方格网法[1]
- 格式:doc
- 大小:105.00 KB
- 文档页数:3
方格网计算土方量原理方格网法是一种用于测量土地表面不规则形状的土方量的方法。
它是一种简单而有效的方法,可以帮助工程师和土木工程师快速准确地计算土地表面的土方量。
接下来,我们将介绍方格网法的原理和计算步骤。
方格网法的原理是将土地表面划分为一个个小方格,并通过对每个小方格的测量来计算土方量。
首先,需要在土地表面建立一个方格网,网格的大小可以根据实际情况来确定,一般情况下,网格大小为1米×1米或2米×2米。
然后,对每个小方格的高程进行测量,可以使用全站仪或其他测量仪器来进行高程测量。
通过对每个小方格的高程测量,可以得到土地表面的高程数据。
在进行高程测量之后,需要对每个小方格的面积进行测量。
可以通过测量每个小方格的边长来计算出每个小方格的面积。
在测量完所有小方格的高程和面积之后,就可以利用这些数据来计算土方量了。
土方量的计算公式为,土方量 = Σ(高程差×面积)。
其中,Σ表示对所有小方格进行求和,高程差表示每个小方格的最大高程和最小高程之差,面积表示每个小方格的面积。
通过对所有小方格的高程差和面积进行求和,就可以得到土地表面的土方量。
在实际应用中,方格网法可以帮助工程师和土木工程师快速准确地计算土地表面的土方量,特别是对于不规则形状的土地表面,方格网法可以更加方便地进行土方量的计算。
通过合理设置方格网的大小和密度,可以得到更加精确的土方量计算结果。
总之,方格网法是一种简单而有效的土方量计算方法,通过对土地表面进行方格划分和测量,可以快速准确地得到土方量的计算结果。
在工程实践中,方格网法可以帮助工程师和土木工程师更加方便地进行土方量的计算,为工程设计和施工提供重要的参考依据。
方格网法常用方格网计算公式横截面计算步骤及方法1.方格网法方格网计算步骤及方法图示计算步骤方法适用范围1.划方格网根据地形图划分方格网,尽量使其与测量或施工坐标网重合,方格一般采用20m×20m~40m×40m,将相应设计标高和自然地面标高分别标注在方格点的右上角和右下角,求出各点的施工高度(挖或填),填在方格网左上角,挖方为(+),填方为(-)。
2.计算零点位置计算确定方格网中两端角点施工高度符号不同的方格边上零点位置,标于方格网上,联接零点,即得填方与挖方区的分界线。
零点的位置按下式计算,见图(a):;式中、——角点至零点的距离 m;、——相邻两角点的高程 m,均用绝对值;a——方格网的边长 m。
零点亦可采用图解法求出,如图(b)用尺在各角上标出相应比例,用尺相接,与方格相交点即为零点位置。
3.计算土方工程量按方格网底面图形和下表体积计算公式,计算每个方格内的挖方或填方量。
4.汇总分别将挖方区和填方区所有方格计算土方量汇总,即得该建筑场地挖方区和填方区的总土方量。
适于地形较平缓或台阶宽度较大的地段采用计算方法较为复杂,但作为平整场地土方量计算,精度较高。
2. 常用方格网计算公式项目图示计算公式一点填方或挖方(三角形)当时,二点填方或挖方(梯形)三点填方或挖方(五角形)四点填方或挖方(正方形)注:1)a——方格网的边长,m;b、c——零点到一角的边长,m;h1,h2,h3,h4——方格网四角点的施工高程,m,用绝对值代入;Σh——填方或挖方施工高程的总和 ,m,用绝对值代入;——挖方或填方体积,m。
2)本表公式是按各计算图形底面积乘以平均施工高程而得出的。
3. 横截面计算步骤及方法图示计算步骤方法适用范围1.划分横截面根据地形图、竖向布置图或现场检测,将要计算的场地划分为若干个横截面; ; ……,使截面尽量垂直等高线或建筑物边长;截面间距可不等,一般取10 m或20 m,但最大不大于100 m.2.划横截面按比例绘制每个横截面的自然地面和设计地面的轮廓线。
方格网法:方格网法是把平整场地的设计工作与土方量计算工作结合在一起进行的。
方格网法的具体工作程序为:在附有等高线的施工现场地形图上作方格网控制施工场地,依据设计意图,如地面形状、坡向、坡度值等。
确定各角点的设断面法:是以一组等距(或不等距)的相互平行的截面将拟计算的地块、地形单体(如山、溪涧、池、岛等)和土方工程(如堤、沟渠、路堑、路槽等)分截成"段",分别计算这些"段"的体积,再将各段体积累加,以求得该计算对象的总土方量。
交叉口的立面设计有三种方法:方格网法、设计等高线法和方格网设计等高线法三种。
方格网法是在交叉口的设计范围内,以相交道路的中心线为坐标基线打方格网,方格网线一般用5×5米或10×10米平行于路中线,斜交道路应选便于施工放线的测量的方向,测出方格网上的地面高程并求出其设计标高,从而算出施工高度。
设计等高线法是在交叉口的设计范围内,选定路脊线和划分标高计算网,算出路脊线和标高计算线上的各点的设计标高,最后勾画出设计等高线。
并算出各点的施工高度。
设计等高线法的主要优点是比方格网法能更加清晰地反映出交叉口的设计地形,其缺点是设计等高线上的各点不易放样。
通常是两种方法结合使用,取长补短1.方格网法方格网计算步骤及方法2. 常用方格网计算公式当注:1)a——方格网的边长,m;b、c——零点到一角的边长,m;h1,h2,h3,h4——方格网四角点的施工高程,m,用绝对值代入;Σh——填方或挖方施工高程的总和 ,m,用绝对值代入;——挖方或填方体积,m。
2)本表公式是按各计算图形底面积乘以平均施工高程而得出的。
3. 横截面计算步骤及方法常用横截面计算公式土方量汇总表边坡土方计算步骤及方法边坡土方计算K D、K V值表。
全面方格网计算土方量教材及例题[1]-2一、读识方格网图方格网图由设计单位(一般在1:500的地形图上)将场地划分为边长a=10~40m的若干方格,与测量的纵横坐标相对应,在各方格角点规定的位置上标注角点的自然地面标高(H)和设计标高(Hn),如图1-3所示.图1-3 方格网法计算土方工程量图二、场地平整土方计算考虑的因素:① 满足生产工艺和运输的要求;② 尽量利用地形,减少挖填方数量;③争取在场区内挖填平衡,降低运输费;④有一定泄水坡度,满足排水要求.⑤场地设计标高一般在设计文件上规定,如无规定:A.小型场地――挖填平衡法;B.大型场地――最佳平面设计法(用最小二乘法,使挖填平衡且总土方量最小)。
1、初步标高(按挖填平衡),也就是设计标高。
如果已知设计标高,1.2步可跳过。
场地初步标高:H0=(∑H1+2∑H2+3∑H3+4∑H4)/4MH1--一个方格所仅有角点的标高;H2、H3、H4--分别为两个、三个、四个方格共用角点的标高.M——方格个数.2、地设计标高的调整按泄水坡度、土的可松性、就近借弃土等调整.按泄水坡度调整各角点设计标高:①单向排水时,各方格角点设计标高为: Hn = H0 ±Li②双向排水时,各方格角点设计标高为:Hn = H0± Lx ix± L yi y3.计算场地各个角点的施工高度施工高度为角点设计地面标高与自然地面标高之差,是以角点设计标高为基准的挖方或填方的施工高度.各方格角点的施工高度按下式计算:式中hn------角点施工高度即填挖高度(以“+”为填,“-”为挖),m;n------方格的角点编号(自然数列1,2,3,…,n).Hn------角点设计高程,H------角点原地面高程.4.计算“零点”位置,确定零线方格边线一端施工高程为“+”,若另一端为“-”,则沿其边线必然有一不挖不填的点,即“零点”(如图1-4所示).图1-4 零点位置零点位置按下式计算:式中x1、x2 ——角点至零点的距离,m;h1、h2 ——相邻两角点的施工高度(均用绝对值),m;a —方格网的边长,m.5.计算方格土方工程量按方格底面积图形和表1-3所列计算公式,逐格计算每个方格内的挖方量或填方量.表1-3 常用方格网点计算公式6.边坡土方量计算场地的挖方区和填方区的边沿都需要做成边坡,以保证挖方土壁和填方区的稳定。
11.2.1方格网法土方计算
方格网法土方计算适用于地形变化比较平缓的地形情况,用于计算场地平整的土方量计算较为精确。
具体做法如下:
首先建立地形的坐标方格网,方格网的一边与地形等高线或场地坐标网平行,大小根据地形变化的复杂程序和设计要求的精度确定,边长一般常采用20m ×20m或40m×40m(地形平坦、机械化施工时也可采用100m×100m)。
然后求出方格各个角点的自然标高、设计标高以及施工高程。
计算零点位置,在每相邻的填方点和挖方点之间总存在一个零点,零点的确定方法如下:
说明:
X t:零点据填方角顶的距离;X w:零点据挖方角顶的距离
h t:填方高度;h w:挖方高度;a:方格边长
连接每个方格上的相邻两个零点,根据零线将方格划分的情况,采用相应公式来计算,如表11-2所示。
汇总,分别将填方区、挖方区所有土方汇总,得到填、挖土方总量。
说明:
a:方格边长(m)
h1、h2、h3、h4:方格网角点的施工高度,正值代表填方,负值代表挖方V+、V-:填方(或挖方)的体积(m3)。
方格网法。
将场地划分为边长10—40m的正方形方格网,通常以20m居多。
再将场地设计标高和自然地面标高分别标注在方格角上,场地设计标高与自然地面标高的差值即为各角点的施工高度(挖或填),习惯以“+”号表示填方,“-”表示挖方。
将施工高度标注于角点上,然后分别计算每一方格地填挖土方量,并算出场地边坡的土方量。
将挖方区(或填方区)所有方格计算的土方量和边坡土方量汇总,即得场地挖方量和填方量的总土方量。
为了解整个场地的挖填区域分布状态,计算前应先确定“零线”的位置。
零线即挖方区与填方区的分界线,在该线上的施工高度为零。
零线的确定方法是:在相邻角点施工高度为一挖一填的方格边线上,用插入法求出零点的位置,将各相邻的零点连接起来即为零线。
零线确定后,便可进行土方量计算。
方格中土方时的计算有两种方法,即四角棱柱体和三角棱柱体法。
①四角棱柱的体积计算方法。
方格四个角点全部为填或全部为挖,其挖方或填方体积为:V=a2(h1+h2+h3+h4)/4式中:h1、h2、h3、h4—方格四然点挖或填的施工高度,均取绝对值,m;a—方格边长。
方格四个角点中,部分是挖方、部分是填方时,其挖方或填方体积分别为:V1、2=a2/4×[h12/(h1+h4)+h22/(h2+h3)]V3、4=a2/4×[h32/(h2+h3)+h42/(h1+h4)]方格中三个角点为挖方(或填方)另一角点为填方时(或挖方)时,其填方部分的土方量为:V4=a2h43/6(h1+h4)(h3+h4)其挖方部分土方量为:V1、2、3=a2(2h1+h2+2h3-h4)/6+V4②三角棱柱体的体积计算方法。
计算时先顺地形等高线将各个方格划分成三角形,每个三角形三个角点的填挖施工高度用h1、h2、h3表示。
当三角形三个角点全部为挖或全部为填时,其挖填方体积为:V=a2(h1+h2+h3)/6式中:a—方格边长,m;h1、h2、h3—三角形各角点的施工高度,用绝对值代入,m。
方格网法常用方格网计算公式横截面计算步骤及方法1.方格网法方格网计算步骤及方法图示计算步骤方法适用范围1.划方格网根据地形图划分方格网,尽量使其与测量或施工坐标网重合,方格一般采用20m×20m~40m×40m,将相应设计标高和自然地面标高分别标注在方格点的右上角和右下角,求出各点的施工高度(挖或填),填在方格网左上角,挖方为(+),填方为(-)。
2.计算零点位置计算确定方格网中两端角点施工高度符号不同的方格边上零点位置,标于方格网上,联接零点,即得填方与挖方区的分界线。
零点的位置按下式计算,见图(a):;式中、——角点至零点的距离 m;、——相邻两角点的高程 m,均用绝对值;a——方格网的边长 m。
零点亦可采用图解法求出,如图(b)用尺在各角上标出相应比例,用尺相接,与方格相交点即为零点位置。
3.计算土方工程量按方格网底面图形和下表体积计算公式,计算每个方格内的挖方或填方量。
4.汇总分别将挖方区和填方区所有方格计算土方量汇总,即得该建筑场地挖方区和填方区的总土方量。
适于地形较平缓或台阶宽度较大的地段采用计算方法较为复杂,但作为平整场地土方量计算,精度较高。
2. 常用方格网计算公式项目图示计算公式一点填方或挖方(三角形)当时,二点填方或挖方(梯形)三点填方或挖方(五角形)四点填方或挖方(正方形)注:1)a——方格网的边长,m;b、c——零点到一角的边长,m;h1,h2,h3,h4——方格网四角点的施工高程,m,用绝对值代入;Σh——填方或挖方施工高程的总和 ,m,用绝对值代入;——挖方或填方体积,m。
2)本表公式是按各计算图形底面积乘以平均施工高程而得出的。
3. 横截面计算步骤及方法图示计算步骤方法适用范围1.划分横截面根据地形图、竖向布置图或现场检测,将要计算的场地划分为若干个横截面; ; ……,使截面尽量垂直等高线或建筑物边长;截面间距可不等,一般取10 m或20 m,但最大不大于100 m.2.划横截面按比例绘制每个横截面的自然地面和设计地面的轮廓线。
补充:方格网法计算土方工程量在进行土方工程量计算之前,将绘有等高线的现场地形图,分为若干数量的方格(或根据测绘的方格网图),然后按设计高程和自然高程,求出挖填高程,进行土方量的计算。
适用于地形平缓或台阶宽度较大的地段采用。
其计算步骤为:1、方格的划分常用的方法是在1/500的地形图上,以20×20或40×40m 划分成若干个方格,将设计标高和地面标高分别标在方格点的右上角和右下角,将自然地面标高与设计地面标高的差值,即各角点的施工高度(挖或填),填在方格网的左上角,挖方为(+)填方为(-)。
2、计算零点位置:在一个方格网内同时有填方或挖方时,要先算出方格边的零点位置,并标注于方格网上,连按零点就得零线,它是填方区与挖方区的分界线。
零点的位置按下式计算:a h h h ⨯+=2111χ a h h h ⨯+=2122χ 式中、—角点至零点的距离(m )、—相邻两角点的施工高度(m )均用绝对值—方格网的边长(m )在实际工作中,为省略计算,常采用图解法直接求出零点。
方法是用尺在各角上标出相应比例,用尺相连,与方格相交点即为零点位置。
3、计算土方工程量按方格网底面积图形和表7-10所列公式计算每个方格法内的挖方或填方量或用查表法计算。
4、计算土方总量将挖方区(或填方区)所有方格计算土方量汇总,即得到该场地挖方和填方的总土方量。
例:某建筑场地方格网的一部分如图所示,方格边长为20×20m ,试用公式法计算挖填土方总量。
解:(1)划分方格网计算方格各点的施工高度(2)计算零点位置:从图7-3(b )中知,8~13,9~14,14~15三条方格边两端的施工高度符号不同,说明在此方格边上有零点存在。
a h h h ⨯+=2111χ 8-13线)(6.72026.016.016.01m =⨯+=χ9-14线)(0.112021.026.026.01m =⨯+=χ 14-15线)(2.162005.021.021.01m =⨯+=χ 将各零点标于图上,并将零点线连接起来。
1 方格网法计算特点方格网法简便直观、易于掌握、通用性强、适用面广,但美中不足的是复杂地形的土方量计算精度相对不高,不及DTM法的精度。
方格网法是很多业主和单位很青睐的方法,因为可用笔或计算器直接进行复核。
南方CASS2008软件中方格网法计算的的设计面可以是平面或斜面,同时也可是多个坡(利用三角网文件完成)。
这样,可以满足不同情况下的土方计算,解决土方计算中的很多难题。
2 方格网法计算原理A.计算施工高程施工高程=原始地面高程-设计高程(h施=h原-h设)注:施工高程(高度)可以是正数也可是负数,正数为挖方高度,负数为填方高度。
B.计算零点位置在一个方格网内同时有填方或挖方时,要先算出方格网边上的零点位置,并标注在方格网上,连接零点的零线,即是填方区与挖方区的分界线(开挖线)。
则零点位置直接按照施工高程与方格网边长按下式计算,;式中、——角点至零点的距离(m);、——相邻两角点的施工高程(m),均用绝对值;a ——方格网的边长(m)。
C.土方计算公式一点填方或挖方(三角形)二点填方或挖方(梯形)三点填方或挖方(五角形)四点填方或挖方(正方形)注:1)a——方格网的边长(m);b、c——零点到一角的边长(m);h1,h2,h3,h4——方格网四角点的施工高程(m),用绝对值代入;Σh——填方或挖方施工高程的总和(m),用绝对值代入;——挖方或填方体积(m)。
2)表1公式是按各计算图形底面积乘以平均施工高程而得出的。
随着测绘事业的发展,计算机技术的进步,南方CASS2008软件在手工计算土方的理论基础上,开发出专门的土方计算功能,并且得到进一步的完善。
土方计算逐步由软件计算替代人工计算,利用人工计算最基本的原理或公式(如表1)在软件中得到进一步的应用。
方格网法中零点位置的计算公式与不同情况的挖(填)方的计算公式,在南方CASS2008软件中得到了很好的应用。
3 方格网法计算步骤由方格网来计算土方量是根据实地测定的地面点坐标(X,Y,Z)和设计高程,通过生成方格网来计算每一个方格内的填挖方量,最后累计得到指定范围内填方和挖方的土方量,并绘出填挖方分界线。
方格网法是将基地化分为若干个方格,根据自然地面与设计地面的高差,计算挖方和填方的体积,分别汇总即为土方量。
该方法一般适用于平坦场地。
设计时要求填方和挖方基本相等,即要求土方就地平衡,平整前后这块土体的体积是相等的。
对于一块表面上崎岖不平的土体,经整平后使其表面成为平面。
设平整前的土方体积为V :V=)(4)432(441243212∑∑∑∑∑∑=+++ijj j j j hPi a h h h h a式中:V ——土体自水准面起算自然地面下土体的体积; a ——方格边长(m );——方格网交点的权值,i=1表示角点,i=2表示边点,i=3表示凹点,i=4表示中间点,其权值分别为1,2,3,4。
h 1j h 2j h 3j h 4j ——各角点,边点,凹点,中间点的自然地面的标高(m 3)。
h ij ——各角点(或边点,凹点,中间点)的自然地面的标高(m 3)。
设方格坐标原点的设计标高为x ,则整平后土体的体积为:∑∑=412'))((4x f P a V i式中:——土体自水准面起算平整后土体的体积(m 3); x ——方格网坐标原点的设计标高(m ); a ——方格边长(m );m ,i ——X 轴方向的放个数与设计坡度(%),从原点起,上坡为证,下坡为负;n ,j ——Y 轴方向的放个数与设计坡度(%),从原点起,上坡为证,下坡为负;当土方平衡时,平整前后这块土体的体积是相等的,即'V V =∑∑41ijh Pi =∑∑41))((x f P i由于式中只有x 为未知数,所以可以求出来,从而求出方格网各个交叉点的设计标高。
由此求出的设计地面标高,能使填方量和挖方量基本平衡。
2.布置方格网在绘有地形的平面图上布置方格网,使其一边与用地长轴方向平行。
边长采用20m*20m 。
将方格网交叉点编上顺序号,填在其左下方。
详细布置见附件。
3.确定自然地面标高从地形图上求出自然地面标高,根据等高线数值,利用内插法求出各方格交叉点的自然地面标高,填在方格交叉点的右下方。
【例】厂房场地平整,部分方格网如图所示,方格边长为20m×20m,试计算挖填总土方工程量。
方格网法计算土方量
(a)方格角点标高、方格编号、角点编号图;(b)零线、角点挖、填高度图
(图中I、II、III等为方格编号;1、2、3等为角点号)
常用方格网点计算公式
注:1.a ——方格网的边长(m );b 、c ——零点到一角的边长(m );h 1、h 2、h 3、h 4——方格网四角点的施工高程(m ),用绝对值代入;Σh ——填方或挖方施工高程的总和(m ),用绝对值代入;V ——挖方或填方体积(m 3)。
2.本表公式是按各计算图形底面积乘以平均施工高程而得出的。
[解] ①划分方格网、标注高程。
根据图(a)方格各点的设计标高和自然地面标高,计算方格各点的施工高度,标注于图(b)中各点的左角上。
②计算零点位置。
从图(b)中可看出1~2、2~7、3~8三条方格边两端角的施工高度符号不同,表明此方格边上有零点存在,由公式:
1~2线 13
.010.02013.01+⨯=
x =11.30(m ) 2~7线 13
.041.02013.01+⨯=x =4.81(m ) 3~8线 15.021.02015.01+⨯=x =8.33(m ) 将各零点标注于图(b ),并将零点线连接起来。
③计算土方工程量 方格I 底面为三角形和五角形,由表中第1、3项公式:
三角形200土方量 81.430.116
13.0⨯⨯=
+V =1.18(m 3) 五角形16700土方量 )541.052.010.0()81.430.112120(2++⨯⨯⨯--=-V =-76.80(m 3)
方格II 底面为二个梯形,由表中第2项公式:
梯形2300土方量 V +=
8
20(4.81+8.33)(0.13+0.15)=9.20(m 3) 梯形7800土方量 V -=-820(15.19+11.67)(0.41+0.21)=-41.63(m 3) 方格III 底面为一个梯形和一个三角形,由表中第1、2项公式:
梯形3400土方量 V +=8
20(8.33+20)(0.15+0.12)=19.12(m 3)
④汇总全部土方工程量
全部挖方量 ΣV -=-76.80-41.63-8.17-147-164-115-21.33
=-573.93(m 3)
全部填方量 ΣV +=1.18+9.20+19.12+55.0+15.33=99.83(m 3)。