22)322BF AB AE EF t t t t t =--=---=- 若BDF CBO △∽△相似,则BF OC DF OB =)231t t -=, 解得:0t =(舍去),32t =; 若BDF BCO △∽△相似,则BF OB DF OC =)2312t t -=,解得:0t =(舍去),52t =;综上,32t =或52t =时,BOC 与BDF 相似.【点睛】本题考查了二次函数的综合运用以及相似三角形性质.求出二次函数解析式,研究二次函数的顶点坐标及相关图形的特点,是解题的关键.四、压轴题36.(1)见解析;(2)96;(3)AD=2OM ,理由见解析 【解析】 【分析】(1)根据弦、弧、圆心角的关系证明;(2)根据弧BD 的度数为120°,得到∠BOD=120°,利用解直角三角形的知识求出BD ,根据题意计算即可;(3)连结OB 、OC 、OA 、OD ,作OE ⊥AD 于E ,如图3,根据垂径定理得到AE=DE ,再利用圆周角定理得到∠BOM=∠BAC ,∠AOE=∠ABD ,再利用等角的余角相等得到∠OBM=∠AOE ,则可证明△BOM ≌△OAE 得到OM=AE ,证明结论. 【详解】解:(1)证明:∵AC=BD , ∴AC BD =, 则ABDC ,∴AB=CD;(2)如图1,连接OB 、OD ,作OH ⊥BD 于H , ∵弧BD 的度数为120°, ∴∠BOD=120°, ∴∠BOH=60°, 则BH=3OB=43, ∴BD=83, 则四边形ABCD 的面积=12×AC×BD=96;(3)AD=2OM ,连结OB 、OC 、OA 、OD ,作OE ⊥AD 于E ,如图2, ∵OE ⊥AD , ∴AE=DE , ∵∠BOC=2∠BAC , 而∠BOC=2∠BOM , ∴∠BOM=∠BAC , 同理可得∠AOE=∠ABD , ∵BD ⊥AC , ∴∠BAC+∠ABD=90°, ∴∠BOM+∠AOE=90°, ∵∠BOM+∠OBM=90°, ∴∠OBM=∠AOE , 在△BOM 和△OAE 中,OMB OEA OBM OAE OB OA ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△BOM ≌△OAE (AAS ), ∴OM=AE , ∴AD=2OM .。
濮阳市九年级上学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)(2020·平谷模拟) 如果,那么代数式的值为()A .B . -2C .D . 22. (2分)(2020·龙泉驿模拟) 如图,A,B,C是⊙O上的三点,已知∠O=60º,则∠C=()A . 20ºB . 25ºC . 30ºD . 45º3. (2分) (2019九上·宝山月考) 下列各组图形中,一定相似的是()A . 两个矩形B . 两个菱形C . 两个正方形D . 两个等腰三角形4. (2分)从一副未曾启封的扑克牌中取出1张红桃、2张黑桃,共3张,洗匀后,从这3张牌中任取一张牌,恰好是黑桃的概率是()A .B .C .D . 15. (2分) (2019九上·湖州月考) 将二次函数y=2x2的图象向右平移4个单位,再向上平移5个单位后,所得图象的函数表达式是()A . y=2 -5B . y=2 +5C . y=2 +5D . y=2 -56. (2分)若正方形的对角线长为2,则这个正方形的面积为()A . 2B . 4C .D . 27. (2分) (2019九上·道里期末) 已知二次函数图象的一部分如图所示,给出以下结论:;当时,函数有最大值;方程的解是,;,其中结论错误的个数是A . 1B . 2C . 3D . 48. (2分) (2019八下·松滋期末) 如图,在Rt△ABC中,∠ACB=90°,∠A=30°,D,E,F分别为AB,AD,AC的中点,若CB=4,则EF的长度为()A . 2B . 1C .D . 29. (2分) (2018九上·绍兴期中) 已知二次函数y=﹣x2+x+6及一次函数y=﹣x+m,将该二次函数在x轴上方的图象沿x轴翻折到x轴下方,图象的其余部分不变,得到一个新函数(如图所示),当直线y=﹣x+m与新图象有4个交点时,m的取值范围是()A . <m<3B . <m<2C . ﹣2<m<3D . ﹣6<m<﹣210. (2分)(2020·路桥模拟) 如图,在矩形ABCD中,将△ABE沿着BE翻折,使点A落在BC边上的点F处,再将△DEG沿着EG翻折,使点D落在EF边上的点H处. 若点A,H,C在同一直线上,AB=1,则AD的长为()A .B .C .D .二、填空题 (共5题;共5分)11. (1分) (2019九上·义乌月考) 函数y=x2+2x﹣8与y轴的交点坐标是________.12. (1分) (2017八下·桥东期中) 已知a,b可以取﹣2,﹣1,1,2中任意一个值(a≠b),则直线y=ax+b 的图象经过第四象限的概率是________.13. (1分) (2016九上·鼓楼期末) 若线段AB=6cm,点C是线段AB的一个黄金分割点(AC>BC),则AC的长为________cm(结果保留根号).14. (1分)如图,反比例函数y= 的图象经过▱ABCD对角线的交点P,已知点A,C,D在坐标轴上,BD⊥DC,▱ABCD的面积为6,则k=________.15. (1分)(2020·宽城模拟) 如图,小明的父亲在相距2米的两棵树间拴了一根绳子,给小明做了一个简易的秋千。
河南省濮阳市九年级上学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共8题;共16分)1. (2分)在中,,,,以C为圆心,为半径作,则点A与的位置关系是()A . 点A在内B . 点A在上C . 点A在外D . 无法确定2. (2分)如图,在▱ABCD中,AB=5,BC=8,∠ABC,∠BCD的角平分线分别交AD于E和F,BE与CF交于点G,则△EFG与△BCG面积之比是()A . 5:8B . 25:64C . 1:4D . 1:163. (2分)已知二次函数y=ax2+bx+c,当x=1时,有最大值8,其图象的形状、开口方向与抛物线y=-2x2相同,则这个二次函数的表达式是()A . y=-2x2-x+3B . y=-2x2+4C . y=-2x2+4x+8D . y=-2x2+4x+64. (2分) (2017九上·黄冈期中) 如图,在⊙O中,= ,∠AOB=40°,则∠ADC的度数是()B . 30°C . 20°D . 15°5. (2分)(2018·市中区模拟) 如图,AB为⊙O的直径,C,D为⊙O上的点,若AC=CD=DB,则cos∠CAD =()A .B .C .D .6. (2分)已知⊙O的半径是4,P是⊙O外的一点,且PO=8,从点P引⊙O的两条切线,切点分别是A,B,则AB=()A . 4B .C .D .7. (2分) (2015九上·宜昌期中) 二次函数y=ax2+bx+c的图象如图所示,若点A(﹣1,y1)、B(﹣6,y2)是它图象上的两点,则y1与y2的大小关系是()A . y1<y2B . y1=y2D . 不能确定8. (2分)如图,把△ABC纸片沿DE折叠,当点A落在四边形BCDE的外部时,则∠A与∠1和∠2之间有一种数量关系始终保持不变,请试着找一找这个规律,你发现的规律是()A . 2∠A=∠1-∠2B . 3∠A=2(∠1-∠2)C . 3∠A=2∠1-∠2D . ∠A=∠1-∠2二、填空题 (共9题;共10分)9. (1分) (2017九上·河源月考) 如果在比例尺为1∶1000 000的地图上,A、B两地的图上距离是3.4厘米,那么A、B两地的实际距离是________千米.10. (1分)黄金矩形的宽与长的比大约为________(精确到0.001).11. (1分)已知关于x的一元二次方程x2﹣2x+k=0有两个不相等的实数根,则k的取值范围是________ .12. (1分) (2018九上·桥东期中) 如图,已知图中的每个小方格都是边长为1的小正方形,每个小正方形的顶点称为格点.若△ABC与△A1B1C1是位似图形,且顶点都在格点上,则位似中心的坐标是________.13. (1分) (2019九下·东台月考) 如图,在8×4 的矩形网格中,每个小正方形的边长都是 1,若的三个顶点在图中相应的格点上,则的值为________14. (1分)如图,同样高的旗杆,离路灯越近,它的影子就越________15. (1分) (2017八下·君山期末) 一个等边三角形的边长等于4cm,则这个三角形的面积等于________.16. (1分)已知一个平行四边形的一条对角线将其分为全等的两个等腰直角三角形,且这条对角线的长为6,则另一条对角线长为________ .17. (2分)已知正方形ABCD,点P,Q分别是边BC,CD的动点(均不与顶点重合),当DQ+BP=PQ时,则∠QAP=________.三、解答题 (共10题;共89分)18. (10分)计算:(1)(2).19. (5分)(2019·东台模拟) 如图,在矩形ABCD中,AB=6cm,BC=12cm,点P从点A出发沿AB以1cm/s 的速度向点B移动;同时,点Q从点B出发沿BC以2cm/s的速度向点C移动,几秒种后△DPQ的面积为31cm2?20. (7分) (2018九上·扬州期中) 九(2)班组织了一次知识竞赛,甲、乙两队各10人的比赛成绩如下表(10分制):甲789710109101010乙10879810109109(1)甲队成绩的中位数是________分,乙队成绩的众数是________分;(2)计算乙队的平均成绩和方差;(3)已知甲队成绩的方差是1.4,则成绩较为整齐的是________队.21. (2分)(2017·永新模拟) 为了备战初三物理、化学实验操作考试,某校对初三学生进行了模拟训练,物理、化学各有4各不同的操作实验题目,物理用番号①、②、③、④代表,化学用字母a、b、c、d表示,测试时每名学生每科只操作一个实验,实验的题目由学生抽签确定,第一次抽签确定物理实验题目,第二次抽签确定化学实验题目.(1)请用树形图法或列表法,表示某个同学抽签的各种可能情况.(2)小张同学对物理的①、②和化学的b、c号实验准备得较好,他同时抽到两科都准备的较好的实验题目的概率是多少?22. (10分) (2016九上·南浔期末) 计算:(1)(﹣1)2+tan45°﹣;(2)已知 = ,求的值.23. (10分)已知二次函数y=﹣x2+4x.(1)写出二次函数y=﹣x2+4x图象的对称轴;(2)在给定的平面直角坐标系中,画出这个函数的图象(列表、描点、连线);(3)根据图象,写出当y<0时,x的取值范围.24. (10分) (2017七下·邗江期中) 探索题:图a是一个长为2m、宽为2n的长方形,沿图中虚线用剪刀均分成四块小长方形,然后按图b的形状拼成一个正方形.(1)请用两种不同的方法,求图b中阴影部分的面积:方法1:________;方法2:________;(3)根据(2)题中的等量关系,解决如下问题:若,,求的值.25. (10分)(2017·商水模拟) 如图,一楼房AB后有一假山,其坡度为i=1:,山坡坡面上E点处有一休息亭,测得假山坡脚C与楼房水平距离BC=25米,与亭子距离CE=20米,小丽从楼房顶测得E点的俯角为45°,求楼房AB的高.(注:坡度i是指坡面的铅直高度与水平宽度的比)26. (10分)(2018·阳新模拟) 如图:AB是⊙O的直径,AC交⊙O于G,E是AG上一点,D为△BCE内心,BE交AD于F,且∠DBE=∠BAD.(1)求证:BC是⊙O的切线;(2)求证:DF=DG;(3)若∠ADG=45°,DF=1,则有两个结论:①AD•BD的值不变;②AD-BD的值不变,其中有且只有一个结论正确,请选择正确的结论,证明并求其值.27. (15分)(2017·个旧模拟) 如图,长方形OABC的OA边在x轴的正半轴上,OC在y轴的正半轴上,抛物线y=ax2+bx经过点B(1,4)和点E(3,0)两点.(1)求抛物线的解析式;(2)若点D在线段OC上,且BD⊥DE,BD=DE,求D点的坐标;(3)在条件(2)下,在抛物线的对称轴上找一点M,使得△BDM的周长为最小,并求△BDM周长的最小值及此时点M的坐标.参考答案一、单选题 (共8题;共16分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、二、填空题 (共9题;共10分)9-1、10-1、11-1、12-1、13-1、14-1、15-1、16-1、17-1、三、解答题 (共10题;共89分)18-1、18-2、19-1、20-1、20-2、20-3、21-1、21-2、22-1、22-2、23-1、23-3、24-1、24-2、24-3、25-1、26-1、26-2、26-3、27-1、27-2、27-3、。
河南省濮阳市九年级上学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)下列事件不可能发生的是()A . 打开电视机,CCTV – 1正在播放新闻B . 我们班的同学将来会有人当选为劳动模范C . 在空气中,光的传播速度比声音的传播速度快D . 若实数C<0,则3C>2C2. (2分) (2019九上·长春月考) 如图,已知中,,,,则的值为()A .B .C .D .3. (2分) (2017八下·仁寿期中) 若点(x1 , y1)、(x2 , y2)和(x3 , y3)分别在反比例函数的图象上,,则下列判断中正确的是()A .B .C .D .4. (2分)一个圆形人工湖如图所示,弦AB是湖上的一座桥,已知桥AB 长100m,测得圆周角,则这个人工湖的直径AD为()A . 50mB . 100mC . 150mD . 200m5. (2分) (2017九上·汝州期中) 如图,正方形 ABCD中AB= 3,点B在边CD上,且 CD=3DE. 将△ADE沿AE对折至△AFE,延长EF交边BC 于点G,连接AG,CF下列结论:①点G是BC的中点;②FG=FC;③ GAE=45º;④GE=BG+DE.其中正确的是()A . ①②B . ①③④C . ②③D . ①②③④6. (2分)若所求的二次函数图象与抛物线y=2x2-4x-1有相同的顶点,并且在对称轴的左侧,y随x的增大而增大,在对称轴的右侧,y随x的增大而减小,则所求二次函数的表达式为()A . y=-x2+2x+4B . y=-ax2-2ax-3(a>0)C . y=-2x2-4x-5D . y=ax2-2ax+a-3(a<0)7. (2分)如图,白云湖水库堤坝横断面迎水坡AB的斜面坡度是1:,堤坝高BC=50m,则迎水坡面AB 的长度是()A . 100mB . 2400mC . 400mD . 1200m8. (2分)(2017·诸城模拟) 已知一次函数y1=kx+b(k<0)与反比例函数y2= (m≠0)的图像相交于A、B两点,其横坐标分别是﹣1和3,当y1>y2 ,实数x的取值范围是()A . x<﹣1或0<x<3B . ﹣1<x<0或0<x<3C . ﹣1<x<0或x>3D . 0<x<39. (2分)如图,在△ABC中,∠B=60°,∠EDC=∠BAC,且D为BC中点,DE=CE,则AE:AB的值为()A .B .C .D . 无法确定10. (2分)已知函数,则使y=k成立的x值恰好有三个,则k的值为A . 0B . 1C . 2D . 3二、填空题 (共5题;共5分)11. (1分) (2016八上·鞍山期末) 将抛物线图象向右平移2个单位再向下平移3个单位,所得图象的解析式为________.12. (1分) (2017八上·兴化期末) 某事件经过500000000次试验,出现的频率是0.3,它的概率估计值是________.13. (1分) (2019九上·孝感月考) 已知圆锥的底面半径为40cm,母线长为90cm,则它的侧面展开图的圆心角为________.14. (1分)如图,在△ABC中,D、E分别是AB、AC的中点,若BC=10,则DE=________ .15. (1分) (2017八下·无棣期末) 如图,Rt△ABC中,∠ABC=90°,AB=BC,直线l1、l2、l3分别通过A、B、C三点,且l1∥l2∥l3 .若l1与l2的距离为4,l2与l3的距离为6,则Rt△ABC的面积为________.三、解答题 (共9题;共64分)16. (1分)(2011·南京) 如图,海边立有两座灯塔A、B,暗礁分布在经过A、B两点的弓形(弓形的弧是⊙O的一部分)区域内,∠AOB=80°.为了避免触礁,轮船P与A、B的张角∠APB的最大值为________.17. (6分) (2017八上·启东期中) 作图题:(不写作法,但要保留痕迹)如图1,已知点C、D和∠AOB,求作一点P,使P到点C、D的距离相等,且到∠AOB的两边的距离相等.在图2中直线m上找到一点Q,使它到A、B两点的距离和最小.18. (2分)(2017·丹东模拟) 有四张正面分别标有数字2,1,﹣3,﹣4的不透明卡片,它们除数字外其余全部相同,现将它们背面朝上,洗匀后从四张卡片中随机地摸取一张不放回,将该卡片上的数字记为m,再随机地摸取一张,将卡片上的数字记为n.(1)请画出树状图并写出(m,n)所有可能的结果;(2)求所选出的m,n能使一次函数y=mx+n的图象经过第二、三、四象限的概率.19. (2分)在2015年4月18日潍坊国际风筝节开幕上,小敏同学在公园广场上放风筝,如图风筝从A处起飞,几分钟后便飞达C处,此时,在AQ延长线上B处的小亮同学,发现自己的位置与风筝和广场边旗杆PQ的顶点P在同一直线上.(1)已知旗杆高为10米,若在B处测得旗杆顶点P的仰角为30°,A处测得点P的仰角为45°,试求A、B 之间的距离;(2)在(1)的条件下,若在A处背向旗杆又测得风筝的仰角为75°,绳子在空中视为一条线段,求绳子AC 为多少米?(结果保留根号)20. (10分) (2016七下·黄陂期中) 长方形ABCD放置在如图所示的平面直角坐标系中,点A(2,2 ),AB∥x轴,AD∥y轴,AB=3,AD= .(1)分别写出点B,C,D的坐标;(2)在x轴上是否存在点P,使三角形PAD的面积为长方形ABCD面积的?若存在,请求出点P的坐标;若不存在,请说明理由.21. (8分) (2019九上·宜兴期中) 如图(1)如图1,网格中每个小正方形的边长为1,点A,B均在格点上.则线段AB的长为________.请借助网格,仅用无刻度的直尺在AB上作出点P,使AP= .(2)⊙O为△ABC的外接圆,请仅用无刻度的直尺,依下列条件分别在图2,图3的圆中画出一条弦,使这条弦将△ABC分成面积相等的两部分(保留作图痕迹,不写作法,请下结论注明你所画的弦).①如图2,AC=BC;②如图3,P为圆上一点,直线l⊥OP且l∥BC.22. (10分)(2017·达州模拟) 如图,在△ABC,AB=AC,以AB为直径的⊙O分别交AC、BC于点D、E,点F 在AC的延长线上,且∠CBF= ∠CAB.(1)求证:直线BF是⊙O的切线;(2)若AB=5,sin∠CBF= ,求BC和BF的长.23. (15分) (2019九上·长春期末) 某种商品每天的销售利润y(元)与销售单价x(元)之间满足关系y =mx2+20x+n,其图象如图所示.(1) m=________,n=________.(2)销售单价为多少元时,该种商品每天的销售利润最大?最大利润为多少元?(3)该种商品每天的销售利润不低于16元时,直接写出x的取值范围.24. (10分) (2016九上·中山期末) 如图(1),将线段AB绕点A逆时针旋转2α(0°<α<90°)至AC,P是过A,B,C的三点圆上任意一点.(1)当α=30°时,如图(1),求证:PC=PA+PB;(2)当α=45°时,如图(2),PA,PB,PC三条线段间是否还具有上述数量关系?若有,请说明理由;若不具有,请探索它们的数量关系.参考答案一、单选题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共5题;共5分)11-1、12-1、13-1、14-1、15-1、三、解答题 (共9题;共64分)16-1、17-1、18-1、18-2、19-1、19-2、20-1、20-2、21-1、21-2、22-1、22-2、23-1、23-2、23-3、24-1、24-2、。
2019-2020学年河南省濮阳市濮阳县九年级(上)期末模拟数学试卷一、单选题(共10题;共30分)1.将抛物线y=5x2向下平移3个单位,再向左平移2个单位,那么得到的抛物线的解析式为()A. y=5(x+2)2-3B. y=5(x+2)2+3C. y=5(x-2)2-3D. y=5(x-2)2+32.有长24m的篱笆,一面利用围墙围成如图中间隔有一道篱笆的矩形花圃,设花圃的垂直于墙的一边长为x m,面积是s m2,则s与x的关系式是()A. s=﹣3x2+24xB. s=﹣2x2﹣24xC. s=﹣3x2﹣24xD. s=﹣2x2+24x3.如图,⊙O的半径OD⊥弦AB于点C,连结AO并延长交⊙O于点E,连结EC.若AB=8,CD=2,则sin∠ECB为()A. B. C. D.4.一张长方形桌子的长是150cm,宽是100cm,现在要设计一块长方形桌布,面积是桌面的2倍,且使四周垂下的边宽是xcm.根据题意,得()A. (150+x)(100+x)=150×100×2B. (150+2x)(100+2x)=150×100×2C. (150+x)(100+x)=150×100D. 2(150x+100x)=150×1005.如图,⊙O是△ABC的外接圆,直径AD与BC相交于点E,连接CD,若⊙O的半径为5,AB=AC=8,DE=3,则EC长为()A. 4B.C.D.6.如图,已知⊙O的直径AB⊥弦CD于点E,下列结论中一定正确的是()A. AE=OEB. CE=DEC. OE=CED. ∠AOC=60°7.关于x的方程x2﹣4x+4a=0有两个实数根,则a的取值范围是()A. a<1B. a>1C. a≤1D. a≥18.抛掷两枚均匀的硬币,当抛掷多次以后,出现两个反面的成功率大约稳定在().A. 25%B. 50%C. 75%D. 100%9.如图,⊙O中,点A,O,D以及点B,O,C分别在一条直线上,图中弦的条数有()A. 2条B. 3条C. 4条D. 5条10.下列图形中,即是中心对称又是轴对称图形的是( )A. 等边三角形B. 平行四边形C. 梯形D. 矩形二、填空题(共8题;共24分)11.在直角梯形ABCD中,AD∥BC,∠DAB=90°,AD=1,BC=2.连接BD,把△ABD绕着点B逆时针旋转90°得到△EBF,若点F刚好落在DA的延长线上,则∠C=________°.12.若最简二次根式与是同类二次根式,则a=________.13.要使代数式有意义,则x的取值范围是________.14.反比例函数y=中,k值满足方程k2﹣k﹣2=0,且当x>0时,y随x的增大而增大,则k=________15.二次函数y=x2﹣4x﹣3的顶点坐标是________.16.某小组同学,新年时每人互送贺年卡一张,共送贺年卡56张,这个小组共有________ 人.17.将抛物线y=x2沿x轴向右平移2个单位后所得抛物线的解析式是________18.如图,在扇形AOB中,∠AOB=90°,点C为OA的中点,CE⊥OA交于点E,以点O为圆心,OC的长为半径作交OB于点D.若OA=2,则阴影部分的面积为________.三、解答题(共6题;共36分)19.我省某工艺厂为全运会设计了一款成本为每件20元得工艺品,投放市场进行试销后发现每天的销售量y(件)是售价x(元∕件)的一次函数,当售价为22元∕件时,每天销售量为780件;当售价为25元∕件时,每天的销售量为750件.(1)求y与x的函数关系式;(2)如果该工艺品售价最高不能超过每件30元,那么售价定为每件多少元时,工艺厂销售该工艺品每天获得的利润最大?最大利润是多少元?(利润=售价﹣成本)20.如图,已知圆的半径为r,求外接正六边形的边长.21.已知直线L1∥L2,点A,B,C在直线L1上,点E,F,G在直线L2上,任取三个点连成一个三角形,求:(1)连成△ABE的概率;(2)连成的三角形的两个顶点在直线L2上的概率.22.一学校为了绿化校园环境,向某园林公司购买力一批树苗,园林公司规定:如果购买树苗不超过60棵,每棵售价120元;如果购买树苗超过60棵,每增加1棵,所出售的这批树苗每棵售价均降低0.5元,但每棵树苗最低售价不得少于100元,该校最终向园林公司支付树苗款8800元,请问该校共购买了多少棵树苗?23.如图所示,在一幅长80cm,宽50cm的矩形风景画的四周镶一条金色纸边,制成一幅矩形挂图,如果要使整个挂图的面积是5400cm2,设金色纸边的宽为xcm,求满足x的方程.24.已知x=﹣1是关于x的方程x2+2ax+a2=0的一个根,求a的值.四、综合题(共10分)25.已知∠α的顶点在正n边形的中心点O处,∠α绕着顶点O旋转,角的两边与正n边形的两边分别交于点M、N,∠α与正n边形重叠部分面积为S.(1)当n=4,边长为2,∠α=90°时,如图(1),请直接写出S的值;(2)当n=5,∠α=72°时,如图(2),请问在旋转过程中,S是否发生变化?并说明理由;(3)当n=6,∠α=120°时,如图(3),请猜想S是原正六边形面积的几分之几(不必说明理由).若∠α的平分线与BC边交于点P,判断四边形OMPN的形状,并说明理由.2019-2020学年河南省濮阳市濮阳县九年级(上)期末模拟数学试卷参考答案与试题解析一、单选题1.【答案】A【考点】二次函数图象与几何变换【解析】【分析】根据向左平移横坐标减,向下平移纵坐标减求出平移后的抛物线的顶点坐标,然后利用顶点式解析式写出即可.【解答】∵抛物线y=5x2向下平移3个单位,向左平移2个单位,∴平移后的抛物线的顶点坐标为(-2,-3),∴平移得到的抛物线的解析式为y=5(x+2)2-3.故答案为:A.【点评】本题考查了二次函数图象与几何变换,熟练掌握平移的规律:左加右减,上加下减并确定出平移后的抛物线的顶点坐标是解题的关键2.【答案】A【考点】根据实际问题列二次函数关系式【解析】【解答】S=(24﹣3x)x=24x﹣3x2.故选:A.【分析】AB为x m,则BC为(24﹣3x)m,利用长方体的面积公式,可求出关系式.3.【答案】B【考点】垂径定理【解析】【解答】解:连结BE,如图,∵OD⊥AB,∴AC=BC=AB=×8=4,设AO=x,则OC=OD﹣CD=x﹣2,在Rt△ACO中,∵AO2=AC2+OC2,∴x2=42+(x﹣2)2,解得:x=5,∴AE=10,OC=3,∵AE是直径,∴∠ABE=90°,∵OC是△ABE的中位线,∴BE=2OC=6,在Rt△CBE中,CE=∴sin∠ECB=故选:B.【分析】根据垂径定理得到AC=BC=AB=4,设AO=x,则OC=OD﹣CD=x﹣2,在Rt△ACO中根据勾股定理得到x2=42+(x﹣2)2,解得x=5,则AE=10,OC=3,再由AE是直径,根据圆周角定理得到∠ABE=90°,利用OC是△ABE的中位线得到BE=2OC=6,然后在Rt△CBE中利用勾股定理可计算出CE,由三角函数的定义求出sin∠ECB即可.4.【答案】B【考点】一元二次方程的应用【解析】【解答】解:设四周垂下的边宽度为xcm,桌布的长为(150+2x),宽为(100+2x),根据桌布面积是桌面的2倍可得:(150+2x)(100+2x)=150×100×2,故选B.【分析】设四周垂下的边宽度为xcm,求得桌布的面积,根据桌布面积是桌面的2倍列方程解答时即可.5.【答案】B【考点】等腰三角形的性质,三角形的外接圆与外心【解析】【解答】解:∵⊙O的半径为5,DE=3,∴AE=10﹣3=7,∵AD是直径,∴∠ACD=90°,∴CD=6,∵AB=AC,∴∠ACE=∠D,又∠DAC=∠CAE,∴△AEC∽△ACD,∴= ,即= ,解得,EC= ,故选:B.【分析】根据勾股定理求出CD,证明△AEC∽△ACD,根据相似三角形的性质列出比例式,计算即可.6.【答案】B【考点】垂径定理【解析】【分析】垂径定理:垂直于弦的直径平分弦,并且平分弦所对的弧。
2019-2019学年河南省濮阳市濮阳县九年级(上)期末模拟数学试卷一、单选题(共10题;共30分)1.将抛物线y=5x2向下平移3个单位,再向左平移2个单位,那么得到的抛物线的解析式为()A. y=5(x+2)2-3B. y=5(x+2)2+3C. y=5(x-2)2-3D. y=5(x-2)2+32.有长24m的篱笆,一面利用围墙围成如图中间隔有一道篱笆的矩形花圃,设花圃的垂直于墙的一边长为x m,面积是s m2,则s与x的关系式是()A. s=﹣3x2+24xB. s=﹣2x2﹣24xC. s=﹣3x2﹣24xD. s=﹣2x2+24x3.如图,⊙O的半径OD⊥弦AB于点C,连结AO并延长交⊙O于点E,连结EC.若AB=8,CD=2,则sin∠ECB为()A. B. C. D.4.一张长方形桌子的长是150cm,宽是100cm,现在要设计一块长方形桌布,面积是桌面的2倍,且使四周垂下的边宽是xcm.根据题意,得()A. (150+x)(100+x)=150×100×2B. (150+2x)(100+2x)=150×100×2C. (150+x)(100+x)=150×100D. 2(150x+100x)=150×1005.如图,⊙O是△ABC的外接圆,直径AD与BC相交于点E,连接CD,若⊙O的半径为5,AB=AC=8,DE=3,则EC长为()A. 4B.C.D.6.如图,已知⊙O的直径AB⊥弦CD于点E,下列结论中一定正确的是()A. AE=OEB. CE=DEC. OE=CED. ∠AOC=60°7.关于x的方程x2﹣4x+4a=0有两个实数根,则a的取值范围是()A. a<1B. a>1C. a≤1D. a≥18.抛掷两枚均匀的硬币,当抛掷多次以后,出现两个反面的成功率大约稳定在().A. 25%B. 50%C. 75%D. 100%9.如图,⊙O中,点A,O,D以及点B,O,C分别在一条直线上,图中弦的条数有()A. 2条B. 3条C. 4条D. 5条10.下列图形中,即是中心对称又是轴对称图形的是( )A. 等边三角形B. 平行四边形C. 梯形D. 矩形二、填空题(共8题;共24分)11.在直角梯形ABCD中,AD∥BC,∠DAB=90°,AD=1,BC=2.连接BD,把△ABD绕着点B逆时针旋转90°得到△EBF,若点F刚好落在DA的延长线上,则∠C=________°.12.若最简二次根式与是同类二次根式,则a=________.13.要使代数式有意义,则x的取值范围是________.14.反比例函数y=中,k值满足方程k2﹣k﹣2=0,且当x>0时,y随x的增大而增大,则k=________15.二次函数y=x2﹣4x﹣3的顶点坐标是________.16.某小组同学,新年时每人互送贺年卡一张,共送贺年卡56张,这个小组共有________ 人.17.将抛物线y=x2沿x轴向右平移2个单位后所得抛物线的解析式是________18.如图,在扇形AOB中,∠AOB=90°,点C为OA的中点,CE⊥OA交于点E,以点O为圆心,OC的长为半径作交OB于点D.若OA=2,则阴影部分的面积为________.三、解答题(共6题;共36分)19.我省某工艺厂为全运会设计了一款成本为每件20元得工艺品,投放市场进行试销后发现每天的销售量y(件)是售价x(元∕件)的一次函数,当售价为22元∕件时,每天销售量为780件;当售价为25元∕件时,每天的销售量为750件.(1)求y与x的函数关系式;(2)如果该工艺品售价最高不能超过每件30元,那么售价定为每件多少元时,工艺厂销售该工艺品每天获得的利润最大?最大利润是多少元?(利润=售价﹣成本)20.如图,已知圆的半径为r,求外接正六边形的边长.21.已知直线L1∥L2,点A,B,C在直线L1上,点E,F,G在直线L2上,任取三个点连成一个三角形,求:(1)连成△ABE的概率;(2)连成的三角形的两个顶点在直线L2上的概率.22.一学校为了绿化校园环境,向某园林公司购买力一批树苗,园林公司规定:如果购买树苗不超过60棵,每棵售价120元;如果购买树苗超过60棵,每增加1棵,所出售的这批树苗每棵售价均降低0.5元,但每棵树苗最低售价不得少于100元,该校最终向园林公司支付树苗款8800元,请问该校共购买了多少棵树苗?23.如图所示,在一幅长80cm,宽50cm的矩形风景画的四周镶一条金色纸边,制成一幅矩形挂图,如果要使整个挂图的面积是5400cm2,设金色纸边的宽为xcm,求满足x的方程.24.已知x=﹣1是关于x的方程x2+2ax+a2=0的一个根,求a的值.四、综合题(共10分)25.已知∠α的顶点在正n边形的中心点O处,∠α绕着顶点O旋转,角的两边与正n边形的两边分别交于点M、N,∠α与正n边形重叠部分面积为S.(1)当n=4,边长为2,∠α=90°时,如图(1),请直接写出S的值;(2)当n=5,∠α=72°时,如图(2),请问在旋转过程中,S是否发生变化?并说明理由;(3)当n=6,∠α=120°时,如图(3),请猜想S是原正六边形面积的几分之几(不必说明理由).若∠α的平分线与BC边交于点P,判断四边形OMPN的形状,并说明理由.2019-2019学年河南省濮阳市濮阳县九年级(上)期末模拟数学试卷参考答案与试题解析一、单选题1.【答案】A【考点】二次函数图象与几何变换【解析】【分析】根据向左平移横坐标减,向下平移纵坐标减求出平移后的抛物线的顶点坐标,然后利用顶点式解析式写出即可.【解答】∵抛物线y=5x2向下平移3个单位,向左平移2个单位,∴平移后的抛物线的顶点坐标为(-2,-3),∴平移得到的抛物线的解析式为y=5(x+2)2-3.故答案为:A.【点评】本题考查了二次函数图象与几何变换,熟练掌握平移的规律:左加右减,上加下减并确定出平移后的抛物线的顶点坐标是解题的关键2.【答案】A【考点】根据实际问题列二次函数关系式【解析】【解答】S=(24﹣3x)x=24x﹣3x2.故选:A.【分析】AB为x m,则BC为(24﹣3x)m,利用长方体的面积公式,可求出关系式.3.【答案】B【考点】垂径定理【解析】【解答】解:连结BE,如图,∵OD⊥AB,∴AC=BC=AB=×8=4,设AO=x,则OC=OD﹣CD=x﹣2,在Rt△ACO中,∵AO2=AC2+OC2,∴x2=42+(x﹣2)2,解得:x=5,∴AE=10,OC=3,∵AE是直径,∴∠ABE=90°,∵OC是△ABE的中位线,∴BE=2OC=6,在Rt△CBE中,CE=∴sin∠ECB=故选:B.【分析】根据垂径定理得到AC=BC=AB=4,设AO=x,则OC=OD﹣CD=x﹣2,在Rt△ACO中根据勾股定理得到x2=42+(x﹣2)2,解得x=5,则AE=10,OC=3,再由AE是直径,根据圆周角定理得到∠ABE=90°,利用OC是△ABE的中位线得到BE=2OC=6,然后在Rt△CBE中利用勾股定理可计算出CE,由三角函数的定义求出sin∠ECB即可.4.【答案】B【考点】一元二次方程的应用【解析】【解答】解:设四周垂下的边宽度为xcm,桌布的长为(150+2x),宽为(100+2x),根据桌布面积是桌面的2倍可得:(150+2x)(100+2x)=150×100×2,故选B.【分析】设四周垂下的边宽度为xcm,求得桌布的面积,根据桌布面积是桌面的2倍列方程解答时即可.5.【答案】B【考点】等腰三角形的性质,三角形的外接圆与外心【解析】【解答】解:∵⊙O的半径为5,DE=3,∴AE=10﹣3=7,∵AD是直径,∴∠ACD=90°,∴CD=6,∵AB=AC,∴∠ACE=∠D,又∠DAC=∠CAE,∴△AEC∽△ACD,∴= ,即= ,解得,EC= ,故选:B.【分析】根据勾股定理求出CD,证明△AEC∽△ACD,根据相似三角形的性质列出比例式,计算即可.6.【答案】B【考点】垂径定理【解析】【分析】垂径定理:垂直于弦的直径平分弦,并且平分弦所对的弧。
河南省濮阳市2019-2020学年中考数学模拟试题一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图,AB ⊥BD ,CD ⊥BD ,垂足分别为B 、D ,AC 和BD 相交于点E ,EF ⊥BD 垂足为F .则下列结论错误的是( )A .B .C .D .2.已知⊙O 的半径为3,圆心O 到直线L 的距离为2,则直线L 与⊙O 的位置关系是( ) A .相交 B .相切 C .相离 D .不能确定3.已知直线2y kx =-与直线32y x =+的交点在第一象限,则k 的取值范围是( )A .3k =B .3k <-C .3k >D .33k -<<4.已知:如图,AD 是△ABC 的角平分线,且AB :AC=3:2,则△ABD 与△ACD 的面积之比为( )A .3:2B .9:4C .2:3D .4:95.左下图是一些完全相同的小正方体搭成的几何体的三视图 .这个几何体只能是( )A .B .C .D .6.如图,小明同学用自制的直角三角形纸板DEF 测量树的高度AB ,他调整自己的位置,设法使斜边DF 保持水平,并且边DE 与点B 在同一直线上.已知纸板的两条边DF =50cm ,EF =30cm ,测得边DF 离地面的高度AC =1.5m ,CD =20m ,则树高AB 为( )A.12m B.13.5m C.15m D.16.5m7.若代数式11xx+-有意义,则实数x的取值范围是()A.x≠1B.x≥0C.x≠0D.x≥0且x≠18.实数a、b在数轴上的对应点的位置如图所示,则正确的结论是()A.a<﹣1 B.ab>0 C.a﹣b<0 D.a+b<09.把直线l:y=kx+b绕着原点旋转180°,再向左平移1个单位长度后,经过点A(-2,0)和点B(0,4),则直线l的表达式是()A.y=2x+2 B.y=2x-2 C.y=-2x+2 D.y=-2x-210.已知一次函数y=kx+3和y=k1x+5,假设k<0且k1>0,则这两个一次函数的图像的交点在()A.第一象限B.第二象限C.第三象限D.第四象限11.如图,在菱形ABCD中,AB=5,∠BCD=120°,则△ABC的周长等于()A.20 B.15 C.10 D.512.下列图形中,是中心对称但不是轴对称图形的为()A.B.C.D.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,在平行四边形ABCD中,E为边BC上一点,AC与DE相交于点F,若CE=2EB,S△AFD=9,则S△EFC等于_____.14.我们定义:关于x的函数y=ax2+bx与y=bx2+ax(其中a≠b)叫做互为交换函数.如y=3x2+4x与y=4x2+3x 是互为交换函数.如果函数y=2x2+bx与它的交换函数图象顶点关于x轴对称,那么b=_____.15.老师在黑板上书写了一个正确的演算过程,随后用手掌捂住了一个多项式,形式如﹣2x2﹣2x+1=﹣x2+5x﹣3:则所捂住的多项式是___.16.小李和小林练习射箭,射完10箭后两人的成绩如图所示,通常新手的成绩不太稳定,根据图中的信息,估计这两人中的新手是_____.17.如图,已知正方形边长为4,以A为圆心,AB为半径作弧BD,M是BC的中点,过点M作EM⊥BC 交弧BD于点E,则弧BE的长为_____.18.有三个大小一样的正六边形,可按下列方式进行拼接:方式1:如图1;方式2:如图2;若有四个边长均为1的正六边形,采用方式1拼接,所得图案的外轮廓的周长是_______.有n个边长均为1的正六边形,采用上述两种方式的一种或两种方式混合拼接,若得图案的外轮廓的周长为18,则n的最大值为__________.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,已知正方形ABCD的边长为4,点P是AB边上的一个动点,连接CP,过点P作PC 的垂线交AD于点E,以PE为边作正方形PEFG,顶点G在线段PC上,对角线EG、PF相交于点O.(1)若AP=1,则AE= ;(2)①求证:点O一定在△APE的外接圆上;②当点P从点A运动到点B时,点O也随之运动,求点O经过的路径长;(3)在点P从点A到点B的运动过程中,△APE的外接圆的圆心也随之运动,求该圆心到AB边的距离的最大值.20.(6分)如图,直角坐标系中,⊙M经过原点O(0,0),点A(3,0)与点B(0,﹣1),点D在劣弧OA上,连接BD交x轴于点C,且∠COD=∠CBO.(1)请直接写出⊙M的直径,并求证BD平分∠ABO;(2)在线段BD的延长线上寻找一点E,使得直线AE恰好与⊙M相切,求此时点E的坐标.21.(6分)计算:﹣22+(π﹣2018)0﹣2sin60°+|1322.(8分)计算:31|+(﹣1)2018﹣tan60°23.(8分)小华想复习分式方程,由于印刷问题,有一个数“?”看不清楚:?1322x x+=--.她把这个数“?”猜成5,请你帮小华解这个分式方程;小华的妈妈说:“我看到标准答案是:方程的增根是2x=,原分式方程无解”,请你求出原分式方程中“?”代表的数是多少?24.(10分)如图,在平面直角坐标系中,抛物线y=﹣12x2+bx+c(a≠0)与x轴交于A、B两点,与y轴交于点C,点A的坐标为(﹣1,0),抛物线的对称轴直线x=32交x轴于点D.(1)求抛物线的解析式;(2)点E是线段BC上的一个动点,过点E作x轴的垂线与抛物线相交于点F,交x轴于点G,当点E 运动到什么位置时,四边形CDBF的面积最大?求出四边形CDBF的最大面积及此时E点的坐标;(3)在(2)的条件下,将线段FG绕点G顺时针旋转一个角α(0°<α<90°),在旋转过程中,设线段FG与抛物线交于点N,在线段GB上是否存在点P,使得以P、N、G为顶点的三角形与△ABC相似?如果存在,请直接写出点P的坐标;如果不存在,请说明理由.25.(10分)已知:如图,梯形ABCD 中,AD ∥BC ,DE ∥AB ,DE 与对角线AC 交于点F ,FG ∥AD ,且FG=EF.(1)求证:四边形ABED 是菱形;(2)联结AE ,又知AC ⊥ED ,求证:21·2AE EF ED = .26.(12分)先化简,再求值:(x ﹣3)÷(21x -﹣1),其中x=﹣1. 27.(12分)如图,在平面直角坐标系中,已知抛物线y=x 2+bx+c 过A ,B ,C 三点,点A 的坐标是(3,0),点C 的坐标是(0,-3),动点P 在抛物线上.(1)b =_________,c =_________,点B 的坐标为_____________;(直接填写结果)(2)是否存在点P ,使得△ACP 是以AC 为直角边的直角三角形?若存在,求出所有符合条件的点P 的坐标;若不存在,说明理由;(3)过动点P 作PE 垂直y 轴于点E ,交直线AC 于点D ,过点D 作x 轴的垂线.垂足为F ,连接EF ,当线段EF 的长度最短时,求出点P 的坐标.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.A【解析】【分析】利用平行线的性质以及相似三角形的性质一一判断即可.【详解】解:∵AB⊥BD,CD⊥BD,EF⊥BD,∴AB∥CD∥EF∴△ABE∽△DCE,∴,故选项B正确,∵EF∥AB,∴,∴,故选项C,D正确,故选:A.【点睛】考查平行线的性质,相似三角形的判定和性质,平行线分线段成比例定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.2.A【解析】试题分析:根据圆O的半径和,圆心O到直线L的距离的大小,相交:d<r;相切:d=r;相离:d>r;即可选出答案.解:∵⊙O的半径为3,圆心O到直线L的距离为2,∵3>2,即:d<r,∴直线L与⊙O的位置关系是相交.故选A.考点:直线与圆的位置关系.3.C【解析】【分析】根据题意画出图形,利用数形结合,即可得出答案.根据题意,画出图形,如图:当3k =时,两条直线无交点;当3k >时,两条直线的交点在第一象限.故选:C .【点睛】本题主要考查两个一次函数的交点问题,能够数形结合是解题的关键.4.A【解析】试题解析:过点D 作DE ⊥AB 于E ,DF ⊥AC 于F.∵AD 为∠BAC 的平分线,∴DE=DF ,又AB:AC=3:2,11:():():3:222ABD ACD S S AB DE AC DF AB AC ∴=⋅⋅==V V , 故选A.点睛:角平分线上的点到角两边的距离相等.5.A【解析】试题分析:根据几何体的主视图可判断C 不合题意;根据左视图可得B 、D 不合题意,因此选项A 正确,故选A .考点:几何体的三视图6.D【分析】利用直角三角形DEF 和直角三角形BCD 相似求得BC 的长后加上小明同学的身高即可求得树高AB .【详解】∵∠DEF=∠BCD=90°,∠D=∠D ,∴△DEF ∽△DCB , ∴BC DC EF DE=, ∵DF=50cm=0.5m ,EF=30cm=0.3m ,AC=1.5m ,CD=20m ,∴由勾股定理求得DE=40cm , ∴200.30.4BC =, ∴BC=15米,∴AB=AC+BC=1.5+15=16.5(米).故答案为16.5m .【点睛】本题考查了相似三角形的应用,解题的关键是从实际问题中整理出相似三角形的模型.7.D【解析】试题分析:∵代数式11x +- ∴10{0x x -≠≥,解得x≥0且x≠1.故选D .考点:二次根式,分式有意义的条件.8.C【解析】【分析】直接利用a ,b 在数轴上的位置,进而分别对各个选项进行分析得出答案.【详解】选项A ,从数轴上看出,a 在﹣1与0之间,∴﹣1<a <0,故选项A 不合题意;选项B ,从数轴上看出,a 在原点左侧,b 在原点右侧,∴a<0,b>0,∴ab<0,故选项B不合题意;选项C,从数轴上看出,a在b的左侧,∴a<b,即a﹣b<0,故选项C符合题意;选项D,从数轴上看出,a在﹣1与0之间,∴1<b<2,∴|a|<|b|,∵a<0,b>0,所以a+b=|b|﹣|a|>0,故选项D不合题意.故选:C.【点睛】本题考查数轴和有理数的四则运算,解题的关键是掌握利用数轴表示有理数的大小.9.B【解析】【分析】先利用待定系数法求出直线AB的解析式,再求出将直线AB向右平移1个单位长度后得到的解析式,然后将所得解析式绕着原点旋转180°即可得到直线l.【详解】解:设直线AB的解析式为y=mx+n.∵A(−2,0),B(0,1),∴,解得,∴直线AB的解析式为y=2x+1.将直线AB向右平移1个单位长度后得到的解析式为y=2(x−1)+1,即y=2x+2,再将y=2x+2绕着原点旋转180°后得到的解析式为−y=−2x+2,即y=2x−2,所以直线l的表达式是y=2x−2.故选:B.【点睛】本题考查了一次函数图象平移问题,掌握解析式“左加右减”的规律以及关于原点对称的规律是解题的关键.10.B【解析】【分析】依题意在同一坐标系内画出图像即可判断.【详解】根据题意可作两函数图像,由图像知交点在第二象限,故选B.【点睛】此题主要考查一次函数的图像,解题的关键是根据题意作出相应的图像.11.B【解析】∵ABCD是菱形,∠BCD=120°,∴∠B=60°,BA=BC.∴△ABC是等边三角形.∴△ABC的周长=3AB=1.故选B12.C【解析】试题分析:根据轴对称图形及中心对称图形的定义,结合所给图形进行判断即可.A、既不是轴对称图形,也不是中心对称图形,故本选项错误;B、是轴对称图形,也是中心对称图形,故本选项错误;C、不是轴对称图形,是中心对称图形,故本选项正确;D、是轴对称图形,不是中心对称图形,故本选项错误. 故选C.考点:中心对称图形;轴对称图形.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.1【解析】【分析】由于四边形ABCD是平行四边形,所以得到BC∥AD、BC=AD,而CE=2EB,由此即可得到△AFD∽△CFE,它们的相似比为3:2,最后利用相似三角形的性质即可求解.【详解】解:∵四边形ABCD 是平行四边形, ∴BC ∥AD 、BC=AD , 而CE=2EB ,∴△AFD ∽△CFE ,且它们的相似比为3:2, ∴S △AFD :S △EFC =(32)2, 而S △AFD =9, ∴S △EFC =1. 故答案为1. 【点睛】此题主要考查了相似三角形的判定与性质,解题首先利用平行四边形的构造相似三角形的相似条件,然后利用其性质即可求解. 14.﹣1 【解析】 【分析】根据题意可以得到交换函数,由顶点关于x 轴对称,从而得到关于b 的方程,可以解答本题. 【详解】由题意函数y=1x 1+bx 的交换函数为y=bx 1+1x .∵y=1x 1+bx=222()48b b x +-,y=bx 1+1x=211()b x bb+-, 函数y=1x 1+bx 与它的交换函数图象顶点关于x 轴对称,∴﹣4b =﹣22b 且218b b-=,解得:b=﹣1. 故答案为﹣1. 【点睛】本题考查了二次函数的性质.理解交换函数的意义是解题的关键. 15.x 2+7x-4 【解析】 【分析】设他所捂的多项式为A ,则22(53)(221)A x x x x =-+-++-;接下来利用去括号法则对其进行去括号,然后合并同类项即可. 【详解】解:设他所捂的多项式为A ,则根据题目信息可得22(53)(221),A x x x x =-+-++- 2253221,x x x x =-+-++- 27 4.x x =+-他所捂的多项式为27 4.x x +- 故答案为27 4.x x +- 【点睛】本题是一道关于整数加减运算的题目,解答本题的关键是熟练掌握整数的加减运算; 16.小李. 【解析】 【分析】 【详解】解:根据图中的信息找出波动性大的即可:根据图中的信息可知,小李的成绩波动性大,则这两人中的新手是小李. 故答案为:小李. 17.23π 【解析】 【分析】延长ME 交AD 于F ,由M 是BC 的中点,MF ⊥AD ,得到F 点为AD 的中点,即AF=12AD ,则∠AEF=30°,得到∠BAE=30°,再利用弧长公式计算出弧BE 的长. 【详解】延长ME 交AD 于F ,如图,∵M 是BC 的中点,MF ⊥AD ,∴F 点为AD 的中点,即AF=12AD . 又∵AE=AD ,∴AE=2AF ,∴∠AEF=30°,∴∠BAE=30°,∴弧BE 的长=304180π⋅⋅=23π. 故答案为23π.【点睛】本题考查了弧长公式:l=180n Rπ⋅⋅.也考查了在直角三角形中,一直角边是斜边的一半,这条直角边所对的角为30度. 18.18 1 【解析】 【分析】有四个边长均为1的正六边形,采用方式1拼接,利用4n+2的规律计算;把六个正六边形围着一个正六边按照方式2进行拼接可使周长为8,六边形的个数最多. 【详解】解:有四个边长均为1的正六边形,采用方式1拼接,所得图案的外轮廓的周长为4×4+2=18; 按下图拼接,图案的外轮廓的周长为18,此时正六边形的个数最多,即n 的最大值为1.故答案为:18;1. 【点睛】本题考查了正多边形和圆,以及图形的变化类规律总结问题,根据题意,得出规律是解决此题的关键. 三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤. 19.(1);(2)①证明见解析;②;(3).【解析】试题分析:(1)由正方形的性质得出∠A=∠B=∠EPG=90°,PF ⊥EG ,AB=BC=4,∠OEP=45°,由角的互余关系证出∠AEP=∠PBC ,得出△APE ∽△BCP ,得出对应边成比例即可求出AE 的长; (2)①A 、P 、O 、E 四点共圆,即可得出结论; ②连接OA 、AC ,由勾股定理求出AC=,由圆周角定理得出∠OAP=∠OEP=45°,周长点O 在AC 上,当P 运动到点B 时,O 为AC 的中点,即可得出答案;(3)设△APE的外接圆的圆心为M,作MN⊥AB于N,由三角形中位线定理得出MN=AE,设AP=x,则BP=4﹣x,由相似三角形的对应边成比例求出AE的表达式,由二次函数的最大值求出AE的最大值为1,得出MN的最大值=即可.试题解析:(1)∵四边形ABCD、四边形PEFG是正方形,∴∠A=∠B=∠EPG=90°,PF⊥EG,AB=BC=4,∠OEP=45°,∴∠AEP+∠APE=90°,∠BPC+∠APE=90°,∴∠AEP=∠PBC,∴△APE∽△BCP,∴,即,解得:AE=,故答案为:;(2)①∵PF⊥EG,∴∠EOF=90°,∴∠EOF+∠A=180°,∴A、P、O、E四点共圆,∴点O一定在△APE的外接圆上;②连接OA、AC,如图1所示:∵四边形ABCD是正方形,∴∠B=90°,∠BAC=45°,∴AC==,∵A、P、O、E四点共圆,∴∠OAP=∠OEP=45°,∴点O在AC上,当P运动到点B时,O为AC的中点,OA=AC=,即点O经过的路径长为;(3)设△APE的外接圆的圆心为M,作MN⊥AB于N,如图2所示:则MN∥AE,∵ME=MP,∴AN=PN,∴MN=AE,设AP=x,则BP=4﹣x,由(1)得:△APE∽△BCP,∴,即,解得:AE==,∴x=2时,AE的最大值为1,此时MN的值最大=×1=,即△APE的圆心到AB边的距离的最大值为.【点睛】本题考查圆、二次函数的最值等,正确地添加辅助线,根据已知证明△APE∽△BCP是解题的关键.20.(1)详见解析;(2)(233,1).【解析】【分析】(1)根据勾股定理可得AB的长,即⊙M的直径,根据同弧所对的圆周角可得BD平分∠ABO;(2)作辅助构建切线AE,根据特殊的三角函数值可得∠OAB=30°,分别计算EF和AF的长,可得点E 的坐标.【详解】(1)∵点A3,0)与点B(0,﹣1),∴3OB=1,∴22(3)1+,∵AB是⊙M的直径,∴⊙M的直径为2,∵∠COD=∠CBO,∠COD=∠CBA,∴∠CBO=∠CBA,即BD平分∠ABO;(2)如图,过点A作AE⊥AB于E,交BD的延长线于点E,过E作EF⊥OA于F,即AE是切线,∵在Rt△ACB中,tan∠OAB=33OBOA==∴∠OAB=30°,∵∠ABO=90°,∴∠OBA=60°,∴∠ABC=∠OBC=12ABO∠=30°,∴OC=OB•tan30°=1×33 33,∴AC=OA﹣OC=23,∴∠ACE=∠ABC+∠OAB=60°,∴∠EAC=60°,∴△ACE是等边三角形,∴AE=AC=233,∴AF=12AE=33,EF=32AE=1,∴OF=OA﹣AF=23,∴点E的坐标为(23,1).【点睛】此题属于圆的综合题,考查了勾股定理、圆周角定理、等边三角形的判定与性质以及三角函数等知识.注意准确作出辅助线是解此题的关键.21.-4【解析】分析:第一项根据乘方的意义计算,第二项非零数的零次幂等于1,第三项根据特殊角锐角三角函数值计算,第四项根据绝对值的意义化简.详解:原式=-4+1-2×33点睛:本题考查了实数的运算,熟练掌握乘方的意义,零指数幂的意义,及特殊角锐角三角函数,绝对值的意义是解答本题的关键.22.1【解析】【分析】原式利用绝对值的代数意义,乘方的意义,以及特殊角的三角函数值计算即可求出值.【详解】1|+(﹣1)2118﹣tan61°=1+1=1.【点睛】本题考查了实数的运算,涉及了绝对值化简、特殊角的三角函数值,熟练掌握各运算的运算法则是解题的关键.x=;(2)原分式方程中“?”代表的数是-1.23.(1)0【解析】【分析】(1)“?”当成5,解分式方程即可,(2)方程有增根是去分母时产生的,故先去分母,再将x=2代入即可解答.【详解】x-得(1)方程两边同时乘以()2()x+-=-5321x=解得0x=是原分式方程的解.经检验,0(2)设?为m,x-得方程两边同时乘以()2()+-=-m x321x=是原分式方程的增根,由于2x=代入上面的等式得所以把2()3221m+-=-m=-1所以,原分式方程中“?”代表的数是-1.【点睛】本题考查了分式方程解法和增根的定义及应用.增根是分式方程化为整式方程后产生的使分式方程的分母为0的根.增根确定后可按如下步骤进行:①化分式方程为整式方程;②把增根代入整式方程即可求得相关字母的值.24.(1)213222y x x =-++ ;(1)132,E (1,1);(3)存在,P 点坐标可以为(1+7,5)或(3,5). 【解析】 【分析】(1)设B (x 1,5),由已知条件得21322x -+= ,进而得到B (2,5).又由对称轴2ba-⨯求得b .最终得到抛物线解析式.(1)先求出直线BC 的解析式,再设E (m ,=﹣12m+1.),F (m ,﹣12m 1+32m+1.)求得FE 的值,得到S △CBF ﹣m 1+2m .又由S 四边形CDBF =S △CBF +S △CDB ,得S 四边形CDBF 最大值, 最终得到E 点坐标.(3)设N 点为(n ,﹣12n 1+32n+1),1<n <2.过N 作NO ⊥x 轴于点P ,得PG =n ﹣1.又由直角三角形的判定,得△ABC 为直角三角形,由△ABC ∽△GNP , 得n =1+7或n =1﹣7(舍去),求得P 点坐标.又由△ABC ∽△GNP ,且OC PGOB NP=时, 得n =3或n =﹣2(舍去).求得P 点坐标. 【详解】解:(1)设B (x 1,5).由A (﹣1,5),对称轴直线x =32. ∴21322x -+= 解得,x 1=2. ∴B (2,5). 又∵3122()2b -=⨯-∴b =32. ∴抛物线解析式为y =213222x x -++ , (1)如图1,∵B(2,5),C(5,1).∴直线BC的解析式为y=﹣12x+1.由E在直线BC上,则设E(m,=﹣12m+1.),F(m,﹣12m1+32m+1.)∴FE=﹣12m1+32m+1﹣(﹣12n+1)=﹣12m1+1m.由S△CBF=12 EF•OB,∴S△CBF=12(﹣12m1+1m)×2=﹣m1+2m.又∵S△CDB=12BD•OC=12×(2﹣32)×1=52∴S四边形CDBF=S△CBF+S△CDB═﹣m1+2m+52.化为顶点式得,S四边形CDBF=﹣(m﹣1)1+132.当m=1时,S四边形CDBF最大,为132.此时,E点坐标为(1,1).(3)存在.如图1,由线段FG绕点G顺时针旋转一个角α(5°<α<95°),设N(n,﹣12n1+32n+1),1<n<2.过N作NO⊥x轴于点P(n,5).∴NP=﹣12n1+32n+1,PG=n﹣1.又∵在Rt△AOC中,AC1=OA1+OC1=1+2=5,在Rt△BOC中,BC1=OB1+OC1=16+2=15.AB1=51=15.∴AC1+BC1=AB1.∴△ABC为直角三角形.当△ABC∽△GNP,且OC NPOB PG时,即,213222242n n n -++=- 整理得,n 1﹣1n ﹣6=5.解得,n =或n =1(舍去). 此时P 点坐标为(,5). 当△ABC ∽△GNP ,且OC PGOB NP=时, 即,222134222n n n -=-++ 整理得,n 1+n ﹣11=5. 解得,n =3或n =﹣2(舍去). 此时P 点坐标为(3,5).综上所述,满足题意的P 点坐标可以为,(,5),(3,5). 【点睛】本题考查求抛物线,三角形的性质和面积的求法,直角三角形的判定,以及三角形相似的性质,属于较难题.25. (1)见解析;(2)见解析 【解析】分析:(1)由两组对边分别平行的四边形是平行四边形,得到ABED 是平行四边形.再由平行线分线段成比例定理得到:FG CF AD CA =, EF CF AB CA = ,FG AD =EFAB,即可得到结论; (2)连接BD ,与AE 交于点H .由菱形的性质得到12EH AE BD =,⊥AE ,进而得到90DHE ∠=o ,90AFE o ∠=,即有DHE AFE ∠∠=,得到△DHE ∽△AFE ,由相似三角形的性质即可得到结论.详解:(1)∵ AD ∥BC DE ,∥AB ,∴四边形ABED 是平行四边形.∵FG ∥AD ,∴FG CFAD CA=. 同理EF CFAB CA = . 得:FG AD =EFAB∵FG EF =,∴AD AB =. ∴四边形ABED 是菱形. (2)连接BD ,与AE 交于点H .∵四边形ABED 是菱形,∴12EH AE BD =,⊥AE .得90DHE ∠=o .同理90AFE o ∠=.∴DHE AFE ∠∠=.又∵AED ∠是公共角,∴△DHE ∽△AFE . ∴EH DE EF AE =. ∴21·2AE EF ED =.点睛:本题主要考查了菱形的判定和性质以及相似三角形的判定与性质.灵活运用菱形的判定与性质是解题的关键.26.﹣x+1,2.【解析】【分析】先将括号内的分式通分,再将乘方转化为乘法,约分,最后代入数值求解即可.【详解】原式=(x ﹣2)÷(﹣)=(x ﹣2)÷=(x ﹣2)•=﹣x+1,当x=﹣1时,原式=1+1=2.【点睛】本题考查了整式的混合运算-化简求值,解题的关键是熟练的掌握整式的混合运算法则. 27.(1)2-,3-,(-1,0);(2)存在P 的坐标是(14)-,或(-25),;(1)当EF 最短时,点P 的坐标是:210+,32-210-,32-) 【解析】【分析】(1)将点A 和点C 的坐标代入抛物线的解析式可求得b 、c 的值,然后令y=0可求得点B 的坐标;(2)分别过点C 和点A 作AC 的垂线,将抛物线与P 1,P 2两点先求得AC 的解析式,然后可求得P 1C 和P 2A 的解析式,最后再求得P 1C 和P 2A 与抛物线的交点坐标即可;(1)连接OD .先证明四边形OEDF 为矩形,从而得到OD=EF ,然后根据垂线段最短可求得点D 的纵坐标,从而得到点P 的纵坐标,然后由抛物线的解析式可求得点P 的坐标.【详解】解:(1)∵将点A 和点C 的坐标代入抛物线的解析式得:3930c b c =-⎧⎨++=⎩, 解得:b=﹣2,c=﹣1,∴抛物线的解析式为223y x x =--.∵令2230x x --=,解得:11x =-,23x =,∴点B 的坐标为(﹣1,0).故答案为﹣2;﹣1;(﹣1,0).(2)存在.理由:如图所示:①当∠ACP 1=90°.由(1)可知点A 的坐标为(1,0).设AC 的解析式为y=kx ﹣1.∵将点A 的坐标代入得1k ﹣1=0,解得k=1,∴直线AC 的解析式为y=x ﹣1,∴直线CP 1的解析式为y=﹣x ﹣1.∵将y=﹣x ﹣1与223y x x =--联立解得11x =,20x =(舍去),∴点P 1的坐标为(1,﹣4).②当∠P 2AC=90°时.设AP 2的解析式为y=﹣x+b .∵将x=1,y=0代入得:﹣1+b=0,解得b=1,∴直线AP 2的解析式为y=﹣x+1.∵将y=﹣x+1与223y x x =--联立解得1x =﹣2,2x =1(舍去),∴点P 2的坐标为(﹣2,5).综上所述,P 的坐标是(1,﹣4)或(﹣2,5).(1)如图2所示:连接OD .由题意可知,四边形OFDE 是矩形,则OD=EF .根据垂线段最短,可得当OD ⊥AC 时,OD 最短,即EF 最短.由(1)可知,在Rt △AOC 中,∵OC=OA=1,OD ⊥AC ,∴D 是AC 的中点.又∵DF ∥OC ,∴DF=12OC=32, ∴点P 的纵坐标是32-, ∴23232x x --=-,解得:x=2102±, ∴当EF 最短时,点P 的坐标是:210+,32-)或(210-,32-).。
2019-2020学年九年级上学期期末数学试题一、单选题1.中国的传统建筑许多窗格图案蕴含着对称之美,现从中选取以下四种窗格图案,其中只是中心对称图形但不是轴对称图形的是( )A .B .C .D . 2.小明记录了临沂市五月份某周每天的日最高气温(单位:C ︒),列成如表:则这周最高气温的平均值是( )A .26.25C ︒B .27C ︒ C .28C ︒D .29C ︒ 3.点()2,3A -关于原点对称点的坐标是( )A .()2,3-B .()2,3C .()2,3--D .()2,3- 4.若分式11x -有意义,则x 满足的条件是( ) A .x ≠1的实数B .x 为任意实数C .x ≠1且x ≠﹣1的实数D .x =﹣1 5.已知一组数据5,8,8,9,10,以下说法错误的是( )A .平均数是8B .众数是8C .中位数是8D .方差是8 6.如图,将边长为4个单位的等边△ABC 沿边BC 向右平移2个单位得到△DEF ,则四边形ABFD 的周长为( )A .12B .16C .20D .247.如图,将ABC 绕点A 逆时针旋转150°,得到ADE ,这时点B ,C ,D 恰好在同一直线上,则B 的度数为( )A .10°B .15°C .20°D .30°8.如图,在ABC 中,点D 在BC 上,且CD CA =,CF 平分ACB ∠,E 是AB 的中点,7BC =,4AC =,则EF 的长是( )A .1.5B .2C .3D .69.一项工程,甲单独做a 天完成,乙单独做b 天完成.甲乙两人合做这项工程需要的时间是( )天A .1a b +B .1abC .ab a b +D .11a b+二、填空题10.如图,在△ABC 中,∠ACB =90°,∠ABC =30°,AC =2cm .现在将△ABC 绕点C 逆时针旋转至△A ′B ′C ′,使得点A ′恰好落在AB 上,连接BB ′,则BB ′的长度为_____.11.若一个多边形的内角和等于720度,则这个多边形的边数是_______12.22x axy y ++是一个完全平方式,则a =__________.13.如图,小丽将两张对边平行的纸条随意交又叠放在一起,重合的部分构成四边形ABCD ,若BC a =,AB b =,两张纸条的宽度为分别m 、n ,则a 、b 、m 、n 的关系是___________.14.如图,在平行四边形纸片ABCD 中,2cm AB =,将纸片沿对角线AC 对折至CF ,交AD 边于点E ,此时BCF △恰为等边三角形,则图中折叠重合部分的面积是________.15.如图,在平面直角坐标系中,已知ABC 的三个顶点的坐标分别为()2,4A -,(1,0)B -,()0,2C .将ABC 绕着点O 按顺时针方向旋转90°得到111A B C △,写出111A B C △的顶点1A 的坐标是______.三、解答题16.因式分解:(1)214y y -+; (2)2()()a b x b a -+-.17.化简计算:(1)22a b b a ⎛⎫⎛⎫-+ ⎪ ⎪⎝⎭⎝⎭;(2)23(3)3x x x x ---. 18.(1)化简,再求值:22211122x x x x x ++⎛⎫÷- ⎪++⎝⎭,若31-<≤x ,请你选取一个合适的x 的整数值,求出原式的值.(2)解分式方程:221111x x x x --=--. 19.某市团委举办“我的中国梦”为主题的知识竞赛,甲、乙两所学校参赛人数相等,比赛结束后,发现学生成绩分别为70分,80分,90分,100分,并根据统计数据绘制了如下不完整的统计田表:(1)请你将图②条形图补充完整,并求出a 的值;(2)求甲、乙两校成绩的平均分;(3)经计算知2 135S =甲,2175S =乙,请你根据这两个数据,对甲、乙两校成绩作出合理评价.20.如图,▱ABCD 中,DF 平分∠ADC ,交BC 于点F ,BE 平分∠ABC ,交AD 于点E . (1)求证:四边形BFDE 是平行四边形;(2)若∠AEB=68°,求∠C .21.为进一步营造扫黑除恶专项斗争的浓厚宣传氛围,推进平安校园建设,甲、乙两所学校各租用一辆大巴车组织部分师生,分别从距目的地240千米和270千米的两地同时出发,前往“研学教育”基地开展扫黑除恶教育活动,已知乙校师生所乘大巴车的平均速度是甲校师生所乘大巴车的平均速度的1.5倍,甲校师生比乙校师生晚1小时到达目的地,分别求甲、乙两所学校师生所乘大巴车的平均速度.22.(阅读学习)课堂上,老师带领同学们学习了“提公因式法、公式法”两种因式分解的方法.分解因式的方法还有许多,如分组分解法.它的定义是:将一个多项式分组后,可提公因式或运用公式继续分解的方法叫分组分解法.使用这种方法的关键在于分组适当,而在分组时,必须有预见性.能预见到下一步能继续分解.例如:(1)()()()()()()am an bm bn am bm an bn m a b n a b a b m n +++=+++=+++=++;(2)()2222222121(1)(1)(1)x y y x y y x y x y x y ---=-++=-+=++--.(学以致用)请仿照上面的做法,将下列各式分解因式:(1)1ab a b --+;(2)22444x xy y -+-. (拓展应用)已知:7x y +=,5x y -=.求:2222x y y x --+的值.23.(问题探究)如图(1),ABC 是等直角三角形,90ACB ∠=︒,AC BC =,把ABC 绕点C 顺时针旋转角α得到DCE ,直线DE 、AB 交于F .连结AD 、BE .在旋转过程中AD与BE 的大小关系是_____,试说明理由.(探究发现)当()090αα︒<<︒=______度时,四边形AFEC 是平行四边形,并说明理由;(问题解决)当90360α︒<<︒时,若=2AC ,直线AC 与DE 垂直时,直接写出2AD 的值.参考答案1.A【分析】本题根据中心对称图形和轴对称图形的定义可直接得出结果.【详解】A 选项属于中心对称图形但不是轴对称图形,故正确;B 选项既属于中心对称图形也属于轴对称图形,故不正确;C 选项既属于中心对称图形也属于轴对称图形,故不正确;D 选项既属于中心对称图形也属于轴对称图形,故不正确.故选:A .【点睛】本题考查了中心对称图形和轴对称图形的定义,属于基础题,熟练掌握中心对称图形和轴对称图形的定义是解题的关键.2.B【分析】由加权平均数公式即可得出结果.【详解】 这周最高气温的平均值为()()1122226128329277C ⨯+⨯+⨯+⨯=︒; 故选B .【点睛】本题考查了加权平均数公式;熟练掌握加权平均数的计算是解决问题的关键.3.A【分析】根据平面直角坐标系中任意一点(x ,y ),关于原点的对称点是(-x ,-y ),可直接判断出结果.【详解】解:根据关于原点对称点的特征,得点A(2,-3)关于原点对称点的坐标是(-2,3). 故选:A .【点睛】本题考查了关于原点对称点的特征,属于基础题,掌握关于原点对称点的特征即可.4.A【分析】直接利用分式有意义的条件得出:x﹣1≠0,解出答案.【详解】解:∵分式11x-有意义,∴x﹣1≠0,解得:x≠1.∴x满足的条件是:x≠1的实数.故选A.【点睛】此题主要考查了分式有意义的条件,正确把握分式的定义是解题关键.5.D【分析】分别计算平均数,众数,中位数,方差后进行判断即可.【详解】由平均数的公式得平均数=(5+8+8+9+10)÷5=8,方差=15[(5﹣8)2+(8﹣8)2+(8﹣8)2+(9﹣8)2+(10﹣8)2]=2.8,将5个数按从小到大的顺序排列为:5,8,8,9,10,第3个数为8,即中位数为8,5个数中8出现了两次,次数最多,即众数为8,故选D.【点睛】本题考查了对平均数,众数,中位数,方差,熟练掌握相关的概念以及求解方法是解题的关键.6.B【解析】此题考查图形的平移问题,平移只改变位置,不改变图形中线段和角的大小;由已知得:4,2,216 AB AC DF AD CF BE ABFD AB AD BC CF DF ======⇒=++++=周长,所以选B7.B先判断出∠BAD =150°,AD =AB ,再判断出△BAD 是等腰三角形,最后用三角形的内角和定理即可得出结论.【详解】∵将△ABC 绕点A 逆时针旋转150°,得到△ADE ,∴∠BAD =150°,AD =AB ,∵点B ,C ,D 恰好在同一直线上,∴△BAD 是顶角为150°的等腰三角形,∴∠B =∠BDA ,∴∠B =12(180°−∠BAD )=15°, 故答案为:B .【点睛】此题主要考查了旋转的性质,等腰三角形的判定和性质,三角形的内角和定理,判断出三角形ABD 是等腰三角形是解本题的关键.8.A【分析】根据等腰三角形的三线合一的性质得到DF=AF ,根据点E 是AB 的中点,推出EF 是△ABD 的中位线,由此得到EF=12BD 计算得出答案. 【详解】∵CD CA =,CF 平分ACB ∠,∴DF=AF ,CD=4,∵E 是AB 的中点,∴EF 是△ABD 的中位线,∴EF=12BD=12(BC-CD)=1.5, 故选:A .【点睛】此题考查等腰三角形的三线合一的性质,三角形的中位线的性质定理,熟记等腰三角形的三线合一的性质进行证明是解题的关键.9.C根据题意列出代数式,再化简即可.【详解】解:根据题意得:1111aba b a ba b ab==++ +.故选:C.【点睛】此题考查了列代数式和分式的混合运算,弄清题意是解本题的关键.10.【分析】由题意可得△AA'C是等边三角形,可得旋转角为60°,可得△BCB'是等边三角形,可得∠A'BB'=90°,根据勾股定理可得BB'的长.【详解】∵∠ACB=90°,∠ABC=30°,AC=2cm∴∠A=60°,AB=4,∵△ABC绕点C逆时针旋转至△A′B′C′∴A'C=60°,A'B'=4,BC=B'C,∠ACA'=∠BCB'∵AC=A'C,∠A=60°∴△ACA'是等边三角形,∴∠ACA'=60°,AA'=2∴A'B=2,∠BCB'=60°,且BC=CB'∴△BCB'是等边三角形∴∠CBB'=60°∴∠A'BB'=90°∴【点睛】本题考查了旋转的性质,等边三角形的性质,勾股定理,关键是证△A'B'B是直角三角形.11.6【分析】根据多边形内角和公式求出边数.【详解】解:设此多边形边数为n ,由题意可得()2180720n -⋅︒=︒,解得6n =.故答案是:6.【点睛】本题考查多边形内角和公式,解题的关键是掌握多边形的内角和公式.12.2±.【分析】根据完全平方式的结构特征即可求解.【详解】解:()2222x y x xy y ±=±+且22x axy y ++是一个完全平方式2a ∴=± .【点睛】此题考查了完全平方式,熟练掌握完全平方公式是解本题的关键.13.am=bn【分析】过点B 作BE ⊥AD 于E ,BF ⊥CD 于F ,则∠BEA=∠BFC=90︒,证明四边形ABCD 是平行四边形,推出∠BCF=∠BAE ,证得△BAE ∽△BCF ,得到AB BE BC BF=,即可得到答案. 【详解】过点B 作BE ⊥AD 于E ,BF ⊥CD 于F ,则∠BEA=∠BFC=90︒,∵AD ∥BC ,AB ∥CD ,∴四边形ABCD 是平行四边形,∴∠BCD=∠BAD ,∵∠BCF+∠BCD=180︒,∠BAD+∠BAE=180︒,∴∠BCF=∠BAE ,∴△BAE ∽△BCF , ∴AB BE BC BF=, ∴b m a n =,∴am=bn ,故答案为:am=bn ..【点睛】此题考查平行四边形的判定及性质,相似三角形的判定及性质,熟记各判定及性质定理是解题的关键.142cm【分析】BCF △为等边三角形,点A 为BF 的中点,可得90BAC ∠=︒,求得12ACD SAC CD =,再证明出点E 为AD 的中点,得到12ACE ACD SS =,可求出面积. 【详解】解:ABC 折叠至ACF 处,∴AB=AF=2cm ,BC=BF=CF=4cm ,BCF △为等边三角形,AC BF ∴⊥,90BAC ∠=︒,又四边形ABCD 为平行四边形,∴//AB CD , 90ACD ∴∠=︒,AC ==,CD=AB=2cm ,12ACD S AC CD ∴==212⨯=2cm ,点A 为BF 的中点,//AE BC ,∴AE 为BCF △的中位线,1122AE BC AD ∴==, ∴点E 为AD 的中点, 12ACE ACD S S ∴==12⨯2cm 为折叠重合部分的面积,2cm .【点睛】本题考查了折叠问题以及等边三角形和平行四边形的综合问题,还涉及勾股定理,需要有一定的推理论证能力,熟练掌握等边三角形和平行四边形的性质是解题的关键.15.(4,2)【分析】将ABC 绕着点O 按顺时针方向旋转90°得到111A B C △顶点1A ,1A 的坐标即为点A 绕着点O 按顺时针方向旋转90°得到的点,由此可得出结果.【详解】如图,点A 绕着点O 按顺时针方向旋转90°得到点1A ,1A 的坐标为(4,2),故答案为:(4,2).【点睛】本题主要考查点的旋转变换,属于基础题,熟练掌握旋转变换的定义是解题的关键.16.(1)212y ⎛⎫- ⎪⎝⎭;(2)()()()11a b x x -+-. 【分析】(1)运用完全平方公式分解即可求解;(2)先提公式()-a b ,再运用平方差公式分解即可求解.【详解】解:(1)214y y -+, =212y ⎛⎫- ⎪⎝⎭; (2)2()()a b x b a -+-,=2()()a b x a b ---,=()2()1a b x --,=()()()11a b x x -+-.【点睛】本题考查了整式的因式分解,灵活运用提公因式法,公式法是解本题的关键. 17.(1)432b a a b-;(2)226(3)x x x -- 【分析】(1)先计算第二项的分式的乘方,再通分计算得到答案;(2)先通分,再计算同分母分式的加减法.【详解】(1)22a b b a ⎛⎫⎛⎫-+ ⎪ ⎪⎝⎭⎝⎭ =222a b b a⎛⎫-+ ⎪⎝⎭ =432b a a b-;(2)23(3)3x x x x --- =223(3)(3)(3)x x x x x -+-- =23(3)(3)x x x x +-- =226(3)x x x --. 【点睛】此题考查异分母分式的加减法,分式的乘方,正确掌握分式的通分运算是解题的关键. 18.(1)1x x+,2;(2)x=2 【分析】(1)先计算异分母分式的减法,再将除法化为乘法计算得出结果,最后将x 的值代入求出答案;(2)先去分母,再去括号、合并同类项、系数化为1求解.【详解】 (1)原式=2221122x x x x x x +++÷++ =2(1)2(2)1x x x x x ++⋅++ =1x x+, ∵31-<≤x ,x 是整数,且x ≠0、-2、-1,∴当x=1时,原式=2;(2)221111x x x x --=-- x (x+1)-2x+1=21x -2x +x-2x+1=21x --x=-2x=2,检验:当x=2时,21x -≠0,∴原分式方程的解是x=2.【点睛】此题考查分式的运算,正确掌握分式的混合运算法则,解分式方程的步骤是解题的关键,解题中注意未知数的取值满足分式的分母不等于0的条件.19.(1)图形见解析,a=4;(2)甲、乙两校成绩的平均分都是85分;(3)甲校的成绩波动较小,甲校的成绩好于乙校的成绩【分析】(1) 根据统计图可知甲班70分的有6人,从而可求得总人数,然后用总人数减去其他分数的人数即可得到100分的人数,利用两校的参赛人数相等求出a 的值,补全图形即可;(2)用加权平均数的计算公式求出两校的平均分;(3)根据方差的意义即可做出评价.【详解】(1)甲班总人数为:630%20÷=(人),∴100分的人数为20-6-3-6=5(人),∵甲、乙两所学校参赛人数相等,∴a=20-7-1-8=4,补全图形:(2)甲校的平均分=670380690510020⨯+⨯+⨯+⨯=85(分), ∴乙校的平均分=770480190810020⨯+⨯+⨯+⨯=85(分), (3)∵2 135S =甲,2175S =乙,∴S甲<S乙,∴甲校的成绩波动较小,甲校的成绩好于乙校的成绩.【点睛】本题考查的是条形统计图和扇形统计图,表格的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键,条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.20.(1)见解析;(2)∠C=44°.【分析】(1)由平行四边形的性质及角平分线的性质可得AB=AE,CF=CD,进而可得四边形EBFD 是平行四边形,即可得出结论;(2)根据平行线的性质和角平分线的定义即可得到结论.【详解】(1)证明:在平行四边形ABCD中,AD∥BC,∴∠AEB=∠CBE,又BE平分∠ABC,∴∠ABE=∠EBC,∴∠ABE=∠AEB,即AB=AE,同理CF=CD,又AB=CD,∴CF=AE,∴BF=DE,∴四边形EBFD是平行四边形;(2)解:∵∠AEB=68°,AD∥BC,∴∠EBF=∠AEB=68°,∵BE平分∠ABC,∴∠ABC=2∠EBF=136°,∴∠C=180°-∠ABC=44°.故答案为(1)见解析;(2)∠C=44°.【点睛】本题考查平行四边形的性质及角平分线的性质问题,要熟练掌握,并能够求解一些简单的计算、证明问题.21.甲、乙两校师生所乘大巴车的平均速度分别为60km/h 和90km/h.【分析】解:设甲校师生所乘大巴车的平均速度为xkm/h ,则乙校师生所乘大巴车的平均速度为1.5xkm/h ,根据甲校师生比乙校师生晚1小时到达目的地列出方程进行求解即可.【详解】设甲校师生所乘大巴车的平均速度为xkm/h ,则乙校师生所乘大巴车的平均速度为1.5xkm/h.根据题意得24027011.5x x-=, 解得x =60,经检验,x =60是原分式方程的解且符合实际意义,1.5x =90,答:甲、乙两校师生所乘大巴车的平均速度分别为60km/h 和90km/h.【点睛】本题考查了分式方程的应用,弄清题意,找准等量关系列出方程是解题的关键.22.(1)(1)(1)a b --;(2)(22)(22)x y x y -++-;【拓展应用】45.【分析】此题根据因式分解的常用方法,观察各式,参照例子把1ab a b --+分为()(1)ab a b ---再提取公因式分解即可,把22444x xy y -+-化为224)4(4x xy y --+再利用完全平方和平方差分解;把2222x y y x --+化为22()(22)x y x y -+-再因式分解代入即可.【详解】(1)1ab a b --+()()()()111ab a b a b =---=--(2)()()()()22222444444422222x xy y x xy yx y x y x y -+-=--+=--=-++- 【拓展应用】 ()()()()222222222x y y x x y x y x y x y --+=-+-=-++∵7x y +=,5x y -=,代入得:原式=()(2)5(72)45x y x y -++=⨯+=.【点睛】此题考查了因式分解所涉及的相关知识:完全平方公式,平方差公式,提取公因式法因式分解和分组结合等,也考查了学生对题文的理解能力.23.[问题探究] AD=BE ,理由见解析;[探究发现] 45︒,理由见解析;[问题解决]【分析】[问题探究]由旋转得CD=AC ,CE=CB ,∠ACD=∠BCE=α,证明△ACD ≌△BCE 即可得到结论;[探究发现] α=∠ACD=45︒时,四边形AFEC 是平行四边形,根据平行四边形的性质得到AF ∥CE ,推出∠CAF+∠ACE=180︒,由45CAB ∠=︒,∠DCE=90ACB ∠=︒,计算得出答案;[问题解决]由旋转得∠CDE=45CAB ∠=︒,根据AC ⊥DE 用勾股定理求出,根据222CF DF CD +=,代入计算求出答案.【详解】[问题探究]AD=BE ,理由如下:由旋转得CD=AC ,CE=CB ,∠ACD=∠BCE=α,∵AC=BC ,∴CD=CE ,∴△ACD ≌△BCE ,∴AD=BE ,故答案为:AD=BE ;[探究发现] α=∠ACD=45︒时,四边形AFEC 是平行四边形,理由如下:∵四边形AFEC 是平行四边形,∴AF ∥CE ,∴∠CAF+∠ACE=180︒,∵90ACB ∠=︒,AC BC =,∴45CAB ∠=︒,∴∠ACE=180︒-∠CAF=135︒,∵∠DCE=90ACB ∠=︒,∴α=∠ACD=45︒,故答案为:45︒;[问题解决]由旋转得∠CDE=45CAB ∠=︒,∵AC ⊥DE ,∴∠AFD=90︒,∴∠DCF=∠CDE=45︒,∴CF=DF ,∵222CF DF CD +=,∴∴,在Rt △AFD 中,222AF DF AD +=,∴2AD.【点睛】此题考查旋转的性质,等腰直角三角形的性质,全等三角形的判定及性质,勾股定理,平行四边形的性质,这是一道多边形的综合题,较难.。
九年级上册濮阳数学期末试卷练习(Word 版 含答案)一、选择题1.圆锥的底面半径为2,母线长为6,它的侧面积为( )A .6πB .12πC .18πD .24π 2.若关于x 的一元二次方程240ax bx ++=的一个根是1x =-,则2015a b -+的值是( )A .2011B .2015C .2019D .20203.分别写有数字0,﹣1,﹣2,1,3的五张卡片,除数字不同外其他均相同,从中任抽一张,那么抽到负数的概率是( )A .15B .25C .35D .45 4.已知二次函数y=-x 2+2mx+2,当x<-2时,y 的值随x 的增大而增大,则实数m ( ) A .m=-2 B .m>-2 C .m≥-2 D .m≤-25.二次函数()20y ax bx c a =++≠的图像如图所示,它的对称轴为直线1x =,与x 轴交点的横坐标分别为1x ,2x ,且110x -<<.下列结论中:①0abc <;②223x <<;③421a b c ++<-;④方程()2200ax bx c a ++-=≠有两个相等的实数根;⑤13a >.其中正确的有( )A .②③⑤B .②③C .②④D .①④⑤ 6.关于x 的一元二次方程x 2+bx-6=0的一个根为2,则b 的值为( )A .-2B .2C .-1D .1 7.已知反比例函数k y x =的图象经过点(m ,3m ),则此反比例函数的图象在( ) A .第一、二象限B .第一、三象限C .第二、四象限D .第三、四象限 8.数据3、4、6、7、x 的平均数是5,这组数据的中位数是( ) A .4B .4.5C .5D .6 9.如图,O 的直径AB 垂直于弦CD ,垂足是点E ,22.5CAO ∠=,6OC =,则CD 的长为( )A .62B .32C .6D .1210.下列说法正确的是( )A .所有等边三角形都相似B .有一个角相等的两个等腰三角形相似C .所有直角三角形都相似D .所有矩形都相似11.如图,点A 、B 、C 在⊙O 上,∠ACB =130°,则∠AOB 的度数为( )A .50°B .80°C .100°D .110°12.如图,□ABCD 中,点E 是边AD 的中点,EC 交对角线BD 于点F ,则EF:FC 等于( )A .3:2B .3:1C .1:1D .1:2二、填空题13.已知一组数据:4,4,m ,6,6的平均数是5,则这组数据的方差是______.14.抛物线286y x x =++的顶点坐标为______.15.在比例尺为1∶500 000的地图上,量得A 、B 两地的距离为3 cm ,则A 、B 两地的实际距离为_____km .16.若扇形的半径长为3,圆心角为60°,则该扇形的弧长为___.17.长度等于2的弦所对的圆心角是90°,则该圆半径为_____.18.已知线段a 、b 、c ,其中c 是a 、b 的比例中项,若a =2cm ,b =8cm ,则线段c =_____cm .19.某校五个绿化小组一天的植树的棵数如下:9,10,12,x ,8.已知这组数据的平均数是10,那么这组数据的方差是_____.20.如图,在ABC 中,62BC =,45C ∠=︒,2AB AC =,则AC 的长为________.21.如图,P 为O 外一点,PA 切O 于点A ,若3PA =,45APO ∠=︒,则O 的半径是______.22.如图,圆锥的底面半径OB =6cm ,高OC =8cm ,则该圆锥的侧面积是_____cm 2.23.某小区2019年的绿化面积为3000m 2,计划2021年的绿化面积为4320m 2,如果每年绿化面积的增长率相同,设增长率为x ,则可列方程为______.24.顶点在原点的二次函数图象先向左平移1个单位长度,再向下平移2个单位长度后,所得的抛物线经过点(0,﹣3),则平移后抛物线相应的函数表达式为_____.三、解答题25.如图,AB 是⊙O 的直径,AC 是⊙O 的弦,∠BAC 的平分线交⊙O 于点D ,过点D 作DE ⊥AC 交AC 的延长线于点E ,连接BD .(1)求证:DE 是⊙O 的切线;(2)若BD =3,AD =4,则DE = .26.已知二次函数y =ax 2+bx +c (a ≠0)中,函数y 与自变量x 的部分对应值如下表:(1)求该二次函数的表达式;(2)该二次函数图像关于x 轴对称的图像所对应的函数表达式 ;27.某养殖场计划用96米的竹篱笆围成如图所示的①、②、③三个养殖区域,其中区域①是正方形,区域②和③是矩形,且AG ∶BG =3∶2.设BG 的长为2x 米.(1)用含x 的代数式表示DF = ;(2)x 为何值时,区域③的面积为180平方米;(3)x 为何值时,区域③的面积最大?最大面积是多少?28.解方程:(1)x 2+4x ﹣21=0(2)x 2﹣7x ﹣2=029.如图,已知直线l 切⊙O 于点A ,B 为⊙O 上一点,过点B 作BC ⊥l ,垂足为点C ,连接AB 、OB .(1)求证:∠ABC =∠ABO ;(2)若AB =10,AC =1,求⊙O 的半径.30.如图,矩形OABC 中,O 为原点,点A 在y 轴上,点C 在x 轴上,点B 的坐标为(4,3),抛物线238y x bx c =-++与y 轴交于点A ,与直线AB 交于点D ,与x 轴交于C E ,两点.(1)求抛物线的表达式;(2)点P 从点C 出发,在线段CB 上以每秒1个单位长度的速度向点B 运动,与此同时,点Q 从点A 出发,在线段AC 上以每秒53个单位长度的速度向点C 运动,当其中一点到达终点时,另一点也停止运动.连接DP DQ PQ 、、,设运动时间为t (秒). ①当t 为何值时,DPQ ∆得面积最小?②是否存在某一时刻t ,使DPQ ∆为直角三角形?若存在,直接写出t 的值;若不存在,请说明理由.31.对于实数a ,b ,我们可以用{}max ,a b 表示a ,b 两数中较大的数,例如{}max 3,13-=,{}max 2,22=.类似的若函数y 1、y 2都是x 的函数,则y =min{y 1, y 2}表示函数y 1和y 2的取小函数.(1)设1y x =,21=y x ,则函数1max ,y x x ⎧⎫=⎨⎬⎩⎭的图像应该是___________中的实线部分.(2)请在下图中用粗实线描出函数()(){}22max 2,2y x x =---+的图像,观察图像可知当x 的取值范围是_____________________时,y 随x 的增大而减小.(3)若关于x 的方程()(){}22max 2,20x x t ---+-=有四个不相等的实数根,则t 的取值范围是_____________________. 32.已知,如图,在平面直角坐标系中,直线122y x =-- 与x 轴交于点A ,与y 轴交于点B ,抛物线212y x bx c =++经过A 、B 两点,与x 轴的另一个交点为C . (1)直接写出点A 和点B 的坐标;(2)求抛物线的函数解析式;(3)D 为直线AB 下方抛物线上一动点;①连接DO 交AB 于点E ,若DE :OE=3:4,求点D 的坐标;②是否存在点D ,使得∠DBA 的度数恰好是∠BAC 度数2倍,如果存在,求点D 的坐标,如果不存在,说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】根据圆锥的底面半径为2,母线长为6,直接利用圆锥的侧面积公式求出它的侧面积.【详解】根据圆锥的侧面积公式:πrl =π×2×6=12π,故选:B .【点睛】本题主要考查了圆锥侧面积公式.熟练地应用圆锥侧面积公式求出是解决问题的关键.2.C解析:C【解析】【分析】根据方程解的定义,求出a-b ,利用作图代入的思想即可解决问题.【详解】∵关于x 的一元二次方程240ax bx ++=的解是x=−1,∴a−b+4=0,∴a−b=-4,∴2015−(a−b)=2215−(-4)=2019.故选C.此题考查一元二次方程的解,解题关键在于掌握运算法则.3.B解析:B【解析】试题分析:根据概率的求法,找准两点:①全部等可能情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率. 因此,从0,﹣1,﹣2,1,3中任抽一张,那么抽到负数的概率是2 5 .故选B.考点:概率.4.C解析:C【解析】【分析】根据二次函数的性质,确定抛物线的对称轴及开口方向得出函数的增减性,结合题意确定m值的范围.【详解】解:抛物线的对称轴为直线221mx m∵10a=-<,抛物线开口向下,∴当x m<时,y的值随x值的增大而增大,∵当2x<-时,y的值随x值的增大而增大,∴2m≥-,故选:C.【点睛】本题考查了二次函数的性质,主要利用了二次函数的增减性,由系数的符号特征得出函数性质是解答此题的关键.5.A解析:A【解析】【分析】利用抛物线开口方向得到a<0,利用对称轴位置得到b>0,利用抛物线与y轴的交点在x 轴下方得c<0,则可对①进行判断;根据二次函数的对称性对②③进行判断;利用抛物线与直线y=2的交点个数对④进行判断,利用函数与坐标轴的交点列出不等式即可判断⑤.【详解】∵抛物线开口向下,∴a<0,∵对称轴为直线1x=∵抛物线与y 轴的交点在x 轴下方,∴c <-1,∴abc >0,所以①错误;∵110x -<<,对称轴为直线1x =∴1212x x +=故223x <<,②正确; ∵对称轴x=1,∴当x=0,x=2时,y 值相等,故当x=0时,y=c <0,∴当x=2时,y=421a b c ++<-,③正确;如图,作y=2,与二次函数有两个交点,故方程()2200ax bx c a ++-=≠有两个不相等的实数根,故④错误; ∵当x=-1时,y=a-b+c=3a+c >0,当x=0时,y=c <-1∴3a >1,故13a >,⑤正确; 故选A.【点睛】本题考查了二次函数图象与系数的关系:对于二次函数y =ax 2+bx +c (a ≠0),二次项系数a 决定抛物线的开口方向和大小.当a >0时,抛物线向上开口;当a <0时,抛物线向下开口;一次项系数b 和二次项系数a 共同决定对称轴的位置. 当a 与b 同号时(即ab >0),对称轴在y 轴左; 当a 与b 异号时(即ab <0),对称轴在y 轴右;常数项c 决定抛物线与y 轴交点位置:抛物线与y 轴交于(0,c ).也考查了二次函数的性质.6.D解析:D【解析】【分析】根据一元二次方程的解的定义,把x=2代入方程得到关于b 的一次方程,然后解一次方程即可.【详解】解:把x=2代入程x 2+bx-6=0得4+2b-6=0,解得b=1.故选:D .【点睛】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.7.B解析:B【解析】【分析】【详解】解:将点(m ,3m )代入反比例函数k y x=得, k=m•3m=3m 2>0;故函数在第一、三象限,故选B . 8.C解析:C【解析】【分析】首先根据3、4、6、7、x 这组数据的平均数求得x 值,再根据中位数的定义找到中位数即可.【详解】由3、4、6、7、x 的平均数是5,即(3467)55++++÷=x得5x =这组数据按照从小到大排列为3、4、5、6、7,则中位数为5.故选C【点睛】此题考查了平均数计算及中位数的定义,熟练运算平均数及掌握中位数的定义是解题关键.9.A解析:A【解析】【分析】先根据垂径定理得到CE DE =,再根据圆周角定理得到245BOC A ∠=∠=,可得OCE ∆为等腰直角三角形,所以2CE ==CD 的长.【详解】∵CD AB ⊥,AB 为直径,∴CE DE =,∵∠BOC 和∠A 分别为BC 所对的圆心角和圆周角,∠A=22.5°,∴2222.545BOC A ∠=∠=⨯=,∴OCE ∆为等腰直角三角形,∵OC=6,∴622CE ===∴2CD CE ==故选A .【点睛】本题考查了垂径定理及圆周角定理,在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半;垂直于弦的直径,平分这条弦且平分这条弦所对的两条弧.10.A解析:A【解析】【分析】根据等边三角形各内角为60°的性质、矩形边长的性质、直角三角形、等腰三角形的性质可以解题.【详解】解:A 、等边三角形各内角为60°,各边长相等,所以所有的等边三角形均相似,故本选项正确;B 、一对等腰三角形中,若底角和顶角相等且不等于60°,则该对三角形不相似,故本选项错误;C 、直角三角形中的两个锐角的大小不确定,无法判定三角形相似,故本选项错误;D 、矩形的邻边的关系不确定,所以并不是所有矩形都相似,故本选项错误.故选:A .【点睛】本题考查了等边三角形各内角为60°,各边长相等的性质,考查了等腰三角形底角相等的性质,本题中熟练掌握等边三角形、等腰三角形、直角三角形、矩形的性质是解题的关键.11.C解析:C【解析】【分析】根据圆内接四边形的性质和圆周角定理即可得到结论.在优弧AB 上任意找一点D ,连接AD ,BD .∵∠D =180°﹣∠ACB =50°,∴∠AOB =2∠D =100°,故选:C .【点睛】本题考查了圆周角定理,圆内接四边形的性质,正确的作出辅助线是解题的关键.12.D 解析:D【解析】【分析】根据题意得出△DEF ∽△BCF ,进而得出=DE EF BC FC ,利用点E 是边AD 的中点得出答案即可.【详解】解:∵▱ABCD ,故AD ∥BC ,∴△DEF ∽△BCF ,∴=DE EF BC FC, ∵点E 是边AD 的中点, ∴AE=DE=12AD , ∴12EF FC . 故选D .二、填空题13.8【解析】【分析】根据平均数是5,求m 值,再根据方差公式计算,方差公式为: (表示样本的平均数,n 表示样本数据的个数,S2表示方差.)解:∵4,4,,6,6的平均数是5,∴4+4解析:8【解析】【分析】根据平均数是5,求m 值,再根据方差公式计算,方差公式为:2222121n S x x x x x x n (x 表示样本的平均数,n 表示样本数据的个数,S 2表示方差.)【详解】解:∵4,4,m ,6,6的平均数是5,∴4+4+m+6+6=5×5,∴m=5,∴这组数据为4,4,m ,6,6,∴22222214545556565=0.85S ,即这组数据的方差是0.8.故答案为:0.8.【点睛】本题考查样本的平均数和方差的定义,掌握定义是解答此题的关键.14.【解析】【分析】直接利用公式法求解即可,横坐标为:,纵坐标为:.【详解】解:由题目得出:抛物线顶点的横坐标为:;抛物线顶点的纵坐标为:抛物线顶点的坐标为:(-4,-10). 故答案为解析:()4,10--【解析】【分析】直接利用公式法求解即可,横坐标为:2b a -,纵坐标为:244ac b a-. 【详解】解:由题目得出:抛物线顶点的横坐标为:84 221ba-=-=-⨯;抛物线顶点的纵坐标为:2244168246410 4414ac ba-⨯⨯--===-⨯抛物线顶点的坐标为:(-4,-10).故答案为:(-4,-10).【点睛】本题考查二次函数的知识,掌握二次函数的图象和性质是解题的关键.15.15【解析】【分析】由在比例尺为1:50000的地图上,量得A、B两地的图上距离AB=3cm,根据比例尺的定义,可求得两地的实际距离.【详解】解:∵比例尺为1:500000,量得两地的距离解析:15【解析】【分析】由在比例尺为1:50000的地图上,量得A、B两地的图上距离AB=3cm,根据比例尺的定义,可求得两地的实际距离.【详解】解:∵比例尺为1:500000,量得两地的距离是3厘米,∴A、B两地的实际距离3×500000=1500000cm=15km,故答案为15.【点睛】此题考查了比例尺的性质.注意掌握比例尺的定义,注意单位要统一.16.【解析】【分析】根据弧长的公式列式计算即可.【详解】∵一个扇形的半径长为3,且圆心角为60°,∴此扇形的弧长为=π.故答案为:π.【点睛】此题考查弧长公式,熟记公式是解题关键.解析:π【解析】【分析】根据弧长的公式列式计算即可.【详解】∵一个扇形的半径长为3,且圆心角为60°, ∴此扇形的弧长为603180π⨯=π. 故答案为:π.【点睛】此题考查弧长公式,熟记公式是解题关键. 17.6【解析】【分析】结合等腰三角形的性质,根据勾股定理求解即可.【详解】解:如图AB =6,∠AOB=90°,且OA =OB ,在中,根据勾股定理得,即∴,故答案为:6.【点睛】解析:6【解析】【分析】结合等腰三角形的性质,根据勾股定理求解即可.【详解】解:如图AB =,∠AOB =90°,且OA =OB ,在Rt OAB 中,根据勾股定理得222OA OB AB +=,即222272OA AB === ∴236OA =,0OA >6OA ∴=故答案为:6.【点睛】本题考查了等腰三角形的性质及勾股定理,在等腰直角三角形中灵活利用勾股定理求线段长度是解题的关键.18.4【解析】【分析】根据比例中项的定义,列出比例式即可求解.【详解】∵线段c是a、b的比例中项,线段a=2cm,b=8cm,∴=,∴c2=ab=2×8=16,∴c1=4,c2=﹣4(舍解析:4【解析】【分析】根据比例中项的定义,列出比例式即可求解.【详解】∵线段c是a、b的比例中项,线段a=2cm,b=8cm,∴ac=cb,∴c2=ab=2×8=16,∴c1=4,c2=﹣4(舍去),∴线段c=4cm.故答案为:4【点睛】本题考查了比例中项的概念:当两个比例内项相同时,就叫比例中项.这里注意线段不能是负数.19.2【解析】【分析】首先根据平均数确定x的值,再利用方差公式S2=[(x1﹣)2+(x2﹣)2+…+(xn﹣)2],计算方差即可.∵组数据的平均数是10,∴(9+10+12+x+8解析:2【解析】【分析】首先根据平均数确定x的值,再利用方差公式S2=1n[(x1﹣x)2+(x2﹣x)2+…+(x n﹣x)2],计算方差即可.【详解】∵组数据的平均数是10,∴15(9+10+12+x+8)=10,解得:x=11,∴S2=15[[(9﹣10)2+(10﹣10)2+(12﹣10)2+(11﹣10)2+(8﹣10)2],=15×(1+0+4+1+4),=2.故答案为:2.【点睛】本题考查了方差,一般地设n个数据,x1,x2,…x n的平均数为x,则方差S2=1n[(x1﹣x)2+(x2﹣x)2+…+(x n﹣x)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.20.【解析】【分析】过点作的垂线,则得到两个直角三角形,根据勾股定理和正余弦公式,求的长. 【详解】过作于点,设,则,因为,所以,则由勾股定理得,因为,所以,则.则.【点睛】本题考查勾股定解析:2【解析】【分析】过A点作BC的垂线,则得到两个直角三角形,根据勾股定理和正余弦公式,求AC的长.过A 作AD BC ⊥于D 点,设2AC x =,则2AB x =,因为45C ∠=︒,所以AD CD x ==,则由勾股定理得223BD AB AD x =-=,因为62BC =+,所以362BC x x =+=+,则2x =.则2AC =.【点睛】本题考查勾股定理和正余弦公式的运用,要学会通过作辅助线得到特殊三角形,以便求解. 21.3【解析】【分析】由题意连接OA ,根据切线的性质得出OA ⊥PA ,由已知条件可得△OAP 是等腰直角三角形,进而可求出OA 的长,即可求解.【详解】解:连接OA ,∵PA 切⊙O 于点A ,∴OA解析:3【解析】【分析】由题意连接OA ,根据切线的性质得出OA ⊥PA ,由已知条件可得△OAP 是等腰直角三角形,进而可求出OA 的长,即可求解.【详解】解:连接OA ,∵PA 切⊙O 于点A ,∴OA ⊥PA ,∴∠OAP=90°,∵∠APO=45°,∴OA=PA=3,故答案为:3.【点睛】本题考查切线的性质即圆的切线垂直于经过切点的半径.若出现圆的切线,连接过切点的半径,构造定理图,得出垂直关系.22.60π【解析】【分析】先利用勾股定理求出BC的长度,然后利用扇形的面积公式求解即可.【详解】解:∵它的底面半径OB=6cm,高OC=8cm.∴BC==10(cm),∴圆锥的侧面积是:(解析:60π【解析】【分析】先利用勾股定理求出BC的长度,然后利用扇形的面积公式求解即可.【详解】解:∵它的底面半径OB=6cm,高OC=8cm.∴BC==10(cm),∴圆锥的侧面积是:12610602r l rlππππ⋅⋅==⋅⨯=(cm2).故答案为:60π.【点睛】本题主要考查勾股定理及扇形的面积公式,掌握勾股定理及扇形的面积公式是解题的关键.23.3000(1+ x)2=4320【解析】【分析】设增长率为x,则2010年绿化面积为3000(1+x)m2,则2021年的绿化面积为3000(1+x)(1+x)m2,然后可得方程.【详解】解析:3000(1+ x)2=4320【解析】【分析】设增长率为x,则2010年绿化面积为3000(1+x)m2,则2021年的绿化面积为3000(1+x)(1+x)m2,然后可得方程.【详解】解:设增长率为x ,由题意得:3000(1+x )2=4320,故答案为:3000(1+x )2=4320.【点睛】本题考查了由实际问题抽象出一元二次方程,关键是正确理解题意,找出题目中的等量关系.24.y =﹣(x+1)2﹣2【解析】【分析】根据坐标平移规律可知平移后的顶点坐标为(﹣1,﹣2),进而可设二次函数为,再把点(0,﹣3)代入即可求解a 的值,进而得平移后抛物线的函数表达式.【详解】解析:y =﹣(x +1)2﹣2【解析】【分析】根据坐标平移规律可知平移后的顶点坐标为(﹣1,﹣2),进而可设二次函数为()212y a x +-=,再把点(0,﹣3)代入即可求解a 的值,进而得平移后抛物线的函数表达式.【详解】由题意可知,平移后的函数的顶点为(﹣1,﹣2),设平移后函数的解析式为()212y a x +-=,∵所得的抛物线经过点(0,﹣3),∴﹣3=a ﹣2,解得a =﹣1,∴平移后函数的解析式为()212y x +=--,故答案为()212y x +=--.【点睛】本题考查坐标与图形变化-平移,解题的关键是掌握坐标平移规律:“左右平移时,横坐标左移减右移加,纵坐标不变;上下平移时,横坐标不变,纵坐标上移加下移减”。
河南省濮阳市2020版九年级上学期数学期末考试试卷(II)卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)抛物线y=3(x﹣1)2+2的顶点坐标是()A . (1,﹣2)B . (﹣1,2)C . (1,2)D . (﹣1,﹣2)2. (2分)方程的两根是菱形两条对角线的长,则这个菱形的周长是A . 40B . 30C . 28D . 203. (2分)若⊙O的半径为5cm,点A到圆心O的距离为6cm,那么点A与⊙O的位置关系是()A . 点A在圆外B . 点A在圆上C . 点A在圆内D . 不能确定4. (2分) (2019九上·高邮期末) 如图,AB为半圆O的直径,现将一块等腰直角三角板如图放置,锐角顶点P在半圆上,斜边过点B,一条直角边交该半圆于点Q.若AB=2,则线段BQ的长为()A .B .C .D . 15. (2分)如图,是一个比例尺1:100 000 000的中国地图,则北京、佛山两地之间的实际直线距离大约是()A . 1.8×103kmB . 1.8×106kmC . 1.6×103kmD . 1.6×106km6. (2分)(2019·河北模拟) 如图,在△ABC中,AB是⊙O的直径,∠B=60°,∠C=70°,则∠BOD的度数是()A . 90°B . 100°C . 110°D . 120°7. (2分)如图所示,四边形ABCD是梯形,AD∥BC,CA是∠BCD的平分线,且AB⊥AC,AB=4,AD=6,则tanB=()A . 2B . 2C .D .8. (2分)(2020·抚州模拟) 如图,点E是矩形ABCD的边AD的中点,且BE⊥AC于点F,则下列结论中错误的是()A . AF= CFB . ∠DCF=∠DFCC . 图中与△AEF相似的三角形共有5个D . tan∠CAD=9. (2分)抛物线y=ax2+4ax﹣5的对称轴为()A . x=﹣2aB . x=4C . x=2aD . x=﹣210. (2分)(2020·阳新模拟) 如果,正方形ABCD的边长为2cm,E为CD边上一点,∠DAE=30°,M为AE 的中点,过点M作直线分别与AD、BC相交于点P、Q,若PQ=AE,则PD等于()A . cm或 cmB . cmC . cm或 cmD . cm或 cm二、填空题 (共8题;共8分)11. (1分)已知=,则的值是________ .12. (1分) (2019八下·农安期末) 现有甲、乙两支篮球队,每支球队队员身高的平均数均为1.85米,方差分别为,,则身高较整齐的球队是________队.13. (1分)(2020·徽县模拟) 把函数的图象向右平移2个单位长度,再向下平移1个单位长度,得到函数的关系式是________.14. (1分)(2017·东莞模拟) 已知关于x的方程x2﹣2x+k=0有实数根,则k的取值范围是________.15. (1分)(2020·昆明) 如图,边长为2 cm的正六边形螺帽,中心为点O,OA垂直平分边CD,垂足为B,AB=17cm,用扳手拧动螺帽旋转90°,则点A在该过程中所经过的路径长为________cm.16. (1分)如图,沿一条母线将圆锥侧面剪开并展平,得到一个扇形,若圆锥的底面圆的半径r=2cm,扇形的圆心角θ=90°,则该圆锥的母线l长为________cm.17. (1分)(2017·丹东模拟) 如图,在△ABC中,AB=2,BC=3.6,∠B=60°,将△ABC绕点A按顺时针旋转一定角度得到△ADE,当点B的对应点D恰好落在BC边上时,则CD的长为________.18. (1分)(2020·吉林模拟) 如图,某办公大楼正前方有一根高度是15米的旗杆,从办公大楼顶端测得旗杆顶端的俯角是45°,旗杆底端到大楼前梯坎底边的距离是10米,梯坎坡长是10米,梯坎坡度=1:,则大楼的高为________米.三、解答题 (共10题;共145分)19. (10分) (2018九上·遵义月考) 有人说:“数学是思维的体操”,运用和掌握必要的“数学思想”和“数学方法”是取胜数学的重要法宝.阅读下列例题:(1)解方程:x2﹣2|x|﹣3=0.解:①当x≥0时,有x2﹣2x﹣3=0,解得x1=﹣1(舍去),x2=3.②当x<0时,有x2+2x﹣3=0,解得x1=1(舍去),x2=﹣3.所以,原方程的解是x=3或﹣3.(数学的分类讨论思想)试解方程:x2﹣|x﹣1|﹣1=0.(2)设a3+a﹣1=0,求a3+a+2018的值.解:由a3+a﹣1=0得a3+a=1,代入,有a3+a+2018=1+2018=2019(整体代入或换元思想)试一试:当a是一元二次方程x2﹣2018x+1=0的一个根时,求:a2﹣2017a+ 的值.20. (10分)计算:×sin45°﹣20150+2﹣1 .21. (10分)(2020·南宁模拟) △ABC在边长为1的正方形网格中如图所示.①以点C为位似中心,作出△ABC的位似图形△A1B1C,使其位似比为1:2.且△A1B1C位于点C的异侧,并表示出A1的坐标。
河南省濮阳市濮阳县九年级(上)期末模拟数学试卷一、单选题(共10题;共30分)1.将抛物线y=52向下平移3个单位,再向左平移2个单位,那么得到的抛物线的解析式为()A. y=5(+2)2-3B. y=5(+2)2+3C. y=5(-2)2-3D. y=5(-2)2+32.有长24m的篱笆,一面利用围墙围成如图中间隔有一道篱笆的矩形花圃,设花圃的垂直于墙的一边长为m,面积是s m2,则s与的关系式是()A. s=﹣32+24B. s=﹣22﹣24C. s=﹣32﹣24D. s=﹣22+243.如图,⊙O的半径OD⊥弦AB于点C,连结AO并延长交⊙O于点E,连结EC.若AB=8,CD=2,则sin∠ECB为()A. B. C. D.4.一张长方形桌子的长是150cm,宽是100cm,现在要设计一块长方形桌布,面积是桌面的2倍,且使四周垂下的边宽是cm.根据题意,得()A. (150+)(100+)=150×100×2B. (150+2)(100+2)=150×100×2C. (150+)(100+)=150×100D. 2(150+100)=150×1005.如图,⊙O是△ABC的外接圆,直径AD与BC相交于点E,连接CD,若⊙O的半径为5,AB=AC=8,DE=3,则EC长为()A. 4B.C.D.6.如图,已知⊙O的直径AB⊥弦CD于点E,下列结论中一定正确的是()A. AE=OEB. CE=DEC. OE=CED. ∠AOC=60°7.关于的方程2﹣4+4a=0有两个实数根,则a的取值范围是()A. a<1B. a>1C. a≤1D. a≥18.抛掷两枚均匀的硬币,当抛掷多次以后,出现两个反面的成功率大约稳定在().A. 25%B. 50%C. 75%D. 100%9.如图,⊙O中,点A,O,D以及点B,O,C分别在一条直线上,图中弦的条数有()A. 2条B. 3条C. 4条D. 5条10.下列图形中,即是中心对称又是轴对称图形的是( )A. 等边三角形B. 平行四边形C. 梯形D. 矩形二、填空题(共8题;共24分)11.在直角梯形ABCD中,AD∥BC,∠DAB=90°,AD=1,BC=2.连接BD,把△ABD绕着点B逆时针旋转90°得到△EBF,若点F刚好落在DA的延长线上,则∠C=________°.12.若最简二次根式与是同类二次根式,则a=________.13.要使代数式有意义,则的取值范围是________.14.反比例函数y=中,值满足方程2﹣﹣2=0,且当>0时,y随的增大而增大,则=________15.二次函数y=2﹣4﹣3的顶点坐标是________.16.某小组同学,新年时每人互送贺年卡一张,共送贺年卡56张,这个小组共有________ 人.17.将抛物线y=2沿轴向右平移2个单位后所得抛物线的解析式是________18.如图,在扇形AOB中,∠AOB=90°,点C为OA的中点,CE⊥OA交于点E,以点O为圆心,OC的长为半径作交OB于点D.若OA=2,则阴影部分的面积为________.三、解答题(共6题;共36分)19.我省某工艺厂为全运会设计了一款成本为每件20元得工艺品,投放市场进行试销后发现每天的销售量y (件)是售价(元∕件)的一次函数,当售价为22元∕件时,每天销售量为780件;当售价为25元∕件时,每天的销售量为750件.(1)求y与的函数关系式;(2)如果该工艺品售价最高不能超过每件30元,那么售价定为每件多少元时,工艺厂销售该工艺品每天获得的利润最大?最大利润是多少元?(利润=售价﹣成本)20.如图,已知圆的半径为r,求外接正六边形的边长.21.已知直线L1∥L2,点A,B,C在直线L1上,点E,F,G在直线L2上,任取三个点连成一个三角形,求:(1)连成△ABE的概率;(2)连成的三角形的两个顶点在直线L2上的概率.22.一学校为了绿化校园环境,向某园林公司购买力一批树苗,园林公司规定:如果购买树苗不超过60棵,每棵售价120元;如果购买树苗超过60棵,每增加1棵,所出售的这批树苗每棵售价均降低0.5元,但每棵树苗最低售价不得少于100元,该校最终向园林公司支付树苗款8800元,请问该校共购买了多少棵树苗?23.如图所示,在一幅长80cm,宽50cm的矩形风景画的四周镶一条金色纸边,制成一幅矩形挂图,如果要使整个挂图的面积是5400cm2,设金色纸边的宽为cm,求满足的方程.24.已知=﹣1是关于的方程2+2a+a2=0的一个根,求a的值.四、综合题(共10分)25.已知∠α的顶点在正n边形的中心点O处,∠α绕着顶点O旋转,角的两边与正n边形的两边分别交于点M、N,∠α与正n边形重叠部分面积为S.(1)当n=4,边长为2,∠α=90°时,如图(1),请直接写出S的值;(2)当n=5,∠α=72°时,如图(2),请问在旋转过程中,S是否发生变化?并说明理由;(3)当n=6,∠α=120°时,如图(3),请猜想S是原正六边形面积的几分之几(不必说明理由).若∠α的平分线与BC边交于点P,判断四边形OMPN的形状,并说明理由.河南省濮阳市濮阳县九年级(上)期末模拟数学试卷参考答案与试题解析一、单选题1.【答案】A【考点】二次函数图象与几何变换【解析】【分析】根据向左平移横坐标减,向下平移纵坐标减求出平移后的抛物线的顶点坐标,然后利用顶点式解析式写出即可.【解答】∵抛物线y=52向下平移3个单位,向左平移2个单位,∴平移后的抛物线的顶点坐标为(-2,-3),∴平移得到的抛物线的解析式为y=5(+2)2-3.故答案为:A.【点评】本题考查了二次函数图象与几何变换,熟练掌握平移的规律:左加右减,上加下减并确定出平移后的抛物线的顶点坐标是解题的关键2.【答案】A【考点】根据实际问题列二次函数关系式【解析】【解答】S=(24﹣3)=24﹣32.故选:A.【分析】AB为m,则BC为(24﹣3)m,利用长方体的面积公式,可求出关系式.3.【答案】B【考点】垂径定理【解析】【解答】解:连结BE,如图,∵OD⊥AB,∴AC=BC=AB=×8=4,设AO=,则OC=OD﹣CD=﹣2,在Rt△ACO中,∵AO2=AC2+OC2,∴2=42+(﹣2)2,解得:=5,∴AE=10,OC=3,∵AE是直径,∴∠ABE=90°,∵OC是△ABE的中位线,∴BE=2OC=6,在Rt△CBE中,CE=∴sin∠ECB=故选:B.【分析】根据垂径定理得到AC=BC=AB=4,设AO=,则OC=OD﹣CD=﹣2,在Rt△ACO中根据勾股定理得到2=42+(﹣2)2,解得=5,则AE=10,OC=3,再由AE是直径,根据圆周角定理得到∠ABE=90°,利用OC是△ABE的中位线得到BE=2OC=6,然后在Rt△CBE中利用勾股定理可计算出CE,由三角函数的定义求出sin∠ECB即可.4.【答案】B【考点】一元二次方程的应用【解析】【解答】解:设四周垂下的边宽度为cm,桌布的长为(150+2),宽为(100+2),根据桌布面积是桌面的2倍可得:(150+2)(100+2)=150×100×2,故选B.【分析】设四周垂下的边宽度为cm,求得桌布的面积,根据桌布面积是桌面的2倍列方程解答时即可.5.【答案】B【考点】等腰三角形的性质,三角形的外接圆与外心【解析】【解答】解:∵⊙O的半径为5,DE=3,∴AE=10﹣3=7,∵AD是直径,∴∠ACD=90°,∴CD=6,∵AB=AC,∴∠ACE=∠D,又∠DAC=∠CAE,∴△AEC∽△ACD,∴= ,即= ,解得,EC= ,故选:B.【分析】根据勾股定理求出CD,证明△AEC∽△ACD,根据相似三角形的性质列出比例式,计算即可.6.【答案】B【考点】垂径定理【解析】【分析】垂径定理:垂直于弦的直径平分弦,并且平分弦所对的弧。
【解答】∵直径AB⊥弦CD∴CE=DE故选B.【点评】本题属于基础应用题,只需学生熟练掌握垂径定理,即可完成。
7.【答案】C【考点】根的判别式【解析】【解答】解:∵关于的方程2﹣4+4a=0有两个实数根,∴△=16﹣4×4a≥0,解得:a≤1,故选C.【分析】由方程有两个实数根,得到根的判别式大于等于0,即可确定出a的范围.8.【答案】A【考点】利用频率估计概率【解析】【解答】抛掷两枚均匀的硬币,可能出现的情况为:正正,反反,正反,反正,∴出现两个反面的概率为,∴抛掷多次以后,出现两个反面的成功率大约稳定在25%.故选A.【分析】考查利用频率估计概率.大量反复试验下频率稳定值即概率.用到的知识点为:概率=所求情况数与总情况数之比.抛掷两枚均匀的硬币,可能会出现四种情况,而出现两个反面的机会为四分之一.9.【答案】B【考点】圆的认识【解析】【解答】图中的弦有AB,BC,CE共三条,故选B.【分析】根据弦的定义进行分析,从而得到答案.10.【答案】D【考点】轴对称图形,中心对称及中心对称图形【解析】【分析】根据轴对称图形与中心对称图形的概念求解,四个选项中,只有D选项既为中心对称图形又是轴对称图形【解答】A、是轴对称图形,不是中心对称图形.故本选项错误;B、不是轴对称图形,是中心对称图形.故本选项错误;C、是轴对称图形,不是中心对称图形.故本选项错误;D、既是轴对称图形,又是中心对称图形.故本选项正确.故选D.【点评】本题主要考查中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形的关键是要寻找对称中心,旋转180度后与原图重合.二、填空题11.【答案】45【考点】旋转的性质【解析】【解答】解:作DH⊥BC于H,如图,∵AD∥BC,∠DAB=90°,∴四边形ABHD为矩形,∴BH=AD=1,AB=DH,∴HC=BC﹣BH=2﹣1=1,∵△ABD绕着点B逆时针旋转90°得到△EBF,∴∠FBD=90°,BF=BD,∴△BDF为等腰直角三角形,∵点F刚好落在DA的延长线上,∴BA⊥DF,∴AB=AF=AD=1,∴DH=1,∴△DHC为等腰直角三角形,∴∠C=45°.故答案为45°.【分析】作DH⊥BC于H,如图,易得四边形ABHD为矩形,则BH=AD=1,AB=DH,所以HC=BC﹣BH=1,再根据旋转的性质得∠FBD=90°,BF=BD,则可判断△BDF为等腰直角三角形,所以BA⊥DF,根据等腰直角三角形的性质得AB=AF=AD=1,则DH=1,然后再判断△DHC为等腰直角三角形,于是可得∠C=45°.12.【答案】2【考点】最简二次根式,同类二次根式【解析】【解答】由题意,得7a﹣1=6a+1,解得a=2,故答案为:2.【分析】依据同类二次根式的被开放数相等列方程求解即可.13.【答案】≥﹣1且≠0【考点】分式有意义的条件,二次根式有意义的条件【解析】【解答】解:根据题意,得,解得≥﹣1且≠0.【分析】根据二次根式和分式有意义的条件:被开方数大于等于0,分母不等于0,列不等式组求解.14.【答案】-1【考点】解一元二次方程-因式分解法,反比例函数的性质【解析】【解答】解:∵反比例函数y=中,值满足方程2﹣﹣2=0,∴解方程得=2或=﹣1,∵当>0时,y随的增大而增大,∴<0,∴=﹣1.故答案为﹣1.【分析】根据函数当>0时,y随的增大而增大可以判断的符号,然后解方程求得的值即可.15.【答案】(2,﹣7)【考点】二次函数的三种形式【解析】【解答】解:∵y=2﹣4﹣3=2﹣4+4﹣7=(﹣2)2﹣7,∴二次函数y=2﹣4+7的顶点坐标为(2,﹣7).故答案为(2,﹣7).【分析】用配方法或代入顶点式法即可求出其顶点坐标。