煤矿涌水量预测
- 格式:ppt
- 大小:3.67 MB
- 文档页数:59
矿井正常涌水量和最大涌水量矿井正常涌水量和最大涌水量矿井涌水是煤炭生产中的重要问题,对矿井的安全生产和经济效益都有着直接影响。
涌水的情况虽然不可预见,但是我们可以通过对矿井的控制和管理,从而实现最小化涌水损失的目标。
因此,在了解矿井正常涌水量和最大涌水量之前,我们需要先深入了解涌水的原因和涌水管理的措施。
涌水是由于矿井地质、水文地质条件和煤炭开采过程中的操作失误或施工水平不高等原因,使地下水源趋向矿井工作面,从而溢流矿工面上地面或库房里,引起矿井(采区)水位上升以及地表降水的过程。
因此,在煤矿生产过程中,要充分了解矿井的地下水流规律、定量掌握矿井及周围水文地质信息,以及制定科学、合理的涌水防治措施和应急预案,最大限度地控制涌水发生和涌水损失。
煤矿正常涌水量和最大涌水量是矿井地下水开采、运输过程中的两个重要指标,也是煤矿安全生产的重点指标之一。
正常涌水量指矿井的日平均涌水量,以及日、月、年等时间段内的涌水情况。
它是煤矿生产过程中的一个稳态变量,能够代表矿井的水文地质条件和矿井地下水导流、入渗、排泄过程的特征。
正常涌水量的大小和矿井的水文地质条件、矿井的水文地学结构、煤层自然裂隙条件以及采矿方法、维护质量有关。
不同矿井的正常涌水量有着非常大的差异,为了安全开采和高效经济地利用矿井水资源,必须根据实际情况制定调控计划,并且在生产过程中经常对其进行实时监测和分析。
最大涌水量指矿井能够承受的最大涌水量,是评估矿井涌水防治设施强度和施工安全的重要参数。
它的大小与矿井地质、矿井开采方式、矿井水文地质特征以及地质构造有关。
一般情况下,最大涌水量的估计需要通过水文地质勘探和试采工作得出,比较消耗资源和精力。
因此,在实际施工中,为了确保生产安全和经济效益,通常采取综合措施来对矿井涌水进行防治。
例如,在生产过程中采取钻孔排水、隔水放爆、密闭施工、提高冲积层厚度等措施来控制涌水量。
同时,给予矿工相关涌水知识的培训,以及完善的应急预案,也都是涌水控制工作中不可缺少的环节。
[收稿日期] 2005212210;[修订日期] 2006202220[作者简介] 张本臣(19592),男,黑龙江牡丹江人,黑龙江省有色金属地质勘查702队工程师.矿坑涌水量预测的影响因素分析张本臣,刘喜信,孙传斌(黑龙江省有色金属地质勘查702队,黑龙江牡丹江 157021)[摘 要]矿坑水的补给条件、矿体围岩的岩性和产状、矿床的开采方式以及所选计算公式各参数是预测矿坑涌水量时应考虑的主要影响因素。
[关键词]涌水量;影响因素分析;矿坑[中图分类号]TD 742+1[文献标识码]A [文章编号]100122427(2006)012058204由于涌水量预测的精确程度直接影响矿床的合理开采和安全生产,因此,工作时必须对影响矿坑涌水量预测的因素进行周密的研究和考虑。
预测矿井正常和最大涌水量,为防止矿井突水提供水文地质资料,为确定合理治水方案提供依据。
正确地预测矿坑涌水量,是在详尽查明矿坑充水因素及获得可靠计算参数的基础上,根据矿床开采设计,选择相应的公式进行的。
本文在以下几个方面加以探讨。
1 矿坑水的补给条件对矿坑涌水量预测的影响流入矿坑的水,包括矿坑揭露的矿体及其围岩本身贮存的地下水的静储量,通过不同岩层或岩体和不同途径进入矿坑的地下水的动储量,某些情况还有来自深层的承压水。
因此在预测矿坑涌水量时,应当首先考虑充水因素影响的强度和延续时间,然后矿坑充水的补给范围,补给面积和补给边界。
大气降水,往往直接或间接地成为矿床充水因素,影响矿坑涌水量的变化速度、幅度和延续时间。
具体的水文地质条件如补给区的远近、埋藏的深度、降雨强度和延续时间等也是矿床充水的因素之一。
一般来说,距补给区近、埋藏浅的矿井的涌水量变化速度快、幅度大;而距补给区远的埋藏深的矿井则相反。
雨季涌水量大,旱季涌水量小,且和大气降水对比有延迟现象(见表1)。
表1 某铅锌矿二层平硐自然涌水量与季节关系Table 1 The relation sh ip between two dr if t natural i nf low of water of so m e Pb ,Zn deposit and season s坑道海拔高度(m )旱季涌水量(m 3 d )雨季涌水量(m 3 d )涌水量增加幅度(倍)最大涌水量出现月份62929189851732197、8、9571411251311803127、8、9地表水体(河流、湖泊、水库、海洋等)对矿床充水的影响取决于矿体与地表水力联系程度、补给距离和地表水体的规模。
《河南水利与南水北调》2023年第6期水文水资源作者简介:翟京召(1974.7—),男,高级工程师,主要从事水利水电工程建设与管理等方面的工作。
某矿井水资源论证项目涌水量预测分析翟京召(河南天龙检测有限公司,河南南阳473000)摘要:某地煤矿项目建成后,矿井水经过矿井水处理站处理后部分会用于生产系统,部分用于电厂和自来水厂,剩余部分矿井经厂区总排口排至附近河流中。
文章对矿井涌水量预测分析,为煤矿水资源论证回用、重复利用水分析,提供了可靠的支撑和依据。
关键词:水资源论证;涌水量预测;水文地质;分析中图分类号:TD742文献标识码:B文章编号:1673-8853(2023)06-0040-02Preast Analysis of Water Inflow of a Mine Water Resources Demonstration ProjectZHAI Jingzhao(Henan Tianlong Testing CO.LTD.,Nanyang 473000,China )Abstract:After the completion of a coal mine project,part of the mine water is treated by the mine water treatment station and returned to the production system.Part of it is used for the power plant and water plant,and the rest of the mine is discharged into the nearby river through the main outlet of the plant.The prediction and analysis of mine water inflow provide a reliable support and basis for the demonstration and reuse of coal mine water resources.Key words:water resource demonstration;water inflow prediction;hydrogeology;analysis 1引言某地煤矿项目位于新郑市辛店镇赵家寨村,矿区东西长13.50km ,南北宽3.70km ,面积48.96km 2。
第四节采区涌水量预算
采区内和邻区无专门水文地质钻孔,水文地质参数难以掌握。
采区涌水量估算,故采用富水系数比拟法。
利用产能在30万t的矿井涌水量,预算了矿井年生产量达到60万t时的矿井涌水量。
公式:Q=Kp×P=Q0×P/P0(K P=Q0/P0)
上式中:
Q——设计矿坑涌水量(m3/d)
Q0——煤矿现采矿井实际排水了量(m3/d)
P0——煤矿实际开采量(万t/a)
P——设计矿井生产能力(万t/a)
9号、11号煤层采区涌水量计算
根据调查资料,开采9号煤层,生产能力达30万t/a时,采区正常涌水量为700 m3/d,最大涌水量900 m3/d。
采用富水系数比拟法估算。
当生产能力达60万t/a,其采区正常涌水量1400 m3/d,最大涌水量为1800 m3/d。
第五节采空区积水估算
参照《煤矿安全手册》中采(老)空区给水量估算公式进行了采(老)空区给水量的估算:
估算公式:Q积=K×M×F/cosα
式中:Q积——相互连通的各积水区总积水量(m3)
M——煤层厚度(m)
F——采空区积水区水平投影面积(m2)
α——煤层倾角
K——充水系数。
煤矿专门水文地质勘查规范矿井水文地质观测要点包括:钻孔水位观测,矿井涌水量的观测,矿井涌水量的预测方法。
对新开凿的井筒、主要穿层石门及开拓巷道,应当及时进行水文地质观测和编录,并绘制井筒、石门、巷道的实测水文地质剖面图或展开图。
1、钻孔水位观测水位观测用作化解以下生产问题:(1)利用水位观测预报透水事故的发生;(2)介绍断层的导水性;(3)了解突水水源层位;(4)介绍地下水与地表水的给养关系。
2、矿井涌水量的观测矿井涌水量的量测,常用的方法存有浮标法、堰测法、容积法和观测水仓水位法。
3、矿井涌水量的预测方法(1)地下水动力学法(小井法);(2)水文地质比拟法;(3)涌水量与水位再降浅曲线法:根据三次扣(或摆)水试验资料去推断涌水量。
知识点:井下水文地质观测1.对崭新修筑的井筒、主要穿着层石门及拓展巷道,应及时展开水文地质观测和编录,并绘制井筒、石门、巷道的量测水文地质剖面图或进行图。
2.当井巷穿过含水层时,应当详细描述其产状、厚度、岩性、构造、裂隙或者岩溶的发育与充填情况,揭露点的位置及标高、出水形式、涌水量和水温等,并采取水样进行水质分析。
遇下列地质构造时,应观测的内容包括有:(1)突遇含水层裂隙时,应测量其产状、长度、宽度、数量、形状、细长攻灭情况、填充程度及填充物等,观测地下水活动的痕迹,绘制裂隙玫瑰图,并挑选存有代表性的地段测量岩石的裂隙率为,测量面积大小由其裂隙原产密度情况确认。
(2)遇岩溶时,应当观测其形态、发育情况、分布状况、有无充填物和充填物成分及充水状况等,并绘制岩溶素描图。
(3)突遇脱落结构时,应测量其断距、产状、断层拎宽度,观测断裂带填充物成分、含水程度及导水性等。
(4)遇褶曲时,应当观测其形态、产状及破碎情况等。
(5)突遇失陷柱时,应观测失陷柱内外地层岩性与产状、裂隙与岩溶发育程度及涌水等情况,认定失陷柱发育高度,并基本建设卡片、附于平面图、剖面图和素描图。
(6)遇突水点时,应当详细观测记录突水的时间、地点、确切位置,出水层位、岩性、厚度,出水形式,围岩破坏情况等,并测定涌水量、水温、水质和含砂量等。
解析法(一)解析法的应用条件解析法是根据解析解的建模要求,通过对实际问题的合理概化,构造理想化模式的解析公式,用于矿坑涌水量预测。
具有对井巷类型适应能力强、快速、简便、经济等优点,是最常用的基本方法。
解析法预测矿坑涌水量时,以井流理论和用等效原则构造的“大井”为主,后者指将各种形态的井巷与坑道系统,以具有等效性的“大井”表示,称“大井”法。
因此说:矿坑涌水量计算的最大特点是“大井法”与等效原则的应用,而供水则以干扰井的计算为主。
稳定井流解析法:应用于矿坑疏干流场处于相对稳定状态的流量预测。
包括①在已知某开采水平最大水位降条件下的矿坑总涌水量;②在给定某开采水平疏干排水能力的前提下,计算地下水位降深(或压力疏降)值。
非稳定解析法:用于矿床疏干过程中地下水位不断下降,疏干漏斗持续不断扩展,非稳定状态下的涌水量预测。
包括:①已知开采水平水位降(s)、疏干时间(t),求涌水量(Q);②已知Q、s,求疏干某水平或漏斗扩展到某处的时间(t);③已知Q、t,求s,以确定漏斗发展的速度和漏斗范围内各点水头函数隨时间的变化规律,用于规划各项开采措施。
在勘探阶段,以选择疏干量和计算量最大涌水量为主。
(二)计算方法如上所述,应用解析法预测矿坑涌水量时,关键问题是如何在查清水文地质条件的前提下,将复杂的实际问题概化。
它可概括为如下三个重要方面:分析疏干流场的水力特征,合理概化边界条件,正确确定各项参数。
1. 分析疏干流场的水力特征矿区的疏干流场是在天然背景条件下,迭加开采因素演变而成。
分析时,应以天然状态为基础,结合开采条件作出合理概化。
(1)区分稳定流与非稳定流矿山基建阶段,疏干流场的内外边界有受开拓井巷的扩展所控制,以消耗含水层储量为主,属非稳定流;进入回采阶段后,井巷输廊大体已定,疏干流场主要受外边界的补给条件控制,当存在定水头(侧向或越流)补给条件时,矿坑水量被侧向补给量或越流量所平衡,流场特征除受气候的季节变化影响外,呈现对稳定状态。
煤矿井下涌水量计算的几种观测方法1、水桶法水桶法指的是,将涌出的水导入一定容积的量水桶(圆形或方形),用秒表测流满该量水桶所需的时间,然后按下式计算涌水量:Q= V/t式中Q——涌水量,m3/h(m3/min)V——量水桶的体积,m3t——水流满量水桶的时间,h(min)2、水位标定法水位标定法指的是利用水泵将水窝(或水仓)中的水位降低,然后停泵,测量回升到原来位置所需要的时间,然后按下式计算涌水量:Q=FH/t式中Q——涌水量,m3/h(m3/min)F——水窝(或水仓)的断面积,m2H——水位回升的高度,mt——水流满凉水桶的时间,h(min)3、水泵能力法水位能力法指的是维持水位不变时增加水泵的排水能力,按下式计算涌水量:Q=KNW+SH/t式中Q——涌水量,m3/h(m3/min)K——水泵的排水系数,%(当新水泵排清水时K=1,旧水泵排清水时K=0.8,排混水时K=0.9,旧水泵排混水时K=0.7,双台旧水泵排水时K=0.6)N——增加的水泵台数,台W——水泵的铭牌排水量,m3/h(m3/min)S——水仓(或水窝)水平截面积,m2H——水位上升的高度,mT——水位上升所需的时间,h(min)当H=0时,即水位不上升,则Q=KNW4、浮标法浮标法指的是利用木屑或纸屑作为浮标,测量水沟中水的流速,根据水沟断面计算涌水量。
按下式计算涌水量:Q=KVF式中Q——涌水量,m3/h(m3/min)F——断面面积,m2V=L/tt——从断面1到断面2的水流时间,h(min)L——从断面1到断面2的水距离,mK——断面系数,与水沟粗糙度、风流方向和大小有关:在一般情况下,水沟水深大于1.0吗,当水沟粗糙时,K=0.75—0.85;在水沟水沟平滑时,K=0.80—0.90。
此计算方法可用于巷道排水沟中水的测量;当涌水较大,淹没巷道水沟时,也可用来测量巷道流水中水量。
5、堰测法堰测法指的是在井下排水沟中设置测水堰板,使水流通过一定形状的堰口水流高度,然后计算涌水量。
矿井排水量及矿井涌水量测算长治红山煤业有限公司2011年7月一、水仓容量与矿井设计涌水量2010年3月份以前主水仓和副水仓总容量为4400 m3,我矿于2010年4、5月份对水仓进行了改扩建,改扩建后水仓总容量提升为4900 m3,其中主水仓有效容量为2500m3、副水仓有效容量2400m3。
我矿设计正常涌水量60 m3/h,最大涌水量160 m3/h。
二、矿井井下排水量矿井井下主要水源为顶板滴水、井筒渗水和回采老空区渗水。
顶板滴水主要表现在回采过程中工作面来水,自2005年综合开采至今以030101和030102工作面涌水量较大,具体分析为这两个工作面位于北山向斜的轴部,故相对与其他工作面涌水量较大,按现场实际排水记录当时最大排水量为40 m3/h。
其中2010年回采030103工作面时正常排水量为:20 m3/h,最大排水量为25 m3/h。
井筒渗水表现为立井井筒、斜井井筒和通风立井井筒渗水,目前立井井筒正常排水量0.29m3/h,最大排水量0.42 m3/h;斜井井筒正常排水量1.3 m3/h,排大涌水量1.91 m3/h;通风立井井筒正常排水量0.37 m3/h,最大排水量0.417 m3/h。
那么井筒渗水正常排水量为2.11 m3/h,最大排水量2.75 m3/h。
回采老空区渗水表现为相邻内王煤矿局部回采老空区渗水和2005年前采空区渗水,相邻内王煤矿局部回采老空区渗水表现为胶带大巷345米处巷道渗水,我矿于巷道渗水处设置了集水坑,集水坑开挖流水暗道通至井底总水仓,依据历年排水测量其正常排水量5.2m3/h,最大排水量7.4 m3/h;2005年前采空区位于矿井煤田南翼,其渗水通过巷道水沟直接流入总水仓,回采老空区渗水正常排水量2.58 m3/h,最大排水量3.25 m3/h。
三、矿井涌水量测算通过以上我矿井下排水记录和综合测算,测定目前矿井正常涌水量为24.69 m3/h,最大涌水量46m3/h(以历史最大排水记录为依据)。
《基于Feflow的范各庄煤矿矿井涌水量预测研究》篇一一、引言随着经济的快速发展和城市化进程的加速,煤炭作为我国主要的能源来源之一,其开采量持续增加。
然而,在煤炭开采过程中,矿井涌水问题一直是影响矿井安全和经济效益的重要因素。
因此,对矿井涌水量的准确预测,对于保障矿井安全、提高生产效率具有重要意义。
本文以范各庄煤矿为例,基于Feflow模型进行矿井涌水量预测研究,以期为煤矿安全生产提供科学依据。
二、范各庄煤矿概况范各庄煤矿位于我国某地,地质条件复杂,矿井涌水量受多种因素影响。
近年来,随着开采深度的增加和范围的扩大,矿井涌水问题日益突出。
因此,对矿井涌水量进行准确预测,对于保障矿井安全和经济效益具有重要意义。
三、Feflow模型简介Feflow模型是一种基于水文地质学原理和数值模拟技术的地下水流场预测模型。
该模型能够综合考虑地质、气象、水文等多方面因素,对地下水流场进行模拟和预测。
在矿井涌水量预测方面,Feflow模型具有较高的准确性和可靠性。
四、基于Feflow的矿井涌水量预测研究1. 数据采集与处理:首先,收集范各庄煤矿的地质、气象、水文等相关数据,对数据进行整理和分析,为模型输入提供依据。
2. 模型建立与参数设定:根据Feflow模型原理,建立矿井涌水量预测模型,设定相关参数。
参数的设定需要考虑地质条件、气象因素、矿井开采情况等多方面因素。
3. 模型验证与优化:利用历史数据对模型进行验证,根据验证结果对模型进行优化,提高预测精度。
4. 预测与分析:利用优化后的模型对未来一段时间内的矿井涌水量进行预测,分析涌水量的变化趋势和影响因素。
五、结果与讨论1. 预测结果:基于Feflow模型的矿井涌水量预测结果与实际涌水量数据基本吻合,证明了该模型的准确性和可靠性。
2. 影响因素分析:通过对预测结果的分析,发现地质条件、气象因素、矿井开采情况等因素对矿井涌水量具有重要影响。
其中,地质条件是决定涌水量的主要因素,气象因素和矿井开采情况也会对涌水量产生影响。
重庆田家煤矿水文地质特征分析及涌水量预测一、引言随着煤矿开采的不断深入和规模的不断扩大,煤矿涌水问题成为了亟待解决的难题。
涌水不仅会对矿井的安全生产造成威胁,还可能对周边环境和生态造成影响。
而水文地质特征分析和涌水量预测是煤矿水害治理的关键环节之一。
本文以重庆田家煤矿为例,对其水文地质特征进行分析,并采用相关方法对涌水量进行预测,以期为该矿的水害治理提供科学依据。
二、煤矿概况重庆田家煤矿位于重庆市南川区,是一座规模较大的煤矿,年产煤量较大。
煤矿附近地处喀斯特地貌区,岩层以石灰岩和页岩为主,地下水丰富,煤层水的分布较为复杂。
矿区常年受降雨影响,季节性地下水位波动较大。
由于煤矿开采的不断推进,矿井逐渐深入,涌水问题日益突出。
三、水文地质特征分析1. 岩层特征煤矿所在地属于喀斯特地貌区,地质构造较为特殊。
矿区的岩层主要以石灰岩和页岩为主,石灰岩具有较强的透水性和溶解性,而页岩的透水性相对较差。
在煤层下方,常常存在着不同程度的裂隙和岩溶通道,这些通道极大地影响了地下水流动的方向和速度。
2. 水文地质特征煤矿附近地下水体系发育,常年受雨水和河水的影响。
在矿井开采过程中,地下水流动受到破坏,造成了原有的水文地质结构的变化。
受煤层裂隙和岩溶通道的影响,地下水流动呈现出不规则的分布和变化。
3. 涌水特点煤矿的涌水量主要受到地下水位变化的影响。
随着煤矿开采的不断推进,地下水位变化较大,导致了矿井涌水量的不稳定性。
地下水与煤层中的瓦斯和煤粉等物质相互作用,还可能导致矿井涌水水质的复杂性。
四、涌水量预测1. 参数确定为了预测煤矿的涌水量,首先需要确定一些关键参数,如地下水位变化、岩层透水系数、煤层渗透系数等。
通过实地调查和实验室分析,可以获取这些参数的数值。
2. 模型建立在确定了关键参数之后,可以建立涌水量预测的数学模型。
常用的模型有经验公式法、物理模拟法和数学模型法等。
根据煤矿的实际情况,选择合适的模型进行建立。
3. 涌水量预测通过建立的数学模型,可以对煤矿的涌水量进行预测。
MTT778—1998 数值法预测矿井涌水量技术规范前言本标准根据中华人民共和国煤炭工业部《矿井水文地质规程》(1984年版)和《GB12719—1991矿区水文地质工程地质勘探规范》以及《供水水文地质勘测规程》、《矿区水文地质工程地质勘探规范》、《煤矿防治水工作条例》等国家标准、行业标准中的有关规定,在总结近20年来应用数值法进行矿井涌水量预测实际工作经验的基础上,制订的本煤炭行业标准,在技术内容与上述引用标准等效。
本标准由国家煤炭工业局行业管理司提出。
本标准由煤炭工业煤矿安全标准化技术委员会归口。
本标准起草单位:煤炭科学研究总院西安分院。
本标准主要起草人:戴振学、郝旗胜、刘志中。
本标准委托煤炭科学研究总院西安分院负责解释。
数值法预测矿井涌水量技术规范1 范围本标准适用于应用数值法进行矿井涌水量预测工作,是确定计算方案、检验计算精度、编写预测报告、制定相应的规划和设计的依据。
2 一般要求2.1 本方法可用于矿井正常涌水量、矿井最大涌水量、各开采水平的涌水量、井筒和开拓坑道的涌水量及疏干工程或专门排水装置的涌水量的预测。
2.2计算工作前或计算过程中,掌握以下资料:——矿区所处水文地质单元的区域水文地质图及报告;——1:5000~1:2.5万矿区水文地质图及相应的文字报告;——1:5000矿井可行性方案开采图;——含水层顶、底板埋深及等厚线图;——含水层等水位线图;——煤层底板等高线图;——受水威胁煤层顶、底板等水压线图;——地下水水化学图;——水文地质剖面图;——钻孔及群孔抽(放)水试验数据;——地下水长期动态观测数据;——历年气象、水文资料。
2.3 计算工作结束时提交的文件及附件:工作报告:包括对所采用的数据、建立的模型、选用的参数、计算过程及结果的详细分析与说明;图件:包括概念模型的示意图、水文地质参数分区图、计算区剖分图、水位拟合曲线图、计算机程序流程图、初始流场图、预测曲线和流场图、涌水量动态曲线;附件:参数识别和正演预报时所采用的计算程序及相对应的数据文件、计算结果、水位拟合及误差分布情况,最终预测的各时段、各节点的水位值。