北师大版九年级数学上思维特训(一)含答案:正方形的旋转变换
- 格式:docx
- 大小:401.71 KB
- 文档页数:9
北师大版九年级数学上册第一章特殊平行四边形3.正方形的性质与判定正方形的判定专题练习题1.下列说法不正确的是()A.一组邻边相等的矩形是正方形B.对角线相等的菱形是正方形C.对角线互相垂直的矩形是正方形D.有一个角是直角的平行四边形是正方形2.在四边形ABCD中,O是对角线的交点,能判定这个四边形是正方形的条件是() A.AC=BD,AB∥CD,AB=CD B.AD∥BC,∠A=∠CC.AO=BO=CO=DO,AC⊥BD D.AO=CO,BO=DO,AB=BC3. 已知四边形ABCD是平行四边形,再从①AB=BC,②∠ABC=90°,③AC=BD,④AC ⊥BD四个条件中,选两个作为补充条件后,使得四边形ABCD是正方形,现有下列四种选法,其中错误的是()A.选①②B.选②③C.选①③D.选②④4.如图,只要把一张矩形纸片的一个角沿折痕AE翻折上去,使AB和AD边上的AF重合,则四边形ABEF就是一个正方形,判断的依据是____________________________.5.如图,在四边形ABCD中,AB=BC=CD=DA,对角线AC与BD相交于点O,若不增加任何字母与辅助线,要使得四边形ABCD是正方形,则还需增加的一个条件是__________________.6.黑板上画有一个图形,学生甲说它是多边形,学生乙说它是平行四边形,学生丙说它是菱形,学生丁说它是矩形,老师说这四位同学的答案都正确,则黑板上画的图形是__________.7.对角线________的菱形是正方形,对角线________的矩形是正方形,对角线________________的平行四边形是正方形,对角线的四边形是正方形.8.已知:如图,△ABC中,∠ABC=90°,BD是∠ABC的平分线,DE⊥AB于点E,DF ⊥BC于点F.求证:四边形DEBF是正方形.9.如图,在△ABC中,点D,E分别是边AB,AC的中点,将△ADE绕点E旋转180°得到△CFE.(1)求证:四边形ADCF是平行四边形;(2)当△ABC满足什么条件时,四边形ADCF是正方形?请说明理由.10.四边形ABCD的对角线AC=BD,AC⊥BD,分别过点A,B,C,D作对角线的平行线,所成的四边形EFMN是()A.正方形B.菱形C.矩形D.任意四边形11.如图,在△ABC中,∠ACB=90°,BC的垂直平分线EF交BC于点D,交AB于点E,且BE=BF,添加一个条件,仍不能证明四边形BECF为正方形的是()A.BC=AC B.CF⊥BF C.BD=DF D.AC=BF12.如图,将一张长方形纸片对折两次,然后剪下一个角,打开.如果要剪出一个正方形,那么剪口线与折痕成________度角.13.如图,以边长为1的正方形的四边中点为顶点作四边形,再以所得四边形的四边中点为顶点作四边形,…依次作下去,图中所作的第三个四边形的周长为________;所作的第n 个四边形的周长为________.14.如图,正方形ABCD的边长为6,菱形EFGH的三个顶点E,G,H分别在正方形ABCD 的边AB,CD,DA上,且AH=2,连接CF.若DG=2,求证:菱形EFGH为正方形.15.如图,正方形CEFG的边GC在正方形ABCD的边CD上,延长CD到H,使DH=CE,K在BC边上,且BK=CE,求证:四边形AKFH为正方形.答案:1---3 DCB4. 有一组邻边相等的矩形是正方形5. AC=BD6. 正方形7. 相等互相垂直互相垂直且相等互相垂直平分且相等8.证明:∵DE⊥AB,DF⊥BC,∴∠DEB=∠DFB=90°.又∵∠ABC=90°,∴四边形BEDF为矩形.∵BD是∠ABC的平分线,且DE⊥AB,DF⊥BC,∴DE=DF,∴矩形BEDF为正方形.9. (1)证明:∵△CFE是由△ADE绕点E旋转180°得到的,∴A,E,C三点共线,D,E,F三点共线,且AE=CE,DE=FE,故四边形ADCF是平行四边形;(2)解:当∠ACB=90°,AC=BC时,四边形ADCF是正方形.理由如下:在△ABC中,∵AC=BC,AD=BD,∴CD⊥AB,即∠ADC=90°.由(1)知,四边形ADCF是平行四边形,∴四边形ADCF是矩形.又∵∠ACB=90°,∴CD=12AB=AD,故四边形ADCF是正方形10. A11. D12. 4513. 2 4(2 2)n14.证明:∵四边形ABCD是正方形,∴∠D=∠A=90°.∵四边形EFGH是菱形,∴HG =HE.∵DG=AH=2,∴Rt△HDG≌Rt△EAH,∴∠DHG=∠AEH.又∵∠AEH+∠AHE=90°,∴∠DHG+∠AHE=90°,∴∠GHE=90°,∴菱形EFGH为正方形.15.证明:∵四边形ABCD和四边形CEFG是正方形,∴AB=BC=CD=AD,∠BAD=∠DCB=∠B=∠ADC=90°,∠GCE=∠E=∠GFE=∠CGF=90°,∴∠ADH=∠HGF=∠E=∠B=90°.又∵DH=CE,BK=CE,∴BK=GF=DH=EF,KE=GH=AB=AD,∴△ABK ≌△KEF≌△HGF≌△ADH,∴AK=KF=HF=AH,∠BAK=∠DAH.∵∠BAD=90°,∴∠HAK=∠HAD+∠DAK=∠BAK+∠DAK=∠BAD=90°,∴四边形AKFH为正方形.。
九年级数学上册《旋转》练习一、单选题1.如图,ABC 与A'B'C'是成中心对称,下列说法不正确的是( )A .ABCA'B'C'SS=B .AB A'B'=,AC A'C'=,BC B'C'= C .AB//A'B',AC //A'C',BC //B'C'D .ACOA'B'OSS=2.如图,将Rt △ABC 绕直角顶点C 顺时针旋转90°,得到△A 1B 1C ,连接AA 1,若∠AA 1B 1=15°,则∠B 的度数是( )A .75°B .60°C .50°D .45°3.在如图所示的四个图案中,既可用旋转来分析整个图案的形成过程,又可用轴对称来分析整个图案的形成过程的图案有( )A .1个B .2个C .3个D .4个4.如图,在正方形网格中,线段是线段绕某点逆时针旋转角得到的,点与对应,则角的大小为( )A .B .C .D .5.下列图形中,绕某个点旋转90°能与自身重合的有( )①正方形;②长方形;③等边三角形;④线段;⑤角;⑥平行四边形.A .1个B .2个C .3个D .4个6.下列几何图形中,绕其对称中心点旋转任意角度后,所得到的图形都和原图形重合,这个图形是( )A .正方形B .正六边形C .五角星D .圆7.下列四个图案是小明家在瓷砖厂选购的四种地砖图案,其中既可用旋转来分析整个图案的形成过程,又可用平移来分析整个图案的形成过程的是( ) A .B .C .D .8.下列图形中,既是中心对称又是轴对称的图形是( ) A .B .C .D .9.时钟上的分针匀速旋转一周需要60min ,则经过20min ,分针旋转了( )A .20B .60C .90D .12010.如图,E 、F 分别是正方形ABCD 的边AB 、BC 上的点,BE=CF ,连接CE 、DF .将△BCE 绕着正方形的中心O 按逆时针方向旋转到△CDF 的位置,则旋转角是A .45°B .60°C .90°D .120°二、填空题11.在平面直角坐标系中,P 点关于原点的对称点为P 1(﹣3,﹣83),P 点关于x 轴的对称点为P 2(a ,b )12.如图,在矩形ABCD 中,AD=3,将矩形ABCD 绕点A 逆时针旋转,得到矩形AEFG ,点B 的对应点E 落在CD 上,且DE=EF ,则AB 的长为_____.13.已知点()3,2P ,则点P 关于y 轴的对称点1P 的坐标是________,点P 关于原点O 的对称点2P 的坐标是________.14.已知点()M 2m 1,m 1+-与点N 关于原点对称,若点N 在第二象限,则m 的取值范围是________.15.已知坐标平面上的机器人接受指令“(a ,A )”﹙a≥0,0°<A <180°﹚后的行动结果为:在原地顺时针旋转A 后,再向面对方向沿直线行走a .若机器人的位置在原点,面对方向为y 轴的负半轴,则它完成一次指令(2,60°)后,所在位置的坐标为____________. 16.如图,在Rt AOB 中,90A ∠=,60AOB ∠=,在边长为1的小正方形组成的网格中,AOB 的顶点O 、A 均在格点上,点B 在x 轴上,点A 的坐标为()1,2-.()1点A 关于点O 中心对称的点的坐标为________;(2)AOB 绕点O 顺时针旋转60后得到11A OB ,那么点1A 的坐标为________;线段AB 在旋转过程中所扫过的面积是________.三、解答题17.如图,P 是矩形ABCD 下方一点,将△PCD 绕点P 顺时针旋转60°后,恰好点D 与点A 重合,得到△PEA ,连接EB ,问:△ABE 是什么特殊三角形?请说明理由.18.如图,在中,,,点分别在上(点与点不重合),且.将绕点逆时针旋转得到.当的斜边、直角边与分别相交于点(点与点不重合)时,设.(1)求证:;(2)求关于的函数解析式,并直接写出自变量的取值范围.19.在如图所示的方格纸中,每个小方格都是边长为1个单位的正方形,△ABC的三个顶点都在格点上(每个小方格的顶点叫格点).画出△ABC绕点O逆时针旋转90°后'''.的A B C20.如图,在平面直角坐标系中,△AOB是边长为2的等边三角形,将△AOB绕着点B按顺时针方向旋转得到△DCB,使得点D落在x轴的正半轴上,连接OC,AD.(1)求证:OC=AD;(2)求OC的长.21.明明在办手抄报的时候,他想用图形“○○、△△、=”(两个圆、两个三角形、两条平行线)为构件,构思具有一定意义的图形,他在图中左边方框中已经设计好了一个,你还能构思出其他的图形吗?请你在图中的右框中画出一个与之不同的图形,并写出一两句贴切、诙谐的解说词.22.如图,在4×4的方格纸中,△ABC的三个顶点都在格点上.(1)在图1中,画出一个与△ABC成中心对称的格点三角形;(2)在图2中,画出一个与△ABC 成轴对称且与△ABC 有公共边的格点三角形; (3)在图3中,画出△ABC 绕着点C 按顺时针方向旋转90°后的三角形.23.如图网格中每个小正方形的边长均为1,线段AB 、CD 的端点都在小正方形的顶点上.()1图()1中,画一个以线段AB 一边的四边形ABEF ,且四边形ABEF 是面积为7的中心对称图形,点E 、F 都在小正方形的顶点上,并直接写出线段BE 的长;()2在图()2中,画一个以线段CD 为斜边直角三角形CDG ,且CDG 的面积是2,点G在小方形的顶点上.24.等边OAB 在平面直角坐标系中,已知点()2,0A ,将OAB 绕点O 顺时针方向旋转(0360)a a <<得11OA B .()1求出点B 的坐标;()2当1A 与1B 的纵坐标相同时,求出a 的值; ()3在()2的条件下直接写出点1B 的坐标.25.如图,P 是正ABC 内的一点,若将PAC 绕点A 逆时针旋转到P'AB , (1)求PAP'∠的度数.(2)若AP 3=,BP 4=,PC 5=,求APB ∠的度数.九(上)数学《旋转》练习答案一、单选题1.如图,ABC 与A'B'C'是成中心对称,下列说法不正确的是( )A .ABCA'B'C'SS=B .AB A'B'=,AC A'C'=,BC B'C'= C .AB//A'B',AC //A'C',BC //B'C'D .ACOA'B'OSS=【答案】D2.如图,将Rt △ABC 绕直角顶点C 顺时针旋转90°,得到△A 1B 1C ,连接AA 1,若∠AA 1B 1=15°,则∠B 的度数是( )A .75°B .60°C .50°D .45°【答案】B3.在如图所示的四个图案中,既可用旋转来分析整个图案的形成过程,又可用轴对称来分析整个图案的形成过程的图案有( )A .1个B .2个C .3个D .4个【答案】D4.如图,在正方形网格中,线段是线段绕某点逆时针旋转角得到的,点与对应,则角的大小为()A.B.C.D.【答案】C5.下列图形中,绕某个点旋转90°能与自身重合的有( )①正方形;②长方形;③等边三角形;④线段;⑤角;⑥平行四边形.A.1个B.2个C.3个D.4个【答案】A6.下列几何图形中,绕其对称中心点旋转任意角度后,所得到的图形都和原图形重合,这个图形是( )A.正方形B.正六边形C.五角星D.圆【答案】D7.下列四个图案是小明家在瓷砖厂选购的四种地砖图案,其中既可用旋转来分析整个图案的形成过程,又可用平移来分析整个图案的形成过程的是()A.B.C.D.【答案】C8.下列图形中,既是中心对称又是轴对称的图形是()A.B.C.D.【答案】D9.时钟上的分针匀速旋转一周需要60min,则经过20min,分针旋转了()A.20B.60C.90D.120【答案】D10.如图,E、F分别是正方形ABCD的边AB、BC上的点,BE=CF,连接CE、DF.将△BCE绕着正方形的中心O按逆时针方向旋转到△CDF的位置,则旋转角是A .45°B .60°C .90°D .120°【答案】C二、填空题11.在平面直角坐标系中,P 点关于原点的对称点为P 1(﹣3,﹣83),P 点关于x 轴的对称点为P 2(a ,b ) 【答案】﹣2.12.如图,在矩形ABCD 中,AD=3,将矩形ABCD 绕点A 逆时针旋转,得到矩形AEFG ,点B 的对应点E 落在CD 上,且DE=EF ,则AB 的长为_____.【答案】13.已知点()3,2P ,则点P 关于y 轴的对称点1P 的坐标是________,点P 关于原点O 的对称点2P 的坐标是________. 【答案】()3,2- ()3,2--14.已知点()M 2m 1,m 1+-与点N 关于原点对称,若点N 在第二象限,则m 的取值范围是________. 【答案】1m 12-<<.15.已知坐标平面上的机器人接受指令“(a ,A )”﹙a≥0,0°<A <180°﹚后的行动结果为:在原地顺时针旋转A 后,再向面对方向沿直线行走a .若机器人的位置在原点,面对方向为y 轴的负半轴,则它完成一次指令(2,60°)后,所在位置的坐标为____________.【答案】(-1)16.如图,在Rt AOB 中,90A ∠=,60AOB ∠=,在边长为1的小正方形组成的网格中,AOB 的顶点O 、A 均在格点上,点B 在x 轴上,点A 的坐标为()1,2-.()1点A 关于点O 中心对称的点的坐标为________;(2)AOB 绕点O 顺时针旋转60后得到11A OB ,那么点1A 的坐标为________;线段AB 在旋转过程中所扫过的面积是________. 【答案】()1,2- ()1,2 52π三、解答题17.如图,P 是矩形ABCD 下方一点,将△PCD 绕点P 顺时针旋转60°后,恰好点D 与点A 重合,得到△PEA ,连接EB ,问:△ABE 是什么特殊三角形?请说明理由.【答案】解:△ABE 是等边三角形.理由如下:……………………………………… 1分 由旋转得△PAE ≌△PDC∴CD=AE ,PD=PA,∠1=∠2……………………3分 ∵∠DPA=60°∴△PDA 是等边三角形…………4分 ∴∠3=∠PAD =60°.由矩形ABCD 知,CD =AB ,∠CDA =∠DAB =90°. ∴∠1=∠4=∠2=30°………………………6分 ∴AE =CD =AB ,∠EAB =∠2+∠4=60°, ∴△ABE 为等边三角形…………………………7分 18.如图,在中,,,点分别在上(点与点不重合),且.将绕点逆时针旋转得到.当的斜边、直角边与分别相交于点(点与点不重合)时,设.(1)求证:;(2)求关于的函数解析式,并直接写出自变量的取值范围.【答案】(1)见解析;(2)19.在如图所示的方格纸中,每个小方格都是边长为1个单位的正方形,△ABC的三个顶点都在格点上(每个小方格的顶点叫格点).画出△ABC绕点O逆时针旋转90°'''.后的A B C【答案】详见解析.20.如图,在平面直角坐标系中,△AOB是边长为2的等边三角形,将△AOB绕着点B按顺时针方向旋转得到△DCB,使得点D落在x轴的正半轴上,连接OC,AD.(1)求证:OC=AD;(2)求OC的长.【答案】(1)证明见解析;(2)OC=2√3.21.明明在办手抄报的时候,他想用图形“○○、△△、=”(两个圆、两个三角形、两条平行线)为构件,构思具有一定意义的图形,他在图中左边方框中已经设计好了一个,你还能构思出其他的图形吗?请你在图中的右框中画出一个与之不同的图形,并写出一两句贴切、诙谐的解说词.【答案】见解析22.如图,在4×4的方格纸中,△ABC 的三个顶点都在格点上.(1)在图1中,画出一个与△ABC 成中心对称的格点三角形;(2)在图2中,画出一个与△ABC 成轴对称且与△ABC 有公共边的格点三角形; (3)在图3中,画出△ABC 绕着点C 按顺时针方向旋转90°后的三角形.【答案】(1)如图所示见解析;(2)如图所示见解析;(3)如图所示见解析. 23.如图网格中每个小正方形的边长均为1,线段AB 、CD 的端点都在小正方形的顶点上.()1图()1中,画一个以线段AB 一边的四边形ABEF ,且四边形ABEF 是面积为7的中心对称图形,点E 、F 都在小正方形的顶点上,并直接写出线段BE 的长;()2在图()2中,画一个以线段CD 为斜边直角三角形CDG ,且CDG 的面积是2,点G 在小方形的顶点上.【答案】见解析24.等边OAB 在平面直角坐标系中,已知点()2,0A ,将OAB 绕点O 顺时针方向旋转(0360)a a <<得11OA B .()1求出点B 的坐标;()2当1A 与1B 的纵坐标相同时,求出a 的值; ()3在()2的条件下直接写出点1B 的坐标.【答案】(1)( . (2) 120a =或300a = (3)( -或(1, 25.如图,P 是正ABC 内的一点,若将PAC 绕点A 逆时针旋转到P'AB , (1)求PAP'∠的度数. (2)若AP 3=,BP 4=,PC 5=,求APB ∠的度数.【答案】(1)PAP'60∠=;(2)APB 150∠=.。
一、选择题1.观察下列“风车”的平面图案,其中既是轴对称又是中心对称图形的有( ) A . B . C . D . 2.如图,在等边△ABC 中,AC=8,点O 在AC 上,且AO=3,点P 是边AB 上一动点,连接OP ,将线段OP 绕点O 逆时针旋转60°得到线段OD ,要使点D 恰好落在BC 上,则AP 的长是( ).A .4B .5C .6D .83.下列图形中,是中心对称图形的是( )A .B .C .D . 4.如图,△ABC 中,AB =6,AC =4,以BC 为对角线作正方形BDCF ,连接AD ,则AD 长不可能是( )A .2B .4C .6D .85.如图所示,ABC 中,65C =︒∠,将ABC ∆绕点A 顺时针旋转后,得到AB C ''∆,且C '在边BC 上,则B C B ''∠的度数是( )A .46°B .48°C .50°D .52°6.下列图形中,是中心对称图形的是( )A .B .C .D .7.如图,在等边ABC 中,点О在AC 上,且3,6AO CO ==,点P 是AB 上一动点,连接,OP 将线段OP 绕点О逆时针旋转60︒得到线段OD ,要使点D 恰好落在BC 上,则AP 的长是( )A .4B .5C .6D .88.如图,在平面直角坐标系中,点A 、B 、C 的坐标分别为(1,0),(0,1),()1,0-.一个电动玩具从坐标原点O 出发,第一次跳跃到点1P ,使得点1P 与点O 关于点A 成中心对称;第二次跳跃到点2P ,使得点2P 与点1P 关于点B 成中心对称;第三次跳跃到点3P ,使得点3P 与点2P 关于点C 成中心对称:第四次跳跃到点4P ,使得点4P 与点3P 关于点A 成中心对称;第五次跳跃到点5P ,使得点6P 与点4P 关于点B 成中心对称;…,照此规律重复下去,则点2013P 的坐标为( )A .(2,2)B .()2,2-C .()0,2-D .()2,0- 9.下列图形中,是轴对称图形,但不是中心对称图形的是( )A .B .C .D . 10.如图所示,在平面直角坐标系中,点A 、B 的坐标分别为(﹣2,0)和(2,0).月牙①绕点B 顺时针旋转90︒得到月牙②,则点A 的对应点A’的坐标为 ( )A .(2,2)B .(2,4)C .(4,2)D .(1,2) 11.既是中心对称图形又是轴对称图形,且只有两条对称轴的四边形是( ) A .正方形 B .矩形 C .菱形 D .矩形或菱形 12.下列图形是中心对称图形的是( )A .B .C .D .二、填空题13.如图,四边形ABCD 是菱形,点O 是两条对角线的交点,过点O 的三条直线将菱形分成阴影和空白部分,当菱形的两条对角线长分别为12和16时,则阴影部分面积为_________.14.如图所示,在直角坐标系中,点()0,6A ,点()3,4P 将AOP 绕点O 顺时针方向旋转,使OA 边落在x 轴上,则PP '=_______________.15.如图,在ABC 中,AB =2,AC =1,∠BAC =30°,将ABC 绕点A 逆时针旋转60°得到11AB C △,连接BC 1,则BC 1的长为__________ .16.如图,在ABC 中,108BAC ∠=︒,将ABC 绕点A 按逆时针方向旋转得到AB C ''△.若点B '恰好落在BC 边上,且AB CB ''=,则C '∠的度数为_______.17.已知点()2,3A x -与点()4,5B y -关于原点对称,则xy 的值等于______. 18.一副三角板如图放置,将三角板ADE 绕点A 逆时针旋转(090)αα<<,使得三角板ADE 的一边所在的直线与BC 垂直,则α的度数为______.19.如图,Rt ABC 中,90BAC ∠=︒,∠C=30°,AB=2,将ABC 绕着点A 顺时针旋转,得到AMN ,使得点B 落在BC 边上的点M 处,MN 与AC 交于点D ,则ADM △的面积为____.20.若点()3,5B n +与点()4,A m 关于原点O 中心对称,则m n +=______________.三、解答题21.将边长为4的正方形ABCD 与边长为5的正方形AEFG 按图1位置放置,AD 与AE 在同一条直线上,AB 与AG 在同一条直线上.将正方形ABCD 绕点A 逆时针旋转一周,直线EB 与直线DG 交于点P ,(1)DG 与BE 的数量关系:______;DG 与BE 的位置关系:______.(2)如图2,当点B 在线段DG 上时,求ADG 的面积.(3)连结PF ,当42PE =时,求PF 的值.22.在平面直角坐标系中,△ABC 的位置如图所示(每个小方格都是边长为1个单位长度的正方形).(1)将△ABC 绕着点A 顺时针旋转90︒,画出旋转后得到的△AB 1C 1;直接写出点B 1的坐标;(2)作出△ABC 关于原点O 成中心对称的△A 2B 2C 2,并直接写出点B 2的坐标. 23.如图,ABC ∆三个顶点的坐标分别是()1,1A ,()4,2B ,()3,4C .(1)请画出ABC ∆向左平移5个单位长度后得到的111A B C ∆;并写出1A 、1B 、1C 的坐标;(2)请画出ABC ∆关于原点对称的222A B C ∆;并写出2A 、2B 、2C 的坐标. 24.己知,如图,点P 是等边△ABC 内一点,∠APB=112°,如果把△APB 绕点A 旋转,使点 B 与点C 重合,此时点P 落在点P '处,求PP C '∠的度数.25.在正方形ABCD 中,点E 是BC 上的一点,连结AE .(1)画出△ABE 绕点A 逆时针旋转90°后的图形(点E 的对应点为F );(2)若AB =3,则四边形AECF 的面积为 .26.解下列方程:(1)x 2-2x-24=0 (2)用配方法解方程:x 2+6x ﹣1=0.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】根据轴对称图形和中心对称图形的两个概念对各选项分析判断即可得解.【详解】解:A 、既是轴对称又是中心对称图形,故此项正确;B 、是轴对称,不是中心对称图形,故此项错误;C 、不是轴对称,是中心对称图形,故此项错误;D 、是轴对称,不是中心对称图形,故此项错误.故选:A .本题考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合. 2.B解析:B【分析】连接DP ,根据题意,得OP OD =,=60DOP ∠,从而得到120AOP COD ∠+∠=;再根据等边三角形和三角形内角和性质,得120AOP OPA ∠+∠=,从而得COD OPA ∠=∠,通过全等三角形判定,即可得到答案.【详解】如图,点D 落在BC 上,连接DP∵线段OP 绕点O 逆时针旋转60°得到线段OD∴OP OD =,=60DOP ∠∴180120AOP COD DOP ∠+∠=-∠=∵等边△ABC∴180120AOP OPA A ∠+∠=-∠=∴COD OPA ∠=∠即:OP OD COD OPA A C =⎧⎪∠=∠⎨⎪∠=∠⎩∴AOP CDO △≌△∴AP OC =∵AC=8,AO=3∴5OC AC AO =-=∴5AP OC ==故选:B .【点睛】本题考查了等边三角形、全等三角形、旋转、三角形内角和的知识;解题的关键是熟练掌握等边三角形、全等三角形、旋转、三角形内角和的性质,从而完成求解.3.D解析:D根据中心对称图形的定义和图形的特点即可求解.【详解】解:A、不是中心对称图形,故此选项不符合题意;B、不是中心对称图形,故此选项不符合题意;C、不是中心对称图形,故此选项不符合题意;D、是中心对称图形,故此选项符合题意;故选:D.【点睛】本题考查了中心对称图形的概念:如果一个图形绕某一点旋转180°后能够与自身重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心.4.D解析:D【分析】将△ABD绕点D顺时针旋转90º得△ECD,AB=EC,DE=AD,等腰Rt△ADE中AE=2AD,在△ACE中由三边关系得,CE-AC<AE<CE+AC,即2<2AD<10求出AD的范围即可.【详解】将△ABD绕点D顺时针旋转90º得△ECD,AB=EC=6,DE=AD,在Rt△ADE中由勾股定理得AE=2AD,在△ACE中由三边关系得,CE-AC<AE<CE+AC,即2<2AD<10,<,2<AD<52=508故选:D.【点睛】本题考查AD的范围问题,掌握正方形的性质,和旋转性质,由条件分散,将已知与未知化归一个三角形中,利用旋转构造等腰直角三角形△ACE实现转化,利用三边关系确定AE 的范围是解题关键.5.C解析:C【分析】根据旋转的性质和∠C=65°,从而可以求得∠AC′B′和∠AC′C的度数,从而可以求得∠B′C′B 的度数.【详解】∵将△ABC绕点A顺时针旋转后,可以得到△AB′C′,且C′在边BC上,∴AC=AC′,∠C=∠AC′B′,∴∠C=∠AC′C,∵∠C=65°,∴∠AC′B′=65°,∠AC′C=65°,∴∠B′C′B=180°−∠AC′B′−∠AC′C=50°,故选:C.【点睛】本题考查旋转的性质,解题的关键是明确题意,找出所求问题需要的条件.6.C解析:C【分析】根据把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心可得答案.【详解】解:A、不是中心对称图形,故此选项不合题意;B、不是中心对称图形,故此选项不符合题意;C、是中心对称图形,故此选项符合题意;D、不是中心对称图形,故此选项不合题意;故选:C.【点睛】此题主要考查了中心对称图形,关键是掌握中心对称图形的概念.7.C解析:C【分析】由于将线段OP绕点O逆时针旋转60°得到线段OD,当点D恰好落在BC上时,易得:△ODP是等边三角形,根据旋转的性质可以得到△AOP≌△CDO,由此可以求出AP的长.【详解】解:当点D恰好落在BC上时,OP=OD,∠A=∠C=60°,如图.∵∠POD=60°∴∠AOP+∠COD=∠COD+∠CDO=120°,∴∠AOP=∠CDO ,∴△AOP ≌△CDO ,∴AP=CO=6.故选:C .【点睛】此题要把旋转的性质和等边三角形的性质结合求解.属探索性问题,难度较大,近年来,探索性问题倍受中考命题者青睐,因为它所强化的数学素养,对学生的后续学习意义深远.8.C解析:C【分析】计算出前几次跳跃后,点P 1,P 2,P 3,P 4,P 5,P 6,P 7的坐标,可得出规律,继而可求出点P 2013的坐标.【详解】解:∵点1P 与点O 关于点A 成中心对称,∴P 1(2,0),过P 2作P 2D ⊥OB 于点D ,∵2P 与点1P 关于点B 成中心对称,∴P 1B=P 2B ,在△P 1BO 和△P 2BD 中121212PBO P BD POB P DB PB P B ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△P 1BO ≌△P 2BD ,∴P 2D=P 1O=2,BD=BO=1,∴OD=2,∴P 2(-2,2),同理可求:P 3(0,-2),P 4(2,2),P 5(-2,0),P 6(0,0),P 7(2,0),从而可得出6次一个循环,∵2013=335…3,6∴点P2013的坐标为(0,-2).故选C.【点睛】本题考查了中心对称,全等三角形的判定与性质,以及点的坐标的规律变换,解答本题的关键是求出前几次跳跃后点的坐标,总结出一般规律.9.A解析:A【分析】根据轴对称图形与中心对称图形的概念求解.【详解】A、是轴对称图形,但不是中心对称图形,故此选项正确;B、是轴对称图形,是中心对称图形,故此选项错误;C、是轴对称图形,是中心对称图形,故此选项错误;D、不是轴对称图形,是中心对称图形,故此选项错误;故选A.【点睛】此题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.10.B解析:B【详解】解:连接A′B,由月牙①顺时针旋转90°得月牙②,可知A′B⊥AB,且A′B=AB,由A(-2,0)、B(2,0)得AB=4,于是可得A′的坐标为(2,4).故选B.11.D解析:D【分析】根据轴对称图形与中心对称图形的概念求解.【详解】正方形是轴对称图形,也是中心对称图形,有4条对称轴;矩形是轴对称图形,也是中心对称图形,有2条对称轴;菱形是轴对称图形,也是中心对称图形,有2条对称轴.故选D.【点睛】本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.12.B解析:B【分析】根据轴对称图形与中心对称图形的概念求解即可.【详解】解:A、不是中心对称图形,不符合题意,故选项A错误;B、是中心对称图形,符合题意,故选项B正确;C、不是中心对称图形,不符合题意,故选项C错误;D、不是中心对称图形,符合题意,故选项D错误;故选B.【点睛】本题主要考查了中心对称图形的概念,掌握中心对称图形的概念是解题的关键.二、填空题13.48【分析】根据菱形的面积等于对角线乘积的一半求出菱形的面积再根据菱形是中心对称图形判断出阴影的面积是菱形面积的一半即可解答【详解】如图所示:∵菱形的两条对角线的长分别为12和16菱形的面积∵是菱形解析:48根据菱形的面积等于对角线乘积的一半求出菱形的面积,再根据菱形是中心对称图形判断出阴影的面积是菱形面积的一半即可解答.【详解】如图所示:∵菱形ABCD 的两条对角线的长分别为12和16,菱形ABCD 的面积11216962=⨯⨯=, ∵O 是菱形两条对角线的交点,菱形ABCD 是中心对称图形,∴OEG OFH ∆≅∆,四边形OMAH ≅四边形ONCG ,四边形OEDM ≅四边形OFBN ,∴阴影部分的面积11964822ABCD S ==⨯=菱形, 故答案为:48.【点睛】本题考查了菱形的性质、中心对称图形的性质、菱形的面积公式,熟知菱形的面积公式,利用菱形的性质判断出阴影的面积是菱形面积的一半是解答的关键. 14.【分析】根据旋转的性质绕点顺时针方向旋转了90°则△POP´为等腰直角三角形且OP=OP´利用勾股定理求出OP 的长进而可求得PP´的长【详解】解:∵绕点顺时针方向旋转使边落在x 轴上∴∠POP´=∠A 解析:52【分析】根据旋转的性质,AOP 绕点O 顺时针方向旋转了90°,则△POP´为等腰直角三角形,且OP=OP´,利用勾股定理求出OP 的长,进而可求得PP´的长.【详解】解:∵AOP 绕点O 顺时针方向旋转,使OA 边落在x 轴上,∴∠POP´=∠AOA´=90°,OP=OP´,∴△POP´为等腰直角三角形,∵点P 坐标为(3,4), ∴22345+=,∴PP´2252OP OP '+= 故答案为:52本题考查了坐标与图形变换-旋转变换、勾股定理、等腰三角形的判定与性质,掌握旋转的性质,结合旋转的角度得到△POP´为等腰直角三角形是解答的关键.15.【分析】先根据旋转的定义和性质可得从而可得再利用勾股定理即可得【详解】由旋转的定义和性质得:在中故答案为:【点睛】本题考查了旋转的定义和性质勾股定理熟练掌握旋转的性质是解题关键【分析】先根据旋转的定义和性质可得111,60A AC C CAC ==∠=︒,从而可得190BAC ∠=︒,再利用勾股定理即可得.【详解】由旋转的定义和性质得:111,60A AC C CAC ==∠=︒,30BAC ∠=︒,1190AC BAC AC B C ∴∠=+=∠∠︒,在1Rt ABC 中,1BC ===,【点睛】本题考查了旋转的定义和性质、勾股定理,熟练掌握旋转的性质是解题关键. 16.24°【分析】根据旋转的性质得出边和角相等找到角之间的关系再根据三角形内角和定理进行求解即可求出答案【详解】解:设=x°根据旋转的性质得∠C=∠=x°=AC=AB ∴∠=∠B ∵∴∠C=∠CA=x°∴∠解析:24°【分析】根据旋转的性质得出边和角相等,找到角之间的关系,再根据三角形内角和定理进行求解,即可求出答案.【详解】解:设C '∠=x°.根据旋转的性质,得∠C=∠'C = x°,'AC =AC, 'AB =AB.∴∠'AB B =∠B.∵AB CB ''=,∴∠C=∠CA 'B =x°.∴∠'AB B =∠C+∠CA 'B =2x°.∴∠B=2x°.∵∠C+∠B+∠CAB=180°,108BAC ∠=︒,∴x+2x+108=180.解得x=24.∴C '∠的度数为24°.故答案为24°.【点睛】本题考查了三角形内角和定理,旋转的性质的应用及等腰三角形得性质.17.-4【分析】利用关于原点对称点的性质求出xy 的值进而求出答案【详解】解:∵点与点关于原点对称∴x-2=-4y-5=-3∴x=-2y=2∴xy=(-2)×2=-4故答案为:-4【点睛】本题考查了关于原解析:-4【分析】利用关于原点对称点的性质求出x ,y 的值,进而求出答案.【详解】解:∵点()2,3A x -与点()4,5B y -关于原点对称,∴x-2=-4,y-5=-3,∴x=-2,y=2,∴xy=(-2)×2=-4.故答案为:-4【点睛】本题考查了关于原点对称点的性质,根据与原点对称的点的坐标特点(纵坐标,横坐标都互为相反数)得出x ,y 的值是解题关键.18.15°或60°【分析】分情况讨论:①DE ⊥BC②AD ⊥BC 然后分别计算的度数即可解答【详解】解:①如下图当DE ⊥BC 时如下图∠CFD =60°旋转角为:=∠CAD =60°-45°=15°;(2)当AD解析:15°或60°.【分析】分情况讨论:①DE ⊥BC ,②AD ⊥BC ,然后分别计算α的度数即可解答.【详解】解:①如下图,当DE ⊥BC 时,如下图,∠CFD =60°,旋转角为:α=∠CAD =60°-45°=15°;(2)当AD ⊥BC 时,如下图,旋转角为:α=∠CAD =90°-30°=60°;【点睛】本题考查了垂直的定义和旋转的性质,熟练掌握并准确分析是解题的关键.19.【分析】先根据直角三角形的性质可得再根据旋转的性质可得然后根据等边三角形的判定与性质可得又根据三角形的外角性质三角形的内角和定理可得最后根据直角三角形的性质勾股定理可得据此利用直角三角形的面积公式即解析:2【分析】先根据直角三角形的性质可得60B ∠=︒,再根据旋转的性质可得2,60AM AB AMN B ==∠=∠=︒,然后根据等边三角形的判定与性质可得60AMB ∠=°,又根据三角形的外角性质、三角形的内角和定理可得30DAM ∠=︒,90ADM ∠=︒,最后根据直角三角形的性质、勾股定理可得1,DM AD ==用直角三角形的面积公式即可得.【详解】在Rt ABC 中,90,30,2BAC C AB ∠=︒∠=︒=,60B ∴∠=︒,由旋转的性质可知,2,60AM AB AMN B ==∠=∠=︒,ABM ∴是等边三角形,60AMB ∴∠=︒,30DAM AMB C ∴∠=∠-∠=︒,18090ADM DAM AMN ∴∠=︒-∠-∠=︒,在Rt ADM △中,11,2DM AM AD ====,则ADM △的面积为11122DM AD ⋅=⨯=,故答案为:2. 【点睛】 本题考查了旋转的性质、等边三角形的判定与性质、勾股定理、直角三角形的性质等知识点,熟练掌握旋转的性质是解题关键.20.-12【分析】两个点关于原点对称时它们的横坐标互为相反数纵坐标也互为相反数直接利用关于原点对称点的性质得出mn 的值进而得出答案【详解】∵点B (5)与点A (4)关于原点成中心对称∴∴∴故答案为:【点睛 解析:-12【分析】两个点关于原点对称时,它们的横坐标互为相反数,纵坐标也互为相反数,直接利用关于原点对称点的性质得出m ,n 的值,进而得出答案.【详解】∵点B (3n +,5)与点A (4,m )关于原点成中心对称,∴34n +=-,5m =-,∴5m =-,7n =-,∴()5712m n +=-+-=-.故答案为:12-.【点睛】本题主要考查了关于原点对称点的坐标性质,正确记忆关于原点对称点的坐标性质是解题关键.三、解答题21.(1)相等;垂直;(2)4234ADG S =+△;(3)7PF =. 【分析】(1)由题意可得△DAG ≌△BAE ,从而可得DG=BE ,再利用全等三角形的性质和直角三角形的知识可以得知DG ⊥BE ;(2)连结AC 交DG 于点 O ,则由勾股定理可得OG 的长度,从而得到△ADG 的面积; (3)连结GE 并旋转△PGF 至△HEF ,由勾股定理即可得到正确解答.【详解】(1)在△DAG 与△BAE 中,DA=BA ,∠DAG=∠BAE=90°,AG=AE ,∴△DAG ≌△BAE ,∴DG=BE ,∠DGA=∠BEA ,∴∠BEA+∠GDE=∠DGA+∠GDE=90°,∴∠DPE=90°,∴DG ⊥BE ;(2)如图,当B 在线段DG 上时,连结AC 交DG 于点O ,则22AO =,()2252217OG =-=2217DG =(122172242342ADG S =⨯⨯=+△ (3)如图,连结GE ,以F 为中心旋转△FGP 至△FEH ,则与(1)类似有△DAG ≌△BAE ,∴∠DGA=∠BEA ,∴∠DGE+∠GEP=∠DGA+45°+∠GEP=45°+∠BEA+∠GEP=45°+45°=90°,∴∠GPE=90°, ∴()()2222524232PG GE PE =-=-=,由旋转性质可知∠FEH=∠FGP ,∴∠FEH+∠FEP=∠FGP+∠FEP=360°-(∠GFE+∠GPE )=360°-180°=180°,∴P 、E 、H 三点共线,且PFH △是等腰直角三角形,∵PH=PE+EH=PE+GP=423272=∴(222227298,49PF PH PF ====,PF=7.【点睛】本题考查正方形的综合应用,灵活运用三角形全等的判定与性质、旋转的性质和勾股定理求解是解题关键.22.(1)作图见解析; B 1(4,-2);(2)作图见解析;B 2(-4,-4)【分析】(1)利用网格特点和旋转的性质画出点B 、C 的对应点B 1、C 1,从而得到△AB 1C 1,再写出点B 1的坐标;(2)分别作出A ,B ,C 的对应点A 2,B 2,C 2即可.【详解】(1)如图,B 1(4,-2);(2)如图,B2(-4,-4).【点睛】本题考查了作图-旋转变换:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.23.(1)图象见解析,A1(-4,1),B1(-1,2)C1(-2,4);(2)图象见解析,A2(-1,-1),B2(-4,-2)C2(-3,-4).【分析】(1)依据平移的方向和距离,即可得到△A1B1C1,依据图象写出1A、1B、1C的坐标即可;(2)依据中心对称,即可得到△A2B2C2,依据图象写出1A、1B、1C的坐标即可.【详解】解:(1)△A1B1C1如图所示,A1(-4,1),B1(-1,2)C1(-2,4);(2)△A2B2C2如图所示,A2(-1,-1),B2(-4,-2)C2(-3,-4).【点睛】本题主要考查作图-平移变换与旋转变换,求关于原点对称的点坐标,解题的关键是掌握平移变换与旋转变换的定义与性质,并据此得出变换后所得对应点.24.52°【分析】根据旋转的性质得到AP'=AP,∠BAP=∠CAP',利用等边三角形的性质及角的和差得到△PAP'是等边三角形,即可求解.【详解】解∶∵△APB≌AP'C,∴∠AP'C=∠APB=112°,且AP'=AP,∠BAP=∠CAP',又∵∠BAP+∠PAC=60°,∴∠CAP'+∠PAC=60°,即∠PAP'=60°,∴△PAP'是等边三角形,∴∠PP'C=∠AP'C-∠AP'P=112°-60°=52°.【点睛】本题考查旋转的性质、等边三角形的判定与性质,掌握旋转的性质是解题的关键.25.(1)见解析;(2)9【分析】(1)根据旋转的性质即可画出△ABE绕点A逆时针旋转90°后的图形(点E的对应点为F);(2)根据AB=3和旋转的性质可得四边形AECF的面积即为正方形ABCD的面积.【详解】(1)如图,△ADF即为△ABE绕点A逆时针旋转90°后的图形;(2)根据旋转可知:四边形AECF的面积=正方形ABCD的面积=AB2=9.故答案为:9.【点睛】本题考查了作图-旋转变换、正方形的性质、旋转的性质,解决本题的关键是掌握旋转的性质.26.(1)x=-4,x=6;(2)x=﹣10.【解析】试题分析:(1)把左边进行因式分解即可;(2)用配方法解方程即可.试题解:(1)(x+4)(x-6)=0,x=-4,x=6.(2)x2+6x+9=10,即(x+3)2=10,x=﹣.。
1.3正方形的性质与判定新思维同步提高训练(Word版含解答)-2021-2022学年九年级数学北师大版上册一、选择题1.如图,将正方形OEFG放在平面直角坐标系中,O是坐标原点,点E(2,3),则点F的坐标为()A. (−1,5)B. (−2,3)C. (5,−1)D. (−3,2)2.如图,在正方形ABCD中,AB=3,点E,F分别在边AB,CD上,∠EFD=60°.若将四边形EBCF 沿EF折叠,点B恰好落在AD边上,则BE的长度为()A. 1B. √2C. √3D. 23.如图,在边长为2的正方形ABCD中,连接对角线AC,将△ADC沿射线CA的方向平移得到△A′D′C′,分别连接BC′,AD′,BD′,则BC′+BD′的最小值为()A. 2√2B. 4C. 4√2D. 2√54.如图,在正方形ABCD中,AB=6,点Q是AB边上的一个动点(点Q不与点B重合),点M,N分别是DQ,BQ的中点,则线段MN=()5.如图,在△ABC中,∠ACB=90°,以△ABC的各边为边作三个正方形,点G落在HI上,若AC+BC=6,空白部分面积为10.5,则AB的长为()A. 3 √2B. √19C. 2 √5D. √266.如图,在正方形ABCD中,E为DC边上的一点,沿线段BE对折后,若∠ABF比∠EBF大15°,则∠EBF的度数为()A. 15°B. 20°C. 25°D. 30°7.如图,△ABE、△BCF、△CDG、△DAH是四个全等的直角三角形,其中,AE=5,AB=13,则EG的长是()A. 7 √2B. 6 √2C. 7D. 7 √38.如图,在△ABC中,∠ACB=90°,以△ABC的各边为边分别作正方形BAHI,正方形BCFG与正方形CADE.延长BG,FG分别交AD,DE于点K,J,连结DH,IJ.图中两块阴影部分面积分别记为S1,S2,若S1:S2=1:4,四边形S BAHE=18,则四边形MBNJ的面积为()A. 5B. 6C. 8D. 99.由四个全等的直角三角形和一个小正方形组成的大正方形 ABCD 如图所示.过点 D 作 DF 的垂线交小正方形对角线 EF 的延长线于点 G ,连结 CG ,延长 BE 交 CG 于点 H .若 AE =2BE ,则 CG BH的值为( )A. 32 B. √2 C. 3√107D. 3√5510.如图,正方形 ABCD 中,在 AD 的延长线上取点 E , F ,使 DE =AD , DF =BD ,连接 BF 分别交 CD , CE 于 H , G ,下列结论:① HF =2HG ;② ∠GDH =∠GHD ;③图中有8个等腰三角形;④ S △CDG =S △DNF .其中正确的结论个数是( )A. 1个B. 2个C. 3个D. 4个二、填空题11.如图,若该正方形ABCD 边长为10,将正方形沿着直线MN 翻折,使得BC 的对应边 B ′C ′ 恰好经过点A , 过点A 作 AG ⊥MN ,垂足分别为G , 若 AG =6 ,则 AC ′ 的长度为________.12.已知直角三角形ABC ,∠ABC=90°,AB=3,BC=5,以AC 为边向外作正方形ACEF ,则这个正方形的中心O 到点B 的距离为________.13.如图,矩形纸片ABCD,AD=2AB=4,点F在线段AD上,将△ABF沿BF向下翻折,点A的对应点E 落在线段BC上,点M,N分别是线段AD与线段BC上的点,将四边形CDMN沿MN向上翻折,点C 恰好落在线段BF的中点C'处,则线段MN的长为________.14.如图,在平面直角坐标系中有一边长为1的正方形OABC,边OA、OC分别在x轴、y轴上,如果以对角线OB为边作第二个正方形OBB1C1,再以对角线OB1为边作第三个正方形OB1B2C2,照此规律作下去,则点B2020的纵坐标为________15.如图1是公园某处的几何造型,如图2是它的示意图,正方形的一部分在水平面EF下方,测得DE=2米,∠CDF=45°,露出水平面部分的材料长共合计140米(注:共8个大小一样的正方形造型,不计损耗),点B到水平面EF的距离为________米.16.如图,正方形ABCD中,AB=4,O是BC边的中点,点E是正方形内一动点,OE=2,连接DE,将线段DE绕点D逆时针旋转90°得DF,连接AE、CF.则线段OF长的最小值为________.三、解答题17.在正方形ABCD中,E是CD边上一点(CE>DE),AE,BD交于点F.(1)如图1,过点F作GH⊥AE,分别交边AD,BC于点G,H.求证:∠EAB=∠GHC;(2)AE的垂直平分线分别与AD,AE,BD交于点P,M,N,连接CN.①依题意补全图形;图1 备用图②用等式表示线段AE与CN之间的数量关系,并证明.18.问题情境:(1)如图1,已知正方形ABCD,点E在CD的延长线上,以CE为边构造正方形CEFG,连接BE和DG,则BE和DG的关系为________。
2020初中数学中考专题复习——图形变换旋转综合题专项训练1(附答案详解) 1.如图,边长为1的正方形ABCD 绕点A 逆时针旋转45°后得到正方形AB 1C 1D 1,边B 1C 1与CD 交于点O ,则四边形AB 1OD 的面积是( )A .B .C .D . 2.如图,在△ABC 中,∠CAB =75°,在同一平面内,将△ABC 绕点A 逆时针旋转到△AB′C′的位置,使得CC′∥AB ,则∠CAC′为( )A .30°B .35°C .40°D .50°3.如图,△ABC 是等边三角形,D 为BC 边上的点,∠BAD =15°,△ABD 经旋转后到达△ACE 的位置,那么旋转了( )A .75°B .45°C .60°D .15°4.O 为线段AB 上一动点,且AB=2,绕O 点将AB 旋转半周,则线段AB 所扫过的面积的最小值为( )A .4πB .3πC .2πD .π5.如图,在OAB ∆中,顶点(0,0)O ,(3,4)A -,(3,4)B ,将OAB ∆与正方形ABCD 组成的图形绕点O 顺时针旋转,每次旋转90︒,则第70次旋转结束时,点D 的坐标为( )A .(10,3)B .(3,10)-C .(10,3)-)D .(3,10)- 6.如图,在等边ABC ∆中,D 是边AC 上一点,连接BD ,将BCD ∆绕点B 逆时针旋转60︒得到BAE ∆,连接ED ,若6BC =,4BD =,则有以下四个结论:①BDE ∆是等边三角形;②//AE BC ;③ADE ∆的周长是10;④ADE BDC ∠=∠.其中正确结论的序号是( )A .②③④B .①③④C .①②④D .①②③ 7.如图,矩形 ABCD 中,AB=8,BC=6,将矩形 ABCD 绕点 A 逆时针旋转得到矩形 AEFG ,AE ,FG 分别交射线CD 于点 PH ,连结 AH ,若 P 是 CH 的中点,则△APH的周长为( )A .15B .18C .20D .248.如图,等边三角形ABC 的边长是2,M 是高CH 所在直线上的一个动点,连接MB ,将线段BM 绕点B 逆时针旋转60°得到BN ,连接MN ,则在点M 运动过程中,线段MN 长度的最小值是( )A .12B .1C .3D .3 9.如图,将△ABC 绕点A 旋转至△ADE 的位置,使点E 落在BC 边上,则对于结论:①DE =BC ;②∠EAC =∠DAB ;③EA 平分∠DEC ;④若DE ∥AC ,则∠DEB =60°;其中正确结论的个数是( )A .4B .3C .2D .110.如图,将边为3的正方形ABCD 绕点A 逆时针方向旋转30°后得到正方形AEFH ,则图中阴影部分的面积为( )A .332-B .33-C .23-D .33- 11.如图,点A 是抛物线24y x x =-对称轴上的一点,连接OA ,以A 为旋转中心将AO 逆时针旋转90°得到AO ′,当O ′恰好落在抛物线上时,点A 的坐标为______________.12.如图,将矩形ABCD 绕点A 旋转至矩形AB ′C ′D ′位置,此时AC ′的中点恰好与D 点重合,AB ′交CD 于点E .若AB =3,则△AEC 的面积为_____.13.如图,点 A 的坐标是(﹣2,0),点 B 的坐标是(0,6),C 为 OB 的中点,将△ABC 绕点 B 逆时针旋转 90°后得到△A′B′C′.若反比例函数 y =k x的图象恰好经过 A′B 的中点 D ,则k _________.14.如图,正方形 ABCD 中,点 E ,F 分别在 BC 和 AB 上,BE =3,AF =2,BF=4,将△ BEF 绕点 E 顺时针旋转,得到△GEH ,当点 H 落在 CD 边上时,F ,H 两点之间的距离为_____.15.把一副三角板如图1放置其中∠ACB =∠DEC =90°,∠A =45°,∠D =30°,斜边AB =6,CD =8,把三角板DCE 绕点C 顺时针旋转15︒得到三角形1D CE (如图2),此时AB 与1CD 交于点O ,则线段1AD 的长度为_______.16.如图,等腰Rt ABC ∆与等腰Rt CDE ∆,AC BC =,CD DE =,212AC CD ==,DH AE ⊥,垂足为H ,直线HD 交BE 于点O .将CDE ∆绕点C 顺时针旋转,则OA 的长的最大值是______.17.如图,△ABC ,△ADE 均为等腰直角三角形,∠BAC=∠DAE=90°,将△ADE 绕点A 在平面内自由旋转,连接DC ,点M ,P ,N 分别为DE ,DC ,BC 的中点,若AD=3,AB=7,则线段MN 的取值范围是______.18.如图:已知Rt ABC ∆,对应的坐标如下,请利用学过的变换(平移、旋转、轴对称)知识经过若干次图形变化,使得点A 与点E 重合、点B 与点D 重合,写出一种变化的过程_____.19.如图,在菱形ABCD 中,2,60AB BAD =∠=︒,将菱形ABCD 绕点A 逆时针方向旋转,对应得到菱形AEFG ,点E 在AC 上,EF 与CD 交于点P ,则DP 的长是_____.20.如图,在ABC V 中,90ACB ∠=︒,10AC BC ==,在DCE V 中,90DCE ∠=︒,6DC EC ==,点D 在线段AC 上,点E 在线段BC 的延长线上.将DCE V 绕点C 顺时针方向旋转60°得到D CE ''△(点D 的对应点为D ¢,点E 的对应点为点E '),连接AD '、BE ',过点C 作CN BE '⊥,垂足为N ,直线CN 交线段AD '于M ,则MN 的长为__________.21.如图乙,ABC V 和ADE V 是有公共顶点的等腰直角三角形,90BAC DAE ∠=∠=︒,点P 为射线BD ,CE 的交点.(1)如图甲,将ADE V 绕点A 旋转,当C 、D 、E 在同一条直线上时,连接BD 、BE ,则下列给出的四个结论中,其中正确的是哪几个 ;(回答直接写序号) ①BD CE =;②BD CE ⊥;③45∠+∠=︒ACE DBC ;④()2222=+BE AD AB(2)若6AB =,3AD =,把ADE V 绕点A 旋转.①当90CAE ∠=︒时,求PB 的长;②直接写出旋转过程中线段PB 的最大值和最小值.22.如图,点E 是正方形ABCD 内的一点,将△BEC 绕点C 顺时针旋转至△DFC . (1)请问最小旋转度数为多少?(2)指出图中的全等图形以及它们的对应角?(3)若∠EBC=30°,∠BCE=80°,求∠F 的度数.23.如图,四边形ABCD 中,AC ,BD 是对角线,△ABC 是等边三角形.线段CD 绕点C 顺时针旋转60°得到线段CE ,连接AE .(1)求证:AE =BD ;(2)若∠ADC =30°,AD =3,BD =42.求CD 的长.24.如图,△ABC 中,AB =AC ,∠BAC =50°,P 是BC 边上一点,将△ABP 绕点A逆时针旋转50°,点P旋转后的对应点为点P′.(1)画出旋转后的三角形;(2)连接PP′,若∠BAP=20°,求∠PP′C的度数.25.综合与实践﹣四边形旋转中的数学“智慧”数学小组在课外数学活动中研究了一个问题,请帮他们解答.任务一:如图1,在矩形ABCD中,AB=6,AD=8,E,F分别为AB,AD边的中点,四边形AEGF为矩形,连接CG.(1)请直接写出CG的长是______.(2)如图2,当矩形AEGF绕点A旋转(比如顺时针旋转)至点G落在边AB上时,请计算DF与CG的长,通过计算,试猜想DF与CG之间的数量关系.(3)当矩形AEGF绕点A旋转至如图3的位置时,(2)中DF与CG之间的数量关系是否还成立?请说明理由.任务二:“智慧”数学小组对图形的旋转进行了拓展研究,如图4,在▱ABCD中,∠B=60°,AB=6,AD=8,E,F分别为AB,AD边的中点,四边形AEGF为平行四边形,连接CG.“智慧”数学小组发现DF与CG仍然存在着特定的数量关系.(4)如图5,当▱AEGF绕点A旋转(比如顺时针旋转),其他条件不变时,“智慧”数学小组发现DF与CG仍然存在着这一特定的数量关系.请你直接写出这个特定的数量关系.26.综合与探究问题情境在综合实践课上,老师让同学们探究“平面直角坐标系中的旋转问题”.如图,在平面直角坐标系中,四边形AOBC 是矩形,点()0,0O ,点()5,0A ,点()0,3B . 操作发现以点A 为中心,顺时针旋转矩形AOBC ,得到矩形ADEF ,点O ,B ,C 的对应点分别为D ,E ,F .(1)如图①,当点D 落在BC 边上时,求点D 的坐标;继续探究(2)如图②,当点D 落在线段BE 上时,AD 与BC 交于点H .①求证ADB AOB ∆≅∆;②求点H 的坐标.拓展探究(3)如图①,点M 是x 轴上任意一点,点N 是平面内任意一点,是否存在点N 使以A 、D 、M 、N 为顶点的四边形是菱形?若存在,请直接写出点N 的坐标;若不存在,请说明理由.27.(1)如图1,点A 为线段BC 外一动点,且BC a =,AB b =,填空:当点A 位于__________时,线段AC 的长取到最大值__________,且最大值为;(用含a 、b 的式子表示).(2)如图2,若点A 为线段BC 外一动点,且6BC =,3AB =,分别以AB ,AC 为边,作等边ABD △和等边ACE △,连接CD ,BE .①图中与线段BE 相等的线段是线段__________,并说明理由;②直接写出线段BE 长的最大值为__________.(3)如图3,在平面直角坐标系中,点A 的坐标为(40),,点B 的坐标为(100),,点P 为线段AB 外一动点,且4PA =,PM PB =,90BPM ∠=︒,请直接写出线段AM 长的最大值为__________,及此时点P 的坐标为__________.(提示:等腰直角三角形的三边长a 、b 、c 满足::1:1:2a b c =)28.如图,在△ABC 和△ADE 中,AB =AC ,AD =AE ,∠BAC +∠EAD =180°,△ABC 不动,△ADE 绕点A 旋转,连接BE ,CD ,F 为BE 的中点,连接AF.(1)如图①,当∠BAE =90°时,求证:CD =2AF ;(2)当∠BAE≠90°时,(1)的结论是否成立?请结合图②说明理由.29.如图1,矩形ABCD 中,E 是AD 的中点,以点E 直角顶点的直角三角形EFG 的两边EF ,EG 分别过点B ,C ,∠F =30°. (1)求证:BE =CE(2)将△EFG 绕点E 按顺时针方向旋转,当旋转到EF 与AD 重合时停止转动.若EF ,EG 分别与AB ,BC 相交于点M ,N.(如图2)①求证:△BEM ≌△CEN ;②若AB =2,求△BMN 面积的最大值;③当旋转停止时,点B恰好在FG上(如图3),求sin∠EBG的值.30.如图1,将两个完全相同的三角形纸片ABC和DEC重合放置,其中∠C=90°.若固定△ABC,将△DEC绕点C旋转.(1)当△DEC统点C旋转到点D恰好落在AB边上时,如图2.①当∠B=∠E=30°时,此时旋转角的大小为;②当∠B=∠E=α时,此时旋转角的大小为(用含a的式子表示).(2)当△DEC绕点C旋转到如图3所示的位置时,小杨同学猜想:△BDC的面积与△AEC的面积相等,试判断小杨同学的猜想是否正确,若正确,请你证明小杨同学的猜想.若不正确,请说明理由.参考答案1.C【解析】【分析】连接AC1,AO,根据四边形AB1C1D1是正方形,得出∠C1AB1=∠AC1B1=45°,求出∠DAB1=45°,推出A、D、C1三点共线,在Rt△C1D1A中,由勾股定理求出AC1,进而求出DC1=OD,根据三角形的面积计算即可.【详解】连接AC1,∵四边形AB1C1D1是正方形,∴∠C1AB1=×90°=45°=∠AC1B1,∵边长为1的正方形ABCD绕点A逆时针旋转45°后得到正方形AB1C1D1,∴∠B1AB=45°,∴∠DAB1=90°-45°=45°,∴AC1过D点,即A、D、C1三点共线,∵正方形ABCD的边长是1,∴四边形AB1C1D1的边长是1,在Rt△C1D1A中,由勾股定理得:AC1=,则DC1=-1,∵∠AC1B1=45°,∠C1DO=90°,∴∠C1OD=45°=∠DC1O,∴DC1=OD=-1,∴S△ADO=×OD•AD=,∴四边形AB1OD的面积是=2×=-1,故选C.2.A【解析】【分析】根据旋转的性质可得AC=AC,∠BAC=∠BAC',再根据两直线平行,内错角相等求出∠ACC=∠CAB,然后利用等腰三角形两底角相等求出∠CAC,再求出∠BAB=∠CAC,从而得解【详解】∵CC′∥AB,∠CAB=75°,∴∠C′CA=∠CAB=75°,又∵C、C′为对应点,点A为旋转中心,∴AC=AC′,即△ACC′为等腰三角形,∴∠CAC′=180°﹣2∠C′CA=30°.故选A.【点睛】此题考查等腰三角形的性质,旋转的性质和平行线的性质,运用好旋转的性质是解题关键3.C【解析】【分析】首先根据题意寻找旋转后的重合点,根据重合点来找到旋转角.【详解】根据题意△ABC是等边三角形∴=AB AC∴可得B点旋转后的点为C∴旋转角为60∠=BAC︒故选C.【点睛】本题主要考查旋转角的计算,关键在于根据重合点来确定旋转角.4.D【解析】【分析】当O 是AB 中点时,线段AB 所扫过的面积的最小;【详解】解:当O 是AB 中点时,线段AB 所扫过的面积的最小,最小面积=π•12=π,故选D .【点睛】本题考查扇形面积的计算、旋转变换的性质等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型.5.D【解析】【分析】先求出6AB =,再利用正方形的性质确定(3,10)D -,由于704172=⨯+,所以第70次旋转结束时,相当于OAB ∆与正方形ABCD 组成的图形绕点O 顺时针旋转2次,每次旋转90︒,此时旋转前后的点D 关于原点对称,于是利用关于原点对称的点的坐标特征可出旋转后的点D 的坐标.【详解】解:(3,4)A -Q ,(3,4)B ,336AB ∴=+=,Q 四边形ABCD 为正方形,6AD AB ∴==,(3,10)D ∴-,704172=⨯+Q ,∴每4次一个循环,第70次旋转结束时,相当于OAB ∆与正方形ABCD 组成的图形绕点O 顺时针旋转2次,每次旋转90︒,∴点D 的坐标为(3,10)-.【点睛】本题考查了坐标与图形变化﹣旋转:图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标.常见的是旋转特殊角度如:30︒,45︒,60︒,90︒,180︒.6.D【解析】【分析】先由△BCD绕点B逆时针旋转60°,得到△BAE,可知:BD=BE,∠DBE=60°,则可判断△BDE是等边三角形;根据等边三角形的性质得BA=BC,∠ABC=∠C=∠BAC=60°,再根据旋转的性质得到∠BAE=∠BCD=60°,从而得∠BAE=∠ABC=60°,根据平行线的判定方法即可得到AE∥BC;根据等边三角形的性质得∠BDE=60°,而∠BDC>60°,则可判断∠ADE≠∠BDC;由△BDE是等边三角形得到DE=BD=4,再利用△BCD绕点B逆时针旋转60°,得到△BAE,则AE=CD,△AED的周长=AE+AD+DE=CD+AD+DE=AC+BD=BC+BD=10.【详解】∵△BCD绕点B逆时针旋转60°,得到△BAE,∴BD=BE,∠DBE=60°,∴△BDE是等边三角形,∴①正确;∵△ABC为等边三角形,∴BA=BC,∠ABC=∠C=∠BAC=60°,∵△BCD绕点B逆时针旋转60°,得到△BAE,∴∠BAE=∠BCD=60°,∴∠BAE=∠ABC,∴AE∥BC,∴②正确;∵△BDE是等边三角形,∴DE=BD=4,∵△BCD绕点B逆时针旋转60°,得到△BAE,∴△AED的周长=AE+AD+DE=CD+AD+DE=AC+BD=BC+BD=6+4=10,∴③正确;∵△BDE是等边三角形,∴∠BDE=60°,∵∠BDC=∠BAC+∠ABD>60°,∴∠ADE=180°-∠BDE-∠BDC<60°,∴∠ADE≠∠BDC,∴④错误.故选D.【点睛】本题主要考查旋转得性质,等边三角形的判定和性质定理,掌握旋转的性质以及等边三角形的性质定理,是解题的关键.7.C【解析】【分析】连结AC,先由△AGH≌△ADH得到∠GHA=∠AHD,进而得到∠AHD=∠HAP,所以△AHP是等腰三角形,所以PH=PA=PC,所以∠HAC是直角,再在Rt△ABC中由勾股定理求出AC的长,然后由△HAC∽△ADC,根据=求出AH的长,再根据△HAC∽△HDA求出DH的长,进而求得HP和AP的长,最后得到△APH的周长.【详解】∵P是CH的中点,PH=PC,∵AH=AH,AG=AD,且AGH与ADH都是直角,∴△AGH≌△ADH,∴∠GHA=∠AHD,又∵GHA=HAP,∴∠AHD=∠HAP,∴△AHP 是等腰三角形,∴PH=PA=PC,∴∠HAC是直角,在Rt△ABC中,AC==10,∵△HAC∽△ADC,∴=,∴AH===7.5,又∵△HAC∽△HAD,=,∴DH=4.5,∴HP==6.25,AP=HP=6.25,∴△APH的周长=AP+PH+AH=6.25+6.25+7.5=20.【点睛】本题主要考查直角三角形的性质以及相似三角形的性质,解题的关键是清楚直角三角形斜边上的中线是斜边的一半以及会运用相似三角形线段成比例求出各边长的长.8.B【解析】【分析】由旋转的特性以及∠MBN=60°,可知△BMN是等边三角形,从而得出MN=BN,再由点到直线的所有线段中,垂线段最短可得出结论.【详解】由旋转的特性可知,BM=BN.又∵∠MBN=60°,∴△BMN为等边三角形,∴MN=BM.∵点M是高CH所在直线上的一个动点,∴当BM⊥CH时,MN最短(到直线的所有线段中,垂线段最短).又∵△ABC为等边三角形,且AB=BC=CA=2,∴当点M和点H重合时,MN最短,且有MN=BM=BH=12AB=1.故选B.【点睛】本题考查了旋转的特性、垂线段最短以及等边三角形的判定与性质.解题的关键是:得到当BM⊥CH时,MN最短.9.A【解析】【分析】由旋转的性质可知,△ABC≌△ADE,DE=BC,可得①正确;∠CAE=∠CAB﹣∠BAE,∠DAB=∠DAE﹣∠BAE,可得∠EAC=∠DAB,可判定②正确;AE=AC,则∠AEC=∠C,再由∠C=∠AED,可得∠AEC=∠AED;可判定③正确;根据平行线的性质可得可得∠C =∠BED,∠AEC=∠AED=∠C,根据平角的定义可得∠DEB=60°;综上即可得答案.【详解】∵将△ABC绕点A旋转至△ADE的位置,使点E落在BC边上,∴△ABC≌△ADE,∴DE=BC,AE=AC,∠BAC=∠DAE,∠C=∠AED,故①正确;∴∠CAE=∠CAB﹣∠BAE,∠DAB=∠DAE﹣∠BAE,∴∠EAC=∠DAB;故②正确;∵AE=AC,∴∠AEC=∠C,∴∠AEC=∠AED,∴EA平分∠DEC;故③正确;∵DE∥AC,∴∠C=∠BED,∵∠AEC=∠AED=∠C,∴∠DEB=∠AEC=∠AED =60°,故④正确;综上所述:正确的结论是①②③④,共4个,故选:A.【点睛】本题考查旋转的性质,旋转前、后的两个图形全等,对应边、对应角相等,对应点与旋转中心所连线段的夹角等于旋转角.10.B【解析】【分析】根据正边形的性质求出DM的长,再求得四边形ADMB′的面积,然后由旋转的性质求得阴影部分面积.【详解】解:设CD、B′C′相交于点M,连接AM,DM=x,∵ABCD绕点A逆时针方向旋转30°后得到正方形AEFH,∴∠MAD=30°,AM=2x,在△ADM中,x2+3=4x2,解得:x=1,∴S ADMB′=3,∴图中阴影部分面积为:3﹣3.故选:B.【点睛】本题要把旋转的性质和正方形的性质结合求解.旋转变化前后,对应线段、对应角分别相等,图形的大小、形状都不改变,注意方程思想的运用.11.(2,2)或(2,-1)【解析】∵抛物线y=x2-4x对称轴为直线x=-42 2-=∴设点A坐标为(2,m),如图所示,作AP⊥y轴于点P,作O′Q⊥直线x=2,∴∠APO=∠AQO′=90°,∴∠QAO′+∠AO′Q=90°,∵∠QAO′+∠OAQ=90°,∴∠AO′Q=∠OAQ,又∠OAQ=∠AOP,∴∠AO′Q=∠AOP,在△AOP和△AO′Q中,APO AQO AOP AO QAO AO ∠∠'⎧⎪∠∠'⎨⎪'⎩===∴△AOP ≌△AO′Q (AAS ),∴AP=AQ=2,PO=QO′=m ,则点O′坐标为(2+m ,m-2),代入y=x 2-4x 得:m-2=(2+m )2-4(2+m ),解得:m=-1或m=2,∴点A 坐标为(2,-1)或(2,2),故答案是:(2,-1)或(2,2).【点睛】本题考查了坐标与图形的变换-旋转,全等三角形的判定与性质,函数图形上点的特征,根据全等三角形的判定与性质得出点O′的坐标是解题的关键.12.3【解析】【分析】先求出∠ACD =30°,进而可算出CE 、AD ,再算出△AEC 的面积.【详解】如图,由旋转的性质可知:AC =AC ',∵D 为AC '的中点,∴AD =1122AC AC =', ∵ABCD 是矩形,∴AD ⊥CD ,∴∠ACD=30°,∵AB∥CD,∴∠CAB=30°,∴∠C'AB'=∠CAB=30°,∴∠EAC=30°,∴AE=EC,∴DE=1122AE EC=,∴CE=222 33CD AB==,DE=11 3AB=,AD=3,∴132AECS EC AD==nn.故答案为:3.【点睛】本题考查了旋转的性质、矩形的性质、直角三角形中30度角的性质,三角形面积计算等知识点,难度不大.清楚旋转的“不变”特性是解答的关键.13.15【解析】【分析】作A′H⊥y轴于H.证明△AOB≌△BHA′(AAS),推出OA=BH,OB=A′H,求出点A′坐标,再利用中点坐标公式求出点D坐标即可解决问题.【详解】作A′H⊥y轴于H.∵∠AOB=∠A′HB=∠ABA′=90°,∴∠ABO+∠A′BH=90°,∠ABO+∠BAO=90°,∴∠BAO=∠A′BH,∵BA=BA′,∴△AOB≌△BHA′(AAS),∴OA=BH,OB=A′H,∵点A的坐标是(−2,0),点B的坐标是(0,6),∴OA=2,OB=6,∴BH=OA=2,A′H=OB=6,∴OH=4,∴A′(6,4),∵BD=A′D,∴D(3,5),∵反比例函数y=kx的图象经过点D,∴k=15.故答案为:15.【点睛】本题考查反比例函数图形上的点的坐标特征,坐标与图形的变化−旋转等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考选择题中的压轴题.14.6【解析】【分析】先确定正方形ABCD的边长AB=6,则CE=3,再利用勾股定理计算出EF=5,根据旋转的性质得EF=EH=5,接着计算出CH=4,从而可得到CH=BF,于是可判定四边形BCHF 为矩形,然后利用矩形的性质确定FH的长.【详解】正方形ABCD的边长AB=6,而BE=3,则CE=3,在Rt△BEF中,EF5==,∵△BEF绕点E顺时针旋转,得到△GEH,∴EF=EH=5,在Rt△EHC中,CH=22-=,534∴CH=BF=4,∴四边形BCHF为矩形,∴FH=BC=6.故答案为6.【点睛】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了正方形的性质.15.34【解析】【分析】首先由旋转的角度为15°,可知∠ACD1=45°..已知∠CAO=45°,即可得AO⊥CD1,然后可在Rt△AOC和Rt△AOD1中,通过解直角三角形求得AD1的长.【详解】解:如图,∵∠A=45°,∠D=30°,若旋转角度为15°,则∠ACO=30°+15°=45°,∴∠AOC=180°−∠ACO−∠CAO=90°,在等腰Rt△ABC中,AB=6,则AC=BC=32同理可得:AO=OC=3,在Rt△AOD1中,OA=3,OD1=CD1−OC=5,由勾股定理得:AD122+3435故答案为34.【点睛】此题主要考查了旋转的性质以及解直角三角形的综合应用,能够发现AO⊥OC是解决此题的关键.16.6532+【解析】【分析】延长ED到N,使得DN=DE,连接CN,BN,延长BN交AE于M.取BC的中点F,连接AF,OF.利用矩形的性质证明OD∥BN,推导出OB=OE,求出OF,AF即可解决问题.【详解】如图,延长ED到N,使得DN=DE,连接CN,BN,延长BN交AE于M.取BC的中点F,连接AF,OF.∵CD⊥EN,DN=DE,∴CN=CE,∵DC=DE,∠CDE=90°,∴∠DCE=∠DCN=45°,∴∠ACB=∠NCE=90°,∴∠BCN=∠ACE,在△BCN和△ACE中,CB CABCN ACECN CE=⎧⎪∠=∠⎨⎪=⎩,∴△BCN≌△ACE(SAS),∴∠BNC=∠AEC,∵∠BNC+∠CNM=180°,∴∠CNM+∠AEC=180°,∴∠ECN+∠NME=180°,∵∠ECN=90°,∴∠NME=90°,∵DH⊥AE,∴∠NME=∠DHE=90°,∴OD∥BN,∵DN=DE,∴OB=OE,∵BF=CF,∴OF=12 EC,∵CD=DE=6,∠CDE=90°,∴,∴,在Rt△ACF中,∵AC=12,CF=6,∴AF==∵OA≤AF+OF,∴,∴OA的最大值为.故答案为【点睛】本题考查旋转变换,等腰直角三角形的性质,三角形的中位线定理,全等三角形的判定和性质等知识,题目综合性较强,难度较大,属于中考填空题中的压轴题.解题的关键是学会添加常用辅助线,构造全等三角形解决问题,17.【解析】【分析】根据中位线定理和等腰直角三角形的判定证明△PMN是等腰直角三角形,求出MN=2BD,然后根据点D在AB上时,BD最小和点D在BA延长线上时,BD最大进行分析解答即可.【详解】∵点P,M分别是CD,DE的中点,∴PM=12CE,PM∥CE,∵点P,N分别是DC,BC的中点,∴PN=12BD,PN∥BD,∵△ABC,△ADE均为等腰直角三角形,∴AB=AC,AD=AE,∠BAC=∠DAE=90°,∴∠BAD=∠CAE,∴△ABD≌△ACE(SAS),∴BD=CE,∴PM=PN,∴△PMN是等腰三角形,∵PM∥CE,∴∠DPM=∠DCE,∵PN∥BD,∴∠PNC=∠DBC,∵∠DPN=∠DCB+∠PNC=∠DCB+∠DBC,∴∠MPN=∠DPM+∠DPN=∠DCE+∠DCB+∠DBC=∠BCE+∠DBC=∠ACB+∠ACE+∠DB C=∠ACB+∠ABD+∠DBC=∠ACB+∠ABC,∵∠BAC=90°,∴∠ACB+∠ABC=90°,∴∠MPN=90°,∴△PMN是等腰直角三角形,∴PM=PN=12 BD,∴MN=2BD,∴点D在AB上时,BD最小,∴BD=AB-AD=4,MN的最小值;点D在BA延长线上时,BD最大,∴BD=AB+AD=10,MN的最大值为,∴线段MN的取值范围是故答案为:.【点睛】此题考查了旋转的性质,三角形中位线定理,全等三角形的判定和性质,等腰直角三角形的判定和性质等,关键是根据全等三角形的判定和等腰直角三角形的判定证明△PMN是等腰三角形.18.答案不唯一(例:先将△ABC以点B为旋转中心顺时针旋转90,再将得到的图形向右平移2个单位向下平移2个单位即可).【解析】【分析】根据“平移”、“轴对称”和“旋转”的性质进行分析解答即可.【详解】解:根据题意,可按下列方式变换使点A与点E重合,点B与点D重合:(1)先将△ABC以点B为旋转中心顺时针旋转90,再将得到的图形向右平移2个单位,并向下平移2个单位即可;(2)先将△ABC向右平移2个单位,再向下平移2个单位,然后将所得△ABC绕点B顺时针旋转90°即可;……故答案为:本题答案不唯一,如:先将△ABC以点B为旋转中心顺时针旋转90,再将得到的图形向右平移2个单位向下平移2个单位即可.【点睛】本题考查熟悉“平移”、“轴对称”和“旋转”这三种图形变换的性质,并认真观察所给图形的位置特征,是正确解答这类题的关键.191【解析】【分析】连接BD 交AC 于O ,由菱形的性质得出2,60CD AB BCD BAD ==∠=∠=︒,1302ACD BAC BAD ∠=∠=∠=︒,,OA OC AC BD =⊥,由直角三角形的性质求出112OB AB ==,OA ==,得出AC =2,60AE AB EAG BAD ==∠=∠=︒,得出2CE AC AE =-=,证出90CPE ∠=︒,由直角三角形的性质得出112PE CE ==,3PC ==,即可得出结果.【详解】解:连接BD 交AC 于O ,如图所示:∵四边形ABCD 是菱形,∴2,60CD AB BCD BAD ==∠=∠=︒, 1302ACD BAC BAD ∠=∠=∠=︒,,OA OC AC BD =⊥, ∴112OB AB ==,∴OA ==,∴AC =由旋转的性质得:2,60AE AB EAG BAD ==∠=∠=︒,∴2CE AC AE =-=,∵四边形AEFG 是菱形,∴EF AG ∕∕,∴60CEP EAG ∠=∠=︒,∴90CEP ACD ∠+∠=︒∴90CPE ∠=︒, ∴1312PE CE ==-,333PC PE ==-, ∴2(33)31DP CD PC =-=--=-; 故答案为:31-.【点睛】考核知识点:菱形性质,旋转性质.解直角三角形是关键.20.7+ 1537. 【解析】【分析】先画出图形,过点B 作E′C 的垂线交其延长线于F 点,过点D′作CM 的垂线交CM 于H 点,过A 点作CM 的垂线交其延长线于G 点.在Rt △BFC 求出BF ,再在△BE′F 用“面积法”求CN ,证明△ACG ≌△BCN ,△CD′H ≌△CE′N ,将有关线段转化,可求CM ,从而可求MN .【详解】解:如图,若将△DCE 绕点C 顺时针旋转60°得到△D′CE′,过点B 作E′C 的垂线交其延长线于F 点,过点D′作CM 的垂线交CM 于H 点,过A 点作CM 的垂线交其延长线于G 点.∵∠ACD′=60°,∠ACB=∠D′CE′=90°,∴∠BCE′=360°-∠ACD′-∠ACB-∠D′CE′=120°.∴∠BCF=180°-∠BCE′=60°,∴∠FBC=30°,∴FC=5,∴BF= =,∴S △BCE′=12BF•CE′= 162⨯⨯= ∵∠ACG+∠BCN=90°,∠BCN+∠CBN=90°,∴∠ACG=∠CBN ,又∵AC=BC ,∴Rt △ACG ≌Rt △CBN ,∴AG=CN ,CG=BN .同理△CD′H ≌△E′CN ,D′H=CN ,CH=NE′.∴AG=D′H ,在△AMG 和△D′MH 中,90AGM D HM AMG D MHAG D H ︒⎧∠=∠=⎪∠=∠''⎨='⎪⎩, ∴△AMG ≌△D′MH ,∴HM=MG ,∴M 为GH 中点,CM= ()111()222CG CH NB NE BE ''+=+=, 又∵BF= ,∠BCF=60°,∴CF=5,FE′=CF+CE′=11,∴14==,∴CM=12BE′=7. 又∵S △BCE′=12CN•BE′, ∴CN=2S △BCE′÷BE′= 7∴MN=CM+CN=7+ .故答案是:7+ 153.【点睛】本题考查了旋转的性质、三角形全等的判定和性质、勾股定理的运用,通过作辅助线构造全等三角形是解题的关键.21.(1)①②③;(2)①655=PB或1855;②PB长的最小值是333-,最大值是333+.【解析】【分析】(1)①由条件证明△ABD≌△ACE,就可以得到结论②由△ABD≌△ACE就可以得出∠ABD=∠ACE,就可以得出∠BDC=90°,进而得出结论;③由条件知∠ABC=∠ABD+∠DBC=45°,由∠ABD=∠ACE就可以得出结论;④△BDE为直角三角形就可以得出BE2=BD2+DE2,由△DAE和△BAC是等腰直角三角形就有DE2=2AD2,BC2=2AB2,就有BC2=BD2+CD2≠B D2就可以得出结论.(2)①分两种情形a、如图2中,当点E在AB上时,BE=AB-AE=3,由△PEB∽△AEC,得PB BEAC EC=,由此即可解决问题.b、如图3中,当点E在BA延长线上时,BE=9,解法类似;②a、如图4中,以A为圆心AD为半径画圆,当CE在⊙A上方与⊙A相切时,PB的值最大.b、如图5中,以A为圆心AD为半径画圆,当CE在⊙A下方与⊙A相切时,PB的值最小,分别求出PB即可.【详解】(1)解:如图甲:①∵∠BAC=∠DAE=90°,∴∠BAC+∠DAC=∠DAE+∠DAC ,即∠BAD=∠CAE .在△ABD 和△ACE 中,AD AE BAD CAE AB AC ⎧⎪∠∠⎨⎪⎩===,∴△ABD ≌△ACE(SAS),∴BD=CE ,∴①正确;②∵△ABD ≌△ACE ,∴∠ABD=∠ACE .∵∠CAB=90°,∴∠ABD+∠AFB=90°,∴∠ACE+∠AFB=90°.∵∠DFC=∠AFB ,∴∠ACE+∠DFC=90°,∴∠FDC=90°.∴BD ⊥CE ,∴②正确;③∵∠BAC=90°,AB=AC ,∴∠ABC=45°,∴∠ABD+∠DBC=45°.∴∠ACE+∠DBC=45°,∴③正确;④∵BD ⊥CE ,∴BE 2=BD 2+DE 2,∵∠BAC=∠DAE=90°,AB=AC ,AD=AE ,∴DE 2=2AD 2,BC 2=2AB 2,∵BC 2=BD 2+CD 2≠BD 2,∴2AB 2=BD 2+CD 2≠BD 2,∴BE 2≠2(AD 2+AB 2),∴④错误.故答案为①②③.(2)①解:a .如图2中,当点E 在AB 上时,3=-=BE AB AE .∵90∠︒=EAC , ∴2222335CE AE AC 6=+=+=,同(1)可证△≌△ADB AEC ,∴∠=∠DBA ECA ,∵∠=∠PEB AEC ,∴△∽△PEB AEC ,∴=PB BE AC EC, ∴635=PB , ∴65PB =; b .如图3中,当点E 在BA 延长线上时,639BE AB AE =+=+=,∵90∠︒=EAC ,∴22226353CE AE AC =+=+=,同(1)可证△≌△ADB AEC ,∴∠=∠DBA ECA ,∵∠=∠BEP CEA ,∴△∽△PEB AEC ,∴=BP BE AC EC, ∴635=BP , ∴185=PB ,综上,65=PB 或185; ②解:a .如图4中,以A 为圆心AD 为半径画圆,当CE 在A e 下方与A e 相切时,PB 的值最小.理由:此时BCE ∠最小,由(1)可知PBC V 是直角三角形,斜边BC 为定值,BCE ∠最小,因此PB 最小,∵⊥AE EC , ∴22226333EC AC AE =-=-=,由(1)可知,ABD ACE △≌△,∴90∠=∠=︒ADB AEC ,33==BD CE∴90∠=∠=∠=︒ADP DAE AEP ,且AD=AE=3,∴四边形AEPD 是正方形,∴3==PD AE ,∴333=-=PB BD PD ;b .如图5中,以A 为圆心AD 为半径画圆,当CE 在A e 上方与A e 相切时,PB 的值最大.理由:此时BCE ∠最大,因此PB 最大,(同理,PBC V 是直角三角形,斜边BC 为定值,BCE ∠最大,因此PB 最大)∵⊥AE EC , ∴2233-=EC AC AE ,由(1)可知,ABD ACE △≌△,∴90∠=∠=︒ADB AEC ,33==BD CE∴90∠=∠=∠=︒ADP DAE AEP ,且AD=AE=3,∴四边形AEPD 是正方形,∴3==PD AE , ∴333=+=PB BD PD .综上所述,PB 长的最小值是333,最大值是333.【点睛】本题属于几何变换综合题,考查了等腰直角三角形的性质、旋转变换、全等三角形的判定和性质、相似三角形的判定和性质、圆的有关知识,解题的关键是灵活运用这些知识解决问题,学会分类讨论的思想思考问题,学会利用图形的特殊位置解决最值问题,属于中考压轴题.22.(1)90°;(2)△BCE ≌△DCF ,对应角为:∠CBE 与∠CDF ,∠BCE 与∠DCF ,∠BEC 与∠DFC ;(3)70°.【解析】试题分析:(1)根据正方形的性质得CB=CA ,∠BCA=90°,然后根据旋转的定义得到△BEC绕点C 顺时针旋转得到△DFC 的最小旋转度数为90°;(2)根据旋转的性质得△BCE ≌△DCF ,再根据全等的性质写出对应角;(3)先根据三角形内角和定理计算出∠BEC=70°,然后根据(2)中的结论求解. 试题解析:(1)∵四边形ABCD 为正方形,∴CB=CA,∠BCA=90°,∴△BEC绕点C顺时针旋转90°可得到△DFC,∴最小旋转度数为90°;(2)△BCE≌△DCF,对应角为:∠CBE与∠CDF,∠BCE与∠DCF,∠BEC与∠DFC;(3)∵∠EBC=30°,∠BCE=80°,∴∠BEC=180°-30°-80°=70°,∴∠F=∠BEC=70°.23.(1)见解析;(2【解析】【分析】(1)根据AC=BC、∠DCE+∠ACD=∠ACB+∠ACD、CE=CD证△ACE≌△BCD即可;(2)连接DE,可得△DCE是等边三角形,即∠CDE=60°、DC=DE,继而在Rt△ADE中,由勾股定理可得DE的长,即可求得CD.【详解】(1)∵△ABC是等边三角形,∴AC=BC,∠ACB=60°,由旋转的性质可得:CE=CD,∠DCE=60°,∴∠DCE+∠ACD=∠ACB+∠ACD,即∠ACE=∠BCD.在△ACE和△BCD中,∵AC BCACE BCDCE CD=⎧⎪∠=∠⎨⎪=⎩,∴△ACE≌△BCD(SAS),∴AE=BD;(2)连接DE.∵CD=CE ,∠DCE=60°,∴△DCE 是等边三角形.∴∠CDE=60°,DC=DE .∵∠ADC=30°,∴∠ADC+∠CDE=90°.∵AD=3,2,∴2.在Rt △ADE 中,由勾股定理, 可得()222242323DE AE AD =-=-= ∴23【点睛】本题主要考查旋转的性质、全等三角形的判定与性质及勾股定理的应用,连接DE 发现等边三角形与直角三角形是解题的关键.24.(1)画图见解析;(2)∠PP′C =30°. 【解析】【分析】(1)如图,作∠PAP ′=50°,且AP=AP′,连接PP′,△ACP′即为所求;(2),连接PP′,由旋转的性质可得,∠PAP′=∠BAC =50°,AP =AP′,△ABP ≌△ACP′,根据等腰三角形的性质及三角形的内角和定理可得∠APP′=∠AP′P =65°,根据全等三角形的性质可得∠AP′C =∠APB ,在△ABC 中,∠BAC =50°,AB =AC ,可求得∠B =65°,再由∠BAP =20°,根据三角形的内角和定理求得∠APB =95°=∠AP′C ,所以∠PP′C =∠AP′C -∠AP′P =30°. 【详解】(1)旋转后的△ACP′如图所示.(2)如图,连接PP′.由旋转可得,∠PAP′=∠BAC=50°,AP=AP′,△ABP≌△ACP′,∴∠APP′=∠AP′P=65°,∠AP′C=∠APB,∵∠BAC=50°,AB=AC,∴∠B=65°,又∵∠BAP=20°,∴∠APB=95°=∠AP′C,∴∠PP′C=∠AP′C-∠AP′P=95°-65°=30°.【点睛】本题主要考查了旋转的性质,熟练运用旋转的性质、等腰三角形的性质及三角形的内角和定理是解决本题的关键.25.5【解析】【分析】(1)如图1中,由此EG交CD于H,则四边形FGHD是矩形.在Rt△CGH中,利用勾股定理即可解决问题;(2)如图2中,作FP⊥AD于P.利用勾股定理相似三角形的性质,分别求出CG、DF即可解决问题;(3)成立.连接AG、AC.只要证明△ADF∽△ACG,可得45DF ADCG AC==即可解决问题;(4)在图4中,通过计算即可解决问题;【详解】(1)如图1中,由此EG交CD于H,则四边形FGHD是矩形.在Rt△CGH中,GH=DF=4,CH=DH=AE=3,∴CG=22CH GH+=5.故答案为:5.(2)如图2中,作FP⊥AD于P.在矩形AEGF中,∵AE=3,EG=4,∴AG=5,BG=AB-AG=1,在Rt△CBG中,CG=228165+=,由△APF∽△AEG,可得AP PE AF AE EG AG==,∴4 345 AP PF==,∴AP=125,PF=165,DP=AD﹣AP=8﹣122855=,在Rt△PDF中,DF=22PD PF+=22465 5PD PF+=,∴DF=45 CG.(3)成立.理由如下:连接AG、AC.由旋转可知:∠DAF=∠CAG,由勾股定理可知:2210AD CD+=,AG=5,∵84105ADAC==,45AFAG=,。
初三上旋转试题及答案在数学学习中,旋转是一个重要的几何概念,它涉及到图形在平面上的转动。
以下是一份初三上学期的旋转试题及其答案,旨在帮助学生掌握旋转的基本概念和计算方法。
1. 题目:一个点A(3,4)绕原点O逆时针旋转90度后,点A的新坐标是什么?答案:点A绕原点O逆时针旋转90度后,新坐标为(-4,3)。
2. 题目:如果一个图形绕某点旋转了180度,那么这个图形与原图形的关系是什么?答案:当一个图形绕某点旋转180度时,旋转后的图形与原图形关于旋转点对称。
3. 题目:一个矩形绕其中心点旋转90度后,得到的图形是什么?答案:一个矩形绕其中心点旋转90度后,得到的图形仍然是一个矩形,但其长和宽互换了位置。
4. 题目:已知点B(2,-3)绕点C(1,1)旋转了一定角度后,点B的新坐标为(-1,-2),求旋转的角度。
答案:通过计算可以得出,点B绕点C旋转了90度。
5. 题目:一个等边三角形绕其中心点旋转120度后,它的每个顶点的新坐标是什么?答案:等边三角形绕其中心点旋转120度后,每个顶点的新坐标可以通过旋转矩阵计算得出,具体坐标取决于原三角形的顶点坐标。
6. 题目:如果一个图形绕某点旋转了360度,那么这个图形有什么变化?答案:当一个图形绕某点旋转360度时,图形会回到原来的位置,没有任何变化。
7. 题目:一个圆绕圆心旋转任意角度,圆的形状和大小会改变吗?答案:一个圆绕圆心旋转任意角度,圆的形状和大小都不会改变,因为圆是中心对称图形。
8. 题目:已知点D(5,7)绕点E(4,4)旋转了一定角度后,点D的新坐标为(6,5),求旋转的角度。
答案:通过计算可以得出,点D绕点E旋转了45度。
9. 题目:一个正方形绕其中心点旋转45度后,它的对角线会有什么变化?答案:正方形绕其中心点旋转45度后,对角线的长度不会改变,但对角线的方向会发生变化。
10. 题目:如果一个图形绕某点旋转了90度,那么这个图形的面积会改变吗?答案:当一个图形绕某点旋转90度时,图形的面积不会改变,因为旋转是一种等距变换,不会改变图形的大小和形状。
第1讲探索勾股定理分层训练提分要义【基础题】1.下列命题正确的是()A.对角线相等的四边形是平行四边形B.对角线相等的四边形是矩形C.对角线互相垂直的平行四边形是菱形D.对角线互相垂直且相等的四边形是正方形2.在正方形ABCD的边AB、BC、CD、DA上分别任意取点E、F、G、H.这样得到的四边形EFGH 中,是正方形的有()A.1个 B.2个 C.4个 D.无穷多个3.将四根长度相等的细木条首尾相接,用钉子钉成四边形ABCD,转动这个四边形,使它形状改变.当∠B=90°时(如图甲),测得对角线BD的长为2.当∠B=60°时(如图乙),则对角线BD的长为()A.2B.3C. 2D.54.如图,正方形ABCD的边长为2,点E在AB边上.四边形EFGB也为正方形,设△AFC的面积为S,则 ( )A.S=2 B.S=2.4 C.S=4 D.S与BE长度有关5.如图,正方形ABCD的边长为9,将正方形折叠,使顶点D落在BC边上的点E处,折痕为GH.若BE:EC=2:1,则线段CH的长是()A .3B .4C .5D .66. 如图,边长为6的大正方形中有两个小正方形,若两个小正方形的面积分别为1S ,2S ,则12S S 的值为( ) A.16 B.17 C.18 D.197.下列是关于某个四边形的三个结论:①它的对角线相等;②它是一个正方形;③它是一个矩形.下列推理过程正确的是( )A .由②推出③,由③推出①B .由①推出②,由②推出③C .由③推出①,由①推出②D .由①推出③,由③推出② 8.如图,在正方形ABCD 中,E 是边AB 的中点,F 是边BC 的中点,连结CE 、DF .求证:CE=DF .9.如图,点P 是正方形ABCD 的对角线BD 上一点,PE ⊥BC 于点E ;PF ⊥CD于点F ,连接EF ,给出下列五个结论:①AP=EF ;②AP ⊥EF ;③∠PFE=∠BAP ;④PD=EC ;⑤PB 2+PD 2=2PA 2,正确的有几个?.10.如图,边长为3的正方形ABCD 绕点C 按顺时针方向旋转30°后,得到正方形EFCG ,EF 交AD 于H ,求DH 的长.【中档题】11. 如图,正方形ABCD 中,E 是BC 上的一点,连接AE ,过点B 作BH ⊥AE ,垂足为点H ,延长BH 交CD 于点F ,连接AF.(1)求证:AE=BF ;(2)若正方形边长是5,BE=2,求AF 的长.12.如图,点E 是正方形ABCD 内一点,△CDE 是等边三角形,连结EB 、EA ,延长BE 交边AD 于点F .(1)求证:△ADE ≌△BCE ;(2)求∠AFB 的度数.13.如图,在边长为4的正方形ABCD 中,点P 在AB 上从A 向B运动,连结DP 交AC 于点Q .(1)试证明:无论点P 运动到AB 上何处时,都有△ADQ ≌△ABQ ;(2)当点P 在AB 上运动到什么位置时,△ADQ 的面积是正方形ABCD 面积的61;(3)若点P从点A运动到点B,再继续在BC上运动到点C,在整个运动过程中,当点P运动到什么位置时,△ADQ恰为等腰三角形.【综合题】14.正方形ABCD的对角线交点为O,如图所示,AE平分∠BAC交BC于E,交OB于F,求证:EC=2FO.15.在正方形ABCD的边AB上任取一点E,作EF⊥AB交BD于点F,取FD 的中点G,连接EG、CG,如图①,易证EG=CG,且EG⊥CG.(1)将△BEF绕点B逆时针旋转90°,如图②,则线段EG和CG有怎样的数量关系和位置关系?请直接写出你的猜想.(2)将△BEF绕点B逆时针旋转180°,如图③,则线段EG和CG又有怎样的数量关系和位置关系?请写出你的猜想,并加以证明.第1讲探索勾股定理分层训练提分要义【基础题】1.下列命题正确的是()A.对角线相等的四边形是平行四边形B.对角线相等的四边形是矩形C.对角线互相垂直的平行四边形是菱形D.对角线互相垂直且相等的四边形是正方形【答案】C【解析】A:对角线相等的四边形有可能是梯形,所以A选项错误;B:对角线相等的四边形有可能是梯形,所以B选项错误;C:对角线互相垂直的平行四边形是菱形,正确D:对角线互相垂直平分且相等的四边形是正方形,所以D选项错误;故选C【知识点】平行四边形、矩形、菱形、正方形的判定2.在正方形ABCD的边AB、BC、CD、DA上分别任意取点E、F、G、H.这样得到的四边形EFGH 中,是正方形的有()A.1个 B.2个 C.4个 D.无穷多个【答案】D;【解析】在正方形四边上任意取点E、F、G、H,AH=DG=CF=BE,能证明四边形EFGH为正方形,则说明可以得到无穷个正方形.3.将四根长度相等的细木条首尾相接,用钉子钉成四边形ABCD ,转动这个四边形,使它形状改变.当∠B=90°时(如图甲),测得对角线BD 的长为2.当∠B=60°时(如图乙),则对角线BD 的长为( )A. 2B. 3C. 2D. 5【答案】B ;【解析】解:如图甲,∵AB=BC=CD=DA ,∠B=90°,∴四边形ABCD 是正方形,连接BD ,则AB 2+AD 2=BD 2,∴AB=AD=1,如图乙,∠B=60°,连接BD ,∴△ABD 为等腰三角形,∴AB=AD=1,∴BD=3故选B . 4.如图,正方形ABCD 的边长为2,点E 在AB 边上.四边形EFGB 也为正方形,设△AFC 的面积为S ,则 ( )A .S =2B .S =2.4C .S =4D .S 与BE 长度有关【答案】A ;【解析】设正方形EFGB 的边长是a ,则S =ABC CFG AFGB S S S +-△△梯形=×(a +2)×a + ×2×2-×(a +2)×a =2.5.如图,正方形ABCD 的边长为9,将正方形折叠,使顶点D 落在BC 边上的点E 处,折痕为GH .若BE :EC=2:1,则线段CH 的长是( )A .3B .4C .5D .6【答案】B 【解析】由题意设CH=xcm ,则DH=EH=(9﹣x )cm ,∵BE :EC=2:1,∴CE=31BC=3cm ∴在Rt △ECH 中,EH 2=EC 2+CH 2, 即(9﹣x )2=32+x 2,解得:x=4,即CH=4cm .6. 如图,边长为6的大正方形中有两个小正方形,若两个小正方形的面积分别为1S ,2S ,则12S S +的值为( )A.16B.17C.18D.19【答案】B ;【解析】设正方形2S 的边长为x ,根据等腰直角三角形的性质知,AC 2x ,2x CD =,∴AC =2CD ,CD =623=.EC =22,28S =,∵1S 的边长为3,1S 的面积为3×3=9,∴12S S +=8+9=17.7.下列是关于某个四边形的三个结论:①它的对角线相等;②它是一个正方形;③它是一个矩形.下列推理过程正确的是( )A .由②推出③,由③推出①B .由①推出②,由②推出③C .由③推出①,由①推出②D .由①推出③,由③推出② 【答案】A【分析】根据对角线相等的四边形推不出是正方形或矩形即可判断.【解析】解:对角线相等的四边形推不出是正方形或矩形,故①→②,①→③错误,故选项B ,C ,D 错误,故选:A .8.如图,在正方形ABCD 中,E 是边AB 的中点,F 是边BC 的中点,连结CE 、DF .求证:CE=DF . 【解析】证明:∵ABCD 是正方形,∴AB=BC=CD ,∠EBC=∠FCD=90°,又∵E 、F 分别是AB 、BC 的中点,∴BE=CF ,在△CEB 和△DFC 中,,∴△CEB ≌△DFC ,∴CE=DF .9.如图,点P 是正方形ABCD 的对角线BD 上一点,PE ⊥BC 于点E ;PF ⊥CD 于点F ,连接EF ,给出下列五个结论:①AP=EF ;②AP ⊥EF ;③∠PFE=∠BAP ;④PD=EC ;⑤PB 2+PD 2=2PA 2,正确的有几个?.【解析】解:①正确,连接PC ,可得PC=EF ,PC=PA ,∴AP=EF ;②正确;延长AP ,交EF 于点N ,则∠EPN=∠BAP=∠PCE=∠PFE ,可得AP ⊥EF ;③正确;∠PFE=∠PCE=∠BAP ;④错误,PD=2PF=2CE ;⑤正确,PB 2+PD 2=2PA 2.所以正确的有4个:①②③⑤.10.如图,边长为3的正方形ABCD 绕点C 按顺时针方向旋转30°后,得到正方形EFCG ,EF 交AD 于H ,求DH 的长.【解析】解:如图,连接CH ,∵正方形ABCD 绕点C 按顺时针方向旋转30°,∴∠BCF=30°,则∠DCF=60°,在Rt△CDH 和Rt△CFH 中,CH CH CD CF=⎧⎨=⎩∴Rt△C DH ≌Rt△CF H ,∴∠DCH=∠FCH=12∠DCF=30°,在Rt△CDH中,DH=x,CH=2x,CD=33x=,∴DH=3.【中档题】11. 如图,正方形ABCD中,E是BC上的一点,连接AE,过点B作BH⊥AE,垂足为点H,延长BH交CD于点F,连接AF.(1)求证:AE=BF;(2)若正方形边长是5,BE=2,求AF的长.【分析】(1)利用正方形的性质证明△ABE≌△BCF,进而得到对应边AE=BF;(2)借助△ABE≌△BCF,求出DF的值,然后在Rt△ADF中使用勾股定理求得的AF的值. 【解析】解:(1)∵四边形ABCD是正方形,∴AB=BC,∠ABC=∠C=90°,∵作BH⊥AE,垂足为点H,∴∠BAE=∠CBF.在△ABE和△BCF中,90ABC CAB BCBAE CBF∠=∠=︒=∠=∠⎧⎪⎨⎪⎩,∴△ABE≌△BCF(ASA),∴AE=BF.(2)∵△ABE≌△BCF,∴CF=BE=2,∵正方形的边长为5,∴AD=CD=5,∴DF=CD-CF=5-2=3.在Rt△ADF中,2222AF AD DF=+=+=.5334【知识点】正方形的性质、垂直的定义、互余的性质、全等三角形的判定和性质、勾股定理12.如图,点E是正方形ABCD内一点,△CDE是等边三角形,连结EB、EA,延长BE交边AD 于点F.(1)求证:△ADE≌△BCE;(2)求∠AFB的度数.【解析】解:(1)∵四边形ABCD是正方形,∴∠ADC=∠BCD=90°,AD=BC.∵△CDE是等边三角形,∴∠CDE=∠DCE=60°,DE=CE.∴∠ADE=∠BCE=30°.∵AD=BC,∠ADE=∠BCE,DE=CE,∴△ADE≌△BCE.(2)∵△ADE≌△BCE,∴AE=BE,∴∠BAE=∠ABE.∵∠BAE+∠DAE=90°,∠ABE+∠AFB=90°,∠BAE=∠ABE,∴∠DAE=∠AFB.∵AD=CD=DE,∴∠DAE=∠DEA.∵∠ADE=30°,∴∠DAE=75°,∴∠AFB=75°.13.如图,在边长为4的正方形ABCD中,点P在AB上从A向B运动,连结DP交AC于点Q.(1)试证明:无论点P 运动到AB 上何处时,都有△ADQ ≌△ABQ ;(2)当点P 在AB 上运动到什么位置时,△ADQ 的面积是正方形ABCD 面积的61; (3)若点P 从点A 运动到点B ,再继续在BC 上运动到点C ,在整个运动过程中,当点P 运动到什么位置时,△ADQ 恰为等腰三角形. 【解析】(1)证明:∵四边形ABCD 是正方形,∴AD =AB ,∠DAC =∠BAC =45°,AQ =AQ∴△ADQ ≌△ABQ (SAS );(2)以A 为原点建立如图所示的直角坐标系,过点Q 作QE ⊥y 轴于点E ,QF ⊥x 轴于点F .21AD ×QE =61ABCD S 正方形=38 ∴QE =34∵点Q 在正方形对角线AC 上 ∴Q 点的坐标为)34,34( ∴过点D(0,4),)34,34(Q 两点的函数关系式为:24y x =-+,当y =0时,x =2,即P 运动到AB 中点时,△ADQ 的面积是正方形ABCD 面积的61; (3)若△ADQ 是等腰三角形,则有QD =QA 或DA =DQ 或AQ =AD①当点P 运动到与点B 重合时,由四边形ABCD 是正方形知QD =QA 此时△ADQ 是等腰三角形; ②当点P 与点C 重合时,点Q 与点C 也重合,此时DA =DQ ,△ADQ 是等腰三角形; ③如图,设点P 在BC 边上运动到CP =x 时,有AD =AQ∵AD ∥BC ∴∠ADQ =∠CPQ .又∵∠AQD =∠CQP ,∠ADQ =∠AQD ,∴∠CQP =∠CPQ .∴CQ=CP=x.∵AC=24,AQ=AD=4.∴x=CQ=AC-AQ=24-4.即当CP=24-4时,△ADQ是等腰三角形.【综合题】14.正方形ABCD的对角线交点为O,如图所示,AE平分∠BAC交BC于E,交OB于F,求证:EC=2FO.【点拨】在平面几何中,要证明一条线段等于另一条线段的2倍或12,通常采用折半法或加倍法.而折半法又可分直接折半法和间接折半法;加倍又可分直接加倍法和间接加倍法.这就需要学生仔细研究,找到解决问题的合适方法.【解析】证法一:(间接折半法)如图①所示.∵∠3=∠1+∠4,∠5=∠2+∠6.而∠1=∠2,∠4=∠6=45°.∴∠3=∠5,BE=BF.取AE的中点G,连接OG,∵ AO=OC,∴ OG 12 EC.由∠7=∠5,∠8=∠3,∴∠7=∠8,∴ FO=GO.∴ EC=2OG=2FO.证法二:(直接折半法)如图②所示.由证法一得BE=BF.取EC的中点H,连接OH.∵ AO=OC,∴ OH∥AE.∴∠BOH=∠BFE=∠BEF=∠BHO.∴ BO=BH,∴ FO=EH.∴ EC=2EH=2FO.证法三:(直接加倍法)如图③所示.由证法一得BE=BF.在OD上截取OM=OF,连接MC.易证Rt△AOF≌Rt△COM.∴∠OAF=∠OCM,∴ AE∥MC.由∠BMC=∠BFE=∠BEF=∠BCM,∴ FM=EC.∴ EC=FM=2FO.【总结】若题目中涉及线段的倍半关系和中点问题时,要联想中位线定理,利用中点构造中位线,要注意从不同的角度进行思构,构造不同的辅助线来解决问题.15.在正方形ABCD的边AB上任取一点E,作EF⊥AB交BD于点F,取FD的中点G,连接EG、CG,如图①,易证EG=CG,且EG⊥CG.(1)将△BEF绕点B逆时针旋转90°,如图②,则线段EG和CG有怎样的数量关系和位置关系?请直接写出你的猜想.(2)将△BEF绕点B逆时针旋转180°,如图③,则线段EG和CG又有怎样的数量关系和位置关系?请写出你的猜想,并加以证明.【答案】解:(1)EG=CG,且EG⊥CG.(2)EG=CG,且EG⊥CG.证明:延长FE交DC延长线于M,连MG,如图③,∵∠AEM=90°,∠EBC=90°,∠BCM=90°,∴四边形BEMC是矩形.∴ BE=CM,∠EMC=90°,又∵ BE=EF,∴ EF=CM.∵∠EMC=90°,FG=DG,∴ MG=12FD=FG.∵ BC=EM,BC=CD,∴ EM=CD.∵ EF=CM,∴ FM=DM,∴∠F=45°.又FG=DG,∠CMG=12∠EMD=45°,∴∠F=∠GMC,∴△GFE≌△GMC,∴ EG=CG,∠FGE=∠MGC,∵ MG⊥DF,∴∠FGE+∠EGM=90°,∴∠MGC+∠EGM=90°即∠EGC=90°,∴ EG⊥CG.。
思维特训(一)正方形的旋转变换
解决与正方形旋转有关的题目,需要将旋转的性质与正方形的性质相结合,通过借助特殊的三角形、全等三角形、相似三角形等知识寻找解题思路.
1.如图1-S-1,在正方形ABCD中,点E,F分别在BC,CD上,且∠EAF=45°,将△ABE 绕点A顺时针旋转90°,使点E落在点E′处,连接EE′,则下列判断不正确的是()
图1-S-1
A.△AEE′是等腰直角三角形
B.AF垂直平分EE′
C.△E′EC∽△AFD
D.△AE′F是等腰三角形
2.如图1-S-2,正方形ABCD和正方形CEFG的边长分别为a和b,正方形CEFG绕点C 旋转,给出下列结论:①BE=DG;②BE⊥DG;③DE2+BG2=2a2+2b2,其中正确的结论是________(填序号).
图1-S-2
3.如图1-S-3,正方形ABCD的对角线相交于点O,点O又是正方形A1B1C1O的一个顶点,而且这两个正方形的边长相等.无论正方形A1B1C1O绕点O怎样转动,两个正方形重叠部分的面
积总等于一个正方形面积的1
4.想一想,这是为什么.
图1-S-3
4.已知正方形ABCD和正方形AEFG有一个公共顶点A,点G,E分别在线段AD,AB上,若将正方形AEFG绕点A按顺时针方向旋转,连接DG,如图1-S-4,在旋转的过程中,你能否找到一条线段的长与线段DG的长度始终相等?并说明理由.
图1-S-4
5.如图1-S-5,四边形ABCD是正方形,G是CD边上的一个动点(点G与C,D不重合),以CG为一边在正方形ABCD外作正方形CEFG,连接BG,DE.我们探究图中线段BG和线段DE 的长度关系及其所在直线的位置关系.
(1)猜想图①中线段BG和线段DE的长度关系及其所在直线的位置关系;
(2)将图①中的正方形CEFG绕着点C按顺时针(或逆时针)方向旋转任意角度α,得到如图②、
如图③的情形.请你通过观察、测量等方法判断(1)中得到的结论是否仍然成立,并选取图②证明你的判断.
图1-S-5
6.如图1-S-6①,已知P为正方形ABCD的对角线AC上一点(不与点A,C重合),PE⊥BC 于点E,PF⊥CD于点F.
(1)求证:BP=DP.
(2)如图②,若四边形PECF绕点C按逆时针方向旋转,在旋转过程中是否总有BP=DP?若是,请给予证明;若不是,请用反例加以说明.
(3)试选取正方形ABCD的两个顶点,分别与四边形PECF的两个顶点连接,使得到的两条线段在四边形PECF绕点C按逆时针方向旋转的过程中长度始终相等,并给出证明.
图1-S-6
7.如图1-S -7,正方形ABCD 绕点A 逆时针旋转角度n 后得到正方形AEFG ,边EF 与CD 相交于点O .
(1)以图中已标有字母的点为端点连接两条线段(正方形的对角线除外),要求所连接的两条线段相交且互相垂直,并说明这两条线段互相垂直的理由;
(2)若正方形的边长为2 cm ,重叠部分(四边形AEOD )的面积为4 3
3
cm 2,求旋转的角度n .
图1-S -7
详解详析
1.D[解析] ∵将△ABE绕点A顺时针旋转90°,使点E落在点E′处,∴AE′=AE,∠E′AE=90°,
∴△AEE′是等腰直角三角形,故A正确;
∵将△ABE绕点A顺时针旋转90°,使点E落在点E′处,∴∠E′AD=∠BAE.
∵四边形ABCD是正方形,∴∠DAB=90°.
∵∠EAF=45°,∴∠BAE+∠DAF=45°,
∴∠E′AD+∠DAF=45°,∴∠E′AF=∠EAF.
又∵AE′=AE,∴AF垂直平分EE′,故B正确;∵AF⊥E′E,∠ADF=90°,∴∠FE′E+∠AFD=∠AFD+∠DAF,∴∠FE′E=∠DAF,∴△E′EC∽△AFD,故C正确;
∵AD⊥E′F,但∠E′AD不一定等于∠DAF,
∴△AE′F不一定是等腰三角形,故D错误.
故选D.
2.①②③[解析] 如图,设BE,DG相交于点O,
∵四边形ABCD和四边形CEFG都为正方形,∴BC=CD,CE=CG,∠BCD=∠ECG=90°,
∴∠BCD+∠DCE=∠ECG+∠DCE=90°+∠DCE,即∠BCE=∠DCG.
在△BCE和△DCG中,
BC=CD,∠BCE=∠DCG,CE=CG,
∴△BCE≌△DCG(SAS),
∴BE=DG,∠1=∠2.
∵∠1+∠4=∠1+∠3=90°,∴∠2+∠3=90°,∴∠BOD=90°,∴BE⊥DG,故①②正确;
连接BD,EG,如图所示,
∵DO2+BO2=BD2=BC2+CD2=2a2,EO2+OG2=EG2=CG2+CE2=2b2,
∴DE2+BG2=DO2+EO2+BO2+OG2=2a2+2b2,故③正确.
3.解:在正方形ABCD 中,OB =OA ,∠AOB =90°,∠OAE =∠OBF =45°. 在正方形A 1B 1C 1O 中,∠A 1OC 1=90°, ∴∠AOE =∠BOF .
在△AOE 和△BOF 中,∠OAE =∠OBF ,OA =OB ,∠AOE =∠BOF , ∴△AOE ≌△BOF (ASA),
∴重叠部分的面积等于△AOB 的面积, ∴重叠部分的面积总等于一个正方形面积的1
4
.
4.[解析] 观察DG 的位置,找包含DG 的三角形,要找两条线段相等,只要找到与之全等的三角形,即可找到与之相等的线段.
解:如图,连接BE ,则BE =DG . 理由如下:
∵四边形ABCD 和四边形AEFG 都是正方形, ∴AB =AD ,AE =AG ,∠BAD =∠EAG =90°, ∴∠BAD -∠BAG =∠EAG -∠BAG ,即∠DAG =∠BAE . 在△BAE 和△DAG 中,
AB =AD ,∠BAE =∠DAG ,AE =AG , ∴△BAE ≌△DAG (SAS), ∴BE =DG .
5.[解析] (1)根据正方形的性质,显然△BCG 顺时针旋转90°即可得到△DCE ,从而判断两条直线之间的关系;
(2)结合正方形的性质,根据SAS 仍然能够判定△BCG ≌△DCE ,从而证明结论.
解:(1)BG=DE,BG⊥DE.理由如下:
∵四边形ABCD和四边形CEFG都是正方形,∴BC=DC,CG=CE,∠BCD=∠ECG=90°,∴∠BCG=∠DCE.
在△BCG和△DCE中,
BC=DC,∠BCG=∠DCE,CG=CE,
∴△BCG≌△DCE(SAS),
∴BG=DE.
延长BG交DE于点H,如图所示.
∵△BCG≌△DCE,
∴∠CBG=∠CDE.
又∠CBG+∠BGC=90°,∠BGC=∠DGH,
∴∠CDE+∠DGH=90°,
∴∠DHG=90°,
∴BH⊥DE,即BG⊥DE.
(2)BG=DE,BG⊥DE仍然成立.
在题图②中证明如下:
∵四边形ABCD、四边形CEFG都是正方形,
∴BC=CD,CG=CE,∠BCD=∠ECG=90°,∴∠BCG=∠DCE,
∴△BCG≌△DCE(SAS),
∴BG=DE,∠CBG=∠CDE.
又∵∠BHC=∠DHO,∠CBG+∠BHC=90°,∴∠CDE+∠DHO=90°,
∴∠DOH=90°,
∴BG⊥DE.
6.解:(1)证明:∵四边形ABCD是正方形,
∴AB=AD,∠BAP=∠DAP.
在△P AB和△P AD中,AB=AD,∠BAP=∠DAP,AP=AP,
∴△P AB≌△P AD(SAS),∴BP=DP.
(2)不是.反例:当四边形PECF绕点C按逆时针方向旋转,点P旋转到BC边上时,DP>DC >BP,此时BP=DP不成立.
(3)连接BE,DF,则BE与DF始终相等.
证明:在题图①中,∵四边形ABCD是正方形,
∴CA平分∠BCD.
∵PE⊥BC,PF⊥CD,∴PE=PF.
又∠BCD=90°,∴四边形PECF为正方形,
∴EC=FC,∴BE=DF.
在题图②中,连接DF,BE.易知∠DCF=∠BCE.
在△BEC和△DFC中,BC=DC,∠BCE=∠DCF,EC=FC,
∴△BEC≌△DFC(SAS),∴BE=DF.
7.解:(1)答案不唯一,如连接AO,DE,
则AO⊥DE.
理由:如图所示,∵在Rt△ADO和Rt△AEO中,AD=AE,AO=AO,
∴Rt△ADO≌Rt△AEO(HL),
∴∠DAO=∠EAO(即AO平分∠DAE),
∴AO⊥DE(等腰三角形的三线合一).
(2)∵四边形AEOD的面积为4 3
3cm
2,
∴△ADO 的面积=AD ·DO 2=2 33cm 2
.
∵AD =2cm ,∴DO =2 3
3cm.
在Rt △ADO 中,AO =AD 2+DO 2=
4 3
3
, ∴∠DAO =30°,∴∠EAD =60°, ∴∠EAB =30°,即n =30°.。