煤矿涌水量预测知识
- 格式:pptx
- 大小:1.44 MB
- 文档页数:60
吉林大学精品课>>专门水文地质学>>教材>>专门水文地质学§10.4矿坑涌水量预测一、矿坑涌水量预测的内容、方法、步骤与特点(一)矿井涌水量预测的内容及要求矿坑涌水量预测是一项重要而复杂的工作,是矿床水文地质勘探的重要组成部分。
矿坑涌水量是指矿山开拓与开采过程中,单位时间内涌入矿坑(包括井、巷和开采系统)的水量。
通常以m 3/h 表示。
它是确定矿床水文地质条件复杂程度的重要指标之一,关系到矿山的生产条件与成本,对矿床的经济技术评价有很大的影响。
并且也是设计与开采部门选择开采方案、开采方法,制定防治水疏干措施,设计水仓、排水系统与设备的主要依据。
因此,在矿床水文地质调查中,要求正确评价未来矿山开发各个阶段的涌水量。
其内容与要求包括可概括为以下四个方面:(1)矿坑正常涌水量:指开采系统达到某一标高(水平或中段)时,正常状态下保持相对稳定的总涌水量,通常是指平水年的涌水量。
(2)矿坑最大涌水量:是指正常状态下开采系统在丰水年雨季时的最大涌水量。
对某些受暴雨强度直接控制的裸露型、暗河型岩溶充水矿床来说,常常还应依据矿山的服务年限与当地气象变化周期,按当地气象站所记录的最大暴雨强度,预测数十年一遇特大暴雨强度产生时,可能出现暂短的特大矿坑涌水量,作为制订各种应变措施的依据。
(3)开拓井巷涌水量:指包括井筒(立井、斜井)和巷道(平、平巷、斜巷、石门)在开拓过程中的涌水量。
(4)疏干工程的排水量:是指在规定的疏于时间内,将一定范围内的水位降到某一规定标高时,所需的疏干排水强度。
对于地质勘探阶段来说,主要是进行评价性的计算,以预测正常状态下矿坑涌水量及最大涌水量为主。
至于开拓井巷的涌水量预测和专门性疏干工程的排水量的计算,由于与矿山的生产条件密切相关,一般均由矿山基建部门或生产部门承担。
(二)矿坑涌水量预测的方法根据当前矿床水文地质计算中常用的各种数学模型的地质背景特征极其对水文地质模型概化的要求,可作如下类型的划分:⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎨⎧⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧⎩⎨⎧-混合型模型水均衡法有限差法有限元法数值解非稳定井流公式稳定井流公式—井流方程—解析解确定模型回归方程曲线方程非确定性统计模型数学模型分类s Q(三)矿坑涌水量预测的步骤矿坑涌水量预测是在查明矿床的充水因素及水文地质条件的基础上进行的。
[收稿日期] 2005212210;[修订日期] 2006202220[作者简介] 张本臣(19592),男,黑龙江牡丹江人,黑龙江省有色金属地质勘查702队工程师.矿坑涌水量预测的影响因素分析张本臣,刘喜信,孙传斌(黑龙江省有色金属地质勘查702队,黑龙江牡丹江 157021)[摘 要]矿坑水的补给条件、矿体围岩的岩性和产状、矿床的开采方式以及所选计算公式各参数是预测矿坑涌水量时应考虑的主要影响因素。
[关键词]涌水量;影响因素分析;矿坑[中图分类号]TD 742+1[文献标识码]A [文章编号]100122427(2006)012058204由于涌水量预测的精确程度直接影响矿床的合理开采和安全生产,因此,工作时必须对影响矿坑涌水量预测的因素进行周密的研究和考虑。
预测矿井正常和最大涌水量,为防止矿井突水提供水文地质资料,为确定合理治水方案提供依据。
正确地预测矿坑涌水量,是在详尽查明矿坑充水因素及获得可靠计算参数的基础上,根据矿床开采设计,选择相应的公式进行的。
本文在以下几个方面加以探讨。
1 矿坑水的补给条件对矿坑涌水量预测的影响流入矿坑的水,包括矿坑揭露的矿体及其围岩本身贮存的地下水的静储量,通过不同岩层或岩体和不同途径进入矿坑的地下水的动储量,某些情况还有来自深层的承压水。
因此在预测矿坑涌水量时,应当首先考虑充水因素影响的强度和延续时间,然后矿坑充水的补给范围,补给面积和补给边界。
大气降水,往往直接或间接地成为矿床充水因素,影响矿坑涌水量的变化速度、幅度和延续时间。
具体的水文地质条件如补给区的远近、埋藏的深度、降雨强度和延续时间等也是矿床充水的因素之一。
一般来说,距补给区近、埋藏浅的矿井的涌水量变化速度快、幅度大;而距补给区远的埋藏深的矿井则相反。
雨季涌水量大,旱季涌水量小,且和大气降水对比有延迟现象(见表1)。
表1 某铅锌矿二层平硐自然涌水量与季节关系Table 1 The relation sh ip between two dr if t natural i nf low of water of so m e Pb ,Zn deposit and season s坑道海拔高度(m )旱季涌水量(m 3 d )雨季涌水量(m 3 d )涌水量增加幅度(倍)最大涌水量出现月份62929189851732197、8、9571411251311803127、8、9地表水体(河流、湖泊、水库、海洋等)对矿床充水的影响取决于矿体与地表水力联系程度、补给距离和地表水体的规模。
第四节采区涌水量预算
采区内和邻区无专门水文地质钻孔,水文地质参数难以掌握。
采区涌水量估算,故采用富水系数比拟法。
利用产能在30万t的矿井涌水量,预算了矿井年生产量达到60万t时的矿井涌水量。
公式:Q=Kp×P=Q0×P/P0(K P=Q0/P0)
上式中:
Q——设计矿坑涌水量(m3/d)
Q0——煤矿现采矿井实际排水了量(m3/d)
P0——煤矿实际开采量(万t/a)
P——设计矿井生产能力(万t/a)
9号、11号煤层采区涌水量计算
根据调查资料,开采9号煤层,生产能力达30万t/a时,采区正常涌水量为700 m3/d,最大涌水量900 m3/d。
采用富水系数比拟法估算。
当生产能力达60万t/a,其采区正常涌水量1400 m3/d,最大涌水量为1800 m3/d。
第五节采空区积水估算
参照《煤矿安全手册》中采(老)空区给水量估算公式进行了采(老)空区给水量的估算:
估算公式:Q积=K×M×F/cosα
式中:Q积——相互连通的各积水区总积水量(m3)
M——煤层厚度(m)
F——采空区积水区水平投影面积(m2)
α——煤层倾角
K——充水系数。
潘三煤矿矿井涌水量预计及评价潘三煤矿是我国知名的煤矿企业之一,位于中国华北地区,具有丰富的煤炭资源和良好的开采条件。
随着煤矿的开采深度不断增加,矿井涌水等地质灾害问题也日益凸显。
为了有效预防和应对矿井涌水问题,对潘三煤矿的矿井涌水量进行预计和评价已成为当前亟待解决的重要问题。
二、矿井涌水量预计方法矿井涌水量预计是对矿井涌水情况进行科学评估和预测的重要手段,可以为煤矿企业提供科学依据和技术支持,有利于提前采取有效的防治措施。
目前常用的矿井涌水量预计方法主要有以下几种:1. 水文地质勘探法水文地质勘探法是通过对矿区的地质构造、水文地质条件和水文地质特征进行综合勘探和分析,以确定潜在的水文地质问题和矿井涌水量。
该方法主要依靠地质勘探和调查技术,能够较为准确地预测矿井涌水量,但需要耗费较多的人力物力资源。
2. 数学模型法数学模型法是利用数学和计算机技术,建立矿井涌水的数学模型,通过对地质条件、水文地质参数和开采工艺等因素进行分析和计算,预测矿井涌水量。
该方法具有较高的科学性和准确性,但依赖于对矿井地质和水文地质的准确数据和参数。
3. 统计分析法统计分析法是通过对历史数据和开采经验进行统计和分析,推断未来矿井涌水量的变化趋势和规律。
该方法简便易行,适用于一些常规的矿井涌水量预测,但对新矿井和复杂地质条件的预测能力有限。
三、潘三煤矿矿井涌水量预计针对潘三煤矿的实际情况,可以采用水文地质勘探法和数学模型法相结合的预测方法,通过对矿区地质构造、水文地质参数和开采工艺等因素进行科学分析和计算,确定矿井涌水量的预测值。
结合统计分析法,对历史数据和开采经验进行综合分析和利用,进一步验证和修正预测结果,提高预测的准确性和可靠性。
四、矿井涌水量评价矿井涌水量的评价是对预计结果进行科学评估和分析,确定矿井涌水对矿井安全和生产的影响程度,为制定有效的防治措施和安全预案提供依据。
2. 生产评价对预计的矿井涌水量进行生产评价,主要是评估矿井涌水对矿井生产的影响程度,包括对矿井设备、矿井通风、矿井排水和煤炭开采等生产环节进行分析和评估,确定矿井涌水对生产的影响和损失估算。
矿井水害预测预报制度矿井水害是指矿井中地下水涌入导致矿井内水位急剧升高,严重威胁矿工的生命安全和矿井的正常生产。
为了防止矿井水害的发生,必须建立起一套科学、准确的预测和预报制度,及时发现矿井水害的隐患,并采取措施进行防范。
首先,矿井水害的预测需要建立基于理论和实践的预测模型。
通过深入研究矿井水害发生的规律和原因,分析矿井水害的发展趋势和变化规律,建立起合理的数学模型和预测算法。
可以通过对矿井地质、岩层结构和水文地质条件的调查,收集并分析历史水害数据,以及矿井内监测数据,确定影响水害的关键指标,构建预测模型。
这些模型可以基于统计学方法、神经网络算法、遗传算法等,实现对矿井水害发生的预测和预报。
其次,矿井水害的预报需要建立一套完善的监测体系。
通过在矿井中设置水位监测仪器,实时监测矿井内水位的变化情况。
同时,还要配备水质监测仪器,对矿井中地下水的水质进行监测,及时发现水质异常和变化,判断是否存在可能导致水害发生的隐患。
此外,还要对矿井中地下水的流量进行监测,了解水源的供给情况,及时发现水量过大或过小的情况,避免因供水不足或超载引发水害。
再次,矿井水害的预测预报还需要建立一套快速、高效的预警机制。
当监测到矿井内水位、水质或流量等参数出现异常时,应立即触发预警系统,向相关人员发送预警信息。
这些预警信息应包括水害可能发生的时间、地点和严重程度等信息,让相关人员可以及时做出反应,采取相应的措施进行处理,保护矿工的生命安全和矿井的正常运行。
最后,矿井水害的预测预报还需要建立一套完善的应急处理措施。
当预测和预报系统发出水害预警后,相关人员应立即启动应急预案,进行疏散和救援工作。
同时,应加强与其他矿井或相关部门的沟通和协调,及时调集人力物力进行救援工作。
此外,还要完善应急处理设施和装备,提高应急处理的效率和成功率。
通过这样的应急处理措施,可以最大程度地减少矿井水害的危害和损失。
总之,建立矿井水害预测预报制度对于保障矿工的生命安全和矿井的正常运行至关重要。
重庆田家煤矿水文地质特征分析及涌水量预测一、引言随着煤矿开采的不断深入和规模的不断扩大,煤矿涌水问题成为了亟待解决的难题。
涌水不仅会对矿井的安全生产造成威胁,还可能对周边环境和生态造成影响。
而水文地质特征分析和涌水量预测是煤矿水害治理的关键环节之一。
本文以重庆田家煤矿为例,对其水文地质特征进行分析,并采用相关方法对涌水量进行预测,以期为该矿的水害治理提供科学依据。
二、煤矿概况重庆田家煤矿位于重庆市南川区,是一座规模较大的煤矿,年产煤量较大。
煤矿附近地处喀斯特地貌区,岩层以石灰岩和页岩为主,地下水丰富,煤层水的分布较为复杂。
矿区常年受降雨影响,季节性地下水位波动较大。
由于煤矿开采的不断推进,矿井逐渐深入,涌水问题日益突出。
三、水文地质特征分析1. 岩层特征煤矿所在地属于喀斯特地貌区,地质构造较为特殊。
矿区的岩层主要以石灰岩和页岩为主,石灰岩具有较强的透水性和溶解性,而页岩的透水性相对较差。
在煤层下方,常常存在着不同程度的裂隙和岩溶通道,这些通道极大地影响了地下水流动的方向和速度。
2. 水文地质特征煤矿附近地下水体系发育,常年受雨水和河水的影响。
在矿井开采过程中,地下水流动受到破坏,造成了原有的水文地质结构的变化。
受煤层裂隙和岩溶通道的影响,地下水流动呈现出不规则的分布和变化。
3. 涌水特点煤矿的涌水量主要受到地下水位变化的影响。
随着煤矿开采的不断推进,地下水位变化较大,导致了矿井涌水量的不稳定性。
地下水与煤层中的瓦斯和煤粉等物质相互作用,还可能导致矿井涌水水质的复杂性。
四、涌水量预测1. 参数确定为了预测煤矿的涌水量,首先需要确定一些关键参数,如地下水位变化、岩层透水系数、煤层渗透系数等。
通过实地调查和实验室分析,可以获取这些参数的数值。
2. 模型建立在确定了关键参数之后,可以建立涌水量预测的数学模型。
常用的模型有经验公式法、物理模拟法和数学模型法等。
根据煤矿的实际情况,选择合适的模型进行建立。
3. 涌水量预测通过建立的数学模型,可以对煤矿的涌水量进行预测。
解析法(一)解析法的应用条件解析法是根据解析解的建模要求,通过对实际问题的合理概化,构造理想化模式的解析公式,用于矿坑涌水量预测。
具有对井巷类型适应能力强、快速、简便、经济等优点,是最常用的基本方法。
解析法预测矿坑涌水量时,以井流理论和用等效原则构造的“大井”为主,后者指将各种形态的井巷与坑道系统,以具有等效性的“大井”表示,称“大井”法。
因此说:矿坑涌水量计算的最大特点是“大井法”与等效原则的应用,而供水则以干扰井的计算为主。
稳定井流解析法:应用于矿坑疏干流场处于相对稳定状态的流量预测。
包括①在已知某开采水平最大水位降条件下的矿坑总涌水量;②在给定某开采水平疏干排水能力的前提下,计算地下水位降深(或压力疏降)值。
非稳定解析法:用于矿床疏干过程中地下水位不断下降,疏干漏斗持续不断扩展,非稳定状态下的涌水量预测。
包括:①已知开采水平水位降(s)、疏干时间(t),求涌水量(Q);②已知Q、s,求疏干某水平或漏斗扩展到某处的时间(t);③已知Q、t,求s,以确定漏斗发展的速度和漏斗范围内各点水头函数隨时间的变化规律,用于规划各项开采措施。
在勘探阶段,以选择疏干量和计算量最大涌水量为主。
(二)计算方法如上所述,应用解析法预测矿坑涌水量时,关键问题是如何在查清水文地质条件的前提下,将复杂的实际问题概化。
它可概括为如下三个重要方面:分析疏干流场的水力特征,合理概化边界条件,正确确定各项参数。
1. 分析疏干流场的水力特征矿区的疏干流场是在天然背景条件下,迭加开采因素演变而成。
分析时,应以天然状态为基础,结合开采条件作出合理概化。
(1)区分稳定流与非稳定流矿山基建阶段,疏干流场的内外边界有受开拓井巷的扩展所控制,以消耗含水层储量为主,属非稳定流;进入回采阶段后,井巷输廊大体已定,疏干流场主要受外边界的补给条件控制,当存在定水头(侧向或越流)补给条件时,矿坑水量被侧向补给量或越流量所平衡,流场特征除受气候的季节变化影响外,呈现对稳定状态。
煤矿井下涌水量计算的几种观测方法1、水桶法水桶法指的是,将涌出的水导入一定容积的量水桶(圆形或方形),用秒表测流满该量水桶所需的时间,然后按下式计算涌水量:Q= V/t式中Q——涌水量,m3/h(m3/min)V——量水桶的体积,m3t——水流满量水桶的时间,h(min)2、水位标定法水位标定法指的是利用水泵将水窝(或水仓)中的水位降低,然后停泵,测量回升到原来位置所需要的时间,然后按下式计算涌水量:Q=FH/t式中Q——涌水量,m3/h(m3/min)F——水窝(或水仓)的断面积,m2H——水位回升的高度,mt——水流满凉水桶的时间,h(min)3、水泵能力法水位能力法指的是维持水位不变时增加水泵的排水能力,按下式计算涌水量:Q=KNW+SH/t式中Q——涌水量,m3/h(m3/min)K——水泵的排水系数,%(当新水泵排清水时K=1,旧水泵排清水时K=0.8,排混水时K=0.9,旧水泵排混水时K=0.7,双台旧水泵排水时K=0.6)N——增加的水泵台数,台W——水泵的铭牌排水量,m3/h(m3/min)S——水仓(或水窝)水平截面积,m2H——水位上升的高度,mT——水位上升所需的时间,h(min)当H=0时,即水位不上升,则Q=KNW4、浮标法浮标法指的是利用木屑或纸屑作为浮标,测量水沟中水的流速,根据水沟断面计算涌水量。
按下式计算涌水量:Q=KVF式中Q——涌水量,m3/h(m3/min)F——断面面积,m2V=L/tt——从断面1到断面2的水流时间,h(min)L——从断面1到断面2的水距离,mK——断面系数,与水沟粗糙度、风流方向和大小有关:在一般情况下,水沟水深大于1.0吗,当水沟粗糙时,K=0.75—0.85;在水沟水沟平滑时,K=0.80—0.90。
此计算方法可用于巷道排水沟中水的测量;当涌水较大,淹没巷道水沟时,也可用来测量巷道流水中水量。
5、堰测法堰测法指的是在井下排水沟中设置测水堰板,使水流通过一定形状的堰口水流高度,然后计算涌水量。
矿井排水量及矿井涌水量测算长治红山煤业有限公司2011年7月一、水仓容量与矿井设计涌水量2010年3月份以前主水仓和副水仓总容量为4400 m3,我矿于2010年4、5月份对水仓进行了改扩建,改扩建后水仓总容量提升为4900 m3,其中主水仓有效容量为2500m3、副水仓有效容量2400m3。
我矿设计正常涌水量60 m3/h,最大涌水量160 m3/h。
二、矿井井下排水量矿井井下主要水源为顶板滴水、井筒渗水和回采老空区渗水。
顶板滴水主要表现在回采过程中工作面来水,自2005年综合开采至今以030101和030102工作面涌水量较大,具体分析为这两个工作面位于北山向斜的轴部,故相对与其他工作面涌水量较大,按现场实际排水记录当时最大排水量为40 m3/h。
其中2010年回采030103工作面时正常排水量为:20 m3/h,最大排水量为25 m3/h。
井筒渗水表现为立井井筒、斜井井筒和通风立井井筒渗水,目前立井井筒正常排水量0.29m3/h,最大排水量0.42 m3/h;斜井井筒正常排水量1.3 m3/h,排大涌水量1.91 m3/h;通风立井井筒正常排水量0.37 m3/h,最大排水量0.417 m3/h。
那么井筒渗水正常排水量为2.11 m3/h,最大排水量2.75 m3/h。
回采老空区渗水表现为相邻内王煤矿局部回采老空区渗水和2005年前采空区渗水,相邻内王煤矿局部回采老空区渗水表现为胶带大巷345米处巷道渗水,我矿于巷道渗水处设置了集水坑,集水坑开挖流水暗道通至井底总水仓,依据历年排水测量其正常排水量5.2m3/h,最大排水量7.4 m3/h;2005年前采空区位于矿井煤田南翼,其渗水通过巷道水沟直接流入总水仓,回采老空区渗水正常排水量2.58 m3/h,最大排水量3.25 m3/h。
三、矿井涌水量测算通过以上我矿井下排水记录和综合测算,测定目前矿井正常涌水量为24.69 m3/h,最大涌水量46m3/h(以历史最大排水记录为依据)。