递归与分治法1
- 格式:ppt
- 大小:431.50 KB
- 文档页数:45
递归与分治算法心得
递归与分治算法都是常用的算法思想,可以很好地解决复杂问题。
递归算法是通过将问题分解为相同或相似的子问题来解决整个问题,然后再逐步合并回原问题的过程。
递归算法通常需要明确边界条件,以确保递归能够正确地停止。
分治算法是将问题分解成若干个相同或相似的子问题,递归地解决这些子问题,然后合并这些子问题的解来解决原始问题。
通常,分治算法可以高效地解决问题,但需要注意分解问题的方式和合并子问题的解的过程。
在实际应用中,递归和分治算法可以相互结合,以解决更加复杂的问题。
例如,可以使用分治算法来将问题分解成多个子问题,然后使用递归算法来解决这些子问题。
此外,还可以在递归算法中使用分治算法来对子问题进行分解和合并。
总而言之,递归与分治算法都是非常有用的算法思想,可以在许多领域中得到应用。
但是,在实际使用时,需要仔细考虑问题的性质和算法的复杂度,以确保算法的正确性和效率。
- 1 -。
递归与分治算法心得
递归与分治算法是算法设计中常见的两种方法,它们在解决问题时都采用了“分而治之”的思想,将问题分解成更小的子问题,然后通过递归调用或者合并子问题的解来得到原问题的解。
通过我的学习和实践,我深刻认识到了递归与分治算法的重要性和优势。
首先,递归算法可以使问题的描述更加简单明了。
通过将问题转化为自身的子问题,我们可以建立起更为简洁优美的数学模型。
其次,递归算法可以使问题的解决过程更加自然。
在递归过程中,我们可以利用已知的子问题解决同类问题,实现代码的复用和模块化。
此外,递归算法还可以解决一些重要的数学问题,如斐波那契数列和二分查找等。
分治算法则更加注重问题的分解和合并。
它将问题划分成若干个规模相同或相近的子问题,然后将子问题的解合并起来得到原问题的解。
这种方法在解决某些复杂问题时具有很大的优势。
例如,在排序算法中,归并排序采用了分治算法的思想,将待排序的序列分成两个长度相等的子序列,然后递归地对子序列排序,最后将子序列合并成有序序列。
这种算法具有较高的稳定性和灵活性,常常被应用于海量数据的排序任务中。
总之,递归与分治算法是算法设计中不可或缺的两种方法。
在解决问题时,我们应该根据具体情况选择合适的算法,并在实践中不断探索、总结和优化。
只有这样,我们才能更好地应对日益复杂多变的计算机科学挑战。
递归和分治法摘要:1.递归和分治法的定义2.递归和分治法的区别3.递归和分治法的应用实例4.递归和分治法的优缺点正文:递归和分治法是计算机科学中常用的两种算法设计技巧。
它们在解决问题时都采用了将问题分解成更小子问题的思路,但在具体实现上却有所不同。
下面,我们来详细了解一下递归和分治法。
1.递归和分治法的定义递归法是指在算法中调用自身来解决问题的方法。
递归函数在执行过程中,会将原问题分解成规模更小的相似子问题,然后通过调用自身的方式,解决这些子问题,最后将子问题的解合并,得到原问题的解。
分治法是指将一个大问题分解成若干个规模较小的相似子问题,然后分别解决这些子问题,最后将子问题的解合并,得到原问题的解。
分治法在解决问题时,通常需要设计一个主函数(master function)和一个子函数(subfunction)。
主函数负责将问题分解,子函数负责解决子问题。
2.递归和分治法的区别递归法和分治法在解决问题时都采用了将问题分解成更小子问题的思路,但它们在实现上存在以下区别:(1)函数调用方式不同:递归法是通过调用自身来解决问题,而分治法是通过调用不同的子函数来解决问题。
(2)递归法必须有递归出口,即必须有一个基线条件,而分治法不一定需要。
3.递归和分治法的应用实例递归法应用广泛,例如斐波那契数列、汉诺塔问题、八皇后问题等。
分治法也有很多实际应用,例如快速排序、归并排序、大整数乘法等。
4.递归和分治法的优缺点递归法的优点是代码简单易懂,但缺点是容易产生大量的重复计算,导致时间复杂度较高。
分治法的优点是时间复杂度较低,但缺点是代码实现相对复杂,需要设计主函数和子函数。
总之,递归和分治法都是解决问题的有效方法,具体应用需要根据问题的特点来选择。
分治法和动态规划⼀.分治法 1.分治法的设计思路是,将⼀个难以直接解决的⼤问题,分割成⼀些规模⽐较⼩的相同的⼩问题,以便各个击破,分⽽治之。
2.分治法所能解决的问题的⼀般有以下的特征: (1)该问题的规模缩⼩到⼀定的程度就可以容易解决(绝⼤多数的问题都满⾜) (2)该问题是可以分解为若⼲个规模较⼩的相同的问题,即改问题具有最优⼦结构性质(前提,也是绝⼤多数的问题都满⾜的) (3)利⽤该问题分解出的字问题的解可以合并该问题(关键) (4)该问题分解出来的各个⼦问题是相互独⽴的(分治法的效率) (如果具备⼀⼆条,但不具备第三条,可以考虑使⽤贪⼼算法或动态规划) 3.分治法的基本步骤: (1)分解:将原问题分解为若⼲个规模较⼩、互相独⽴、与原问题形式相同的⼦问题。
(2)解决:若⼲问题规模较⼩⽽容易被解决则直接解,否则递归地解各个⼦问题 (3)合并:将各个⼦⽂题的解合并成原问题的解 (记住不是所有的分治法逗逼简单的蛮⼒法简单) 4.分治法的时间性能的与直接计算最⼩问题的时间、合并⼦⽂题解的时间以及⼦问题的个数有关: c n=1T(n)= aT(n/b)+cn^k n>1(其中a,b.c.k都是常数。
这个递推描述了⼤⼩为n的原问题分解为若⼲⼤⼩为n/b的⼦问题,其中a个⼦问题需求求解,⽽cn^k是合并各个⼦问题的解所需要的⼯作量) 当⼦问题的规模之和⼩于原问题的规模时,算法的时间复杂度可达到0(n).⼆.动态规划1.简单的说就是在解决多阶决策的过程中动态的选择最优的过程的⽅法就是动态规划。
2.与分治法的区别:⼀般来说⼦问题不是互相独⽴的,可以理解为是分治法的⼀种改进,不需要求解已有解的⼦问题(已有解的⼦问题⽤表来记录)3.适⽤条件:(1)最优化原理(最优⼦结构):⼀个最优策略的⼦策略总是最优的---->局部最优,整体最优(2)⽆后效性:每个状态都是过去历史的⼀个完整的总结(3)⼦问题的重叠性:⾼效性(最优⼦结构:当问题的最优解包含其⼦问题的最优解时,称该问题具有最有⼦结构;重叠⼦问题是⼀个递归解决⽅案⾥包含的⼦问题虽然很多,但不同⼦问题很少。
算法设计与分析:递归与分治法-实验报告(总8页)实验目的:掌握递归与分治法的基本思想和应用,学会设计和实现递归算法和分治算法,能够分析和评价算法的时间复杂度和空间复杂度。
实验内容:1.递归算法的设计与实现3.算法的时间复杂度和空间复杂度分析实验步骤:1)递归定义:一个函数或过程,在其定义或实现中,直接或间接地调用自身的方法,被成为递归。
递归算法是一种控制结构,它包含了解决问题的基础情境,也包含了递归处理的情境。
2)递归特点:递归算法具有以下特点:①依赖于递归问题的部分解被划分为若干较小的部分。
②问题的规模可以通过递推式递减,最终递归终止。
③当问题的规模足够小时,可以直接求解。
3)递归实现步骤:①确定函数的定义②确定递归终止条件③确定递归调用的过程4)经典实例:斐波那契数列递推式:f(n) = f(n-1) + f(n-2)int fib(int n) {if (n <= 0)return 0;else}5)优化递归算法:避免重复计算例如,上述斐波那契数列的递归算法会重复计算一些中间结果,影响效率。
可以使用动态规划技术,将算法改为非递归形式。
int f1 = 0, f2 = 1;for (int i = 2; i <= n; i++) {f1 = f2;使用循环避免递归,重复计算可以大大减少,提高效率。
1)分治算法的定义:将原问题分解成若干个规模较小且类似的子问题,递归求解子问题,然后合并各子问题得到原问题的解。
2)分治算法流程:②将问题分解成若干个规模较小的子问题。
③递归地解决各子问题。
④将各子问题的解合并成原问题的解。
3)分治算法实例:归并排序归并排序是一种基于分治思想的经典排序算法。
排序流程:②分别对各子数组递归进行归并排序。
③将已经排序好的各子数组合并成最终的排序结果。
实现源代码:void mergeSort(int* arr, int left, int right) {if (left >= right)while (i <= mid && j <= right)temp[k++] = arr[i] < arr[j] ? arr[i++] : arr[j++];temp[k++] = arr[i++];1) 时间复杂度的概念:指完成算法所需的计算次数或操作次数。
算法分析(第二章):递归与分治法一、递归的概念知识再现:等比数列求和公式:1、定义:直接或间接地调用自身的算法称为递归算法。
用函数自身给出定义的函数称为递归函数。
2、与分治法的关系:由分治法产生的子问题往往是原问题的较小模式,这就为使用递归技术提供了方便。
在这种情况下,反复应用分治手段,可以使子问题与原问题类型一致而其规模却不断缩小,最终使子问题缩小到很容易直接求出其解。
这自然导致递归过程的产生。
分治与递归经常同时应用在算法设计之中,并由此产生许多高效算法。
3、递推方程:(1)定义:设序列01,....na a a简记为{na},把n a与某些个()ia i n<联系起来的等式叫做关于该序列的递推方程。
(2)求解:给定关于序列{n a}的递推方程和若干初值,计算n a。
4、应用:阶乘函数、Fibonacci数列、Hanoi塔问题、插入排序5、优缺点:优点:结构清晰,可读性强,而且容易用数学归纳法来证明算法的正确性,因此它为设计算法、调试程序带来很大方便。
缺点:递归算法的运行效率较低,无论是耗费的计算时间还是占用的存储空间都比非递归算法要多。
二、递归算法改进:1、迭代法:(1)不断用递推方程的右部替代左部(2)每一次替换,随着n的降低在和式中多出一项(3)直到出现初值以后停止迭代(4)将初值代入并对和式求和(5)可用数学归纳法验证解的正确性2、举例:-----------Hanoi塔算法----------- ---------------插入排序算法----------- ()2(1)1(1)1T n T nT=−+=()(1)1W n W n nW=−+−(1)=021n-23()2(1)12[2(2)1]12(2)21...2++2 (121)n n n T n T n T n T n T −−=−+=−++=−++==++=−(1)2 ()(1)1((n-2)+11)1(2)(2)(1)...(1)12...(2)(1)(1)/2W n W n n W n n W n n n W n n n n =−+−=−−+−=−+−+−==++++−+−=−3、换元迭代:(1)将对n 的递推式换成对其他变元k 的递推式 (2)对k 进行迭代(3)将解(关于k 的函数)转换成关于n 的函数4、举例:---------------二分归并排序---------------()2(/2)1W n W n n W =+−(1)=0(1)换元:假设2kn =,递推方程如下()2(/2)1W n W n n W =+−(1)=0 → 1(2)2(2)21k k k W W W−=+−(0)=0(2)迭代求解:12122222321332133212()2(2)212(2(2)21)212(2)22212(2)2*2212(2(2)21)2212(2)222212(2)3*2221...2(0)*2(22...21)22k k k k k k k k k k k k k k k k k k k k k k k k W n W W W W W W W W k k −−−−−−−+−+−−−=+−=+−+−=+−+−=+−−=+−+−−=+−+−−=+−−−==+−++++=−1log 1n n n +=−+(3)解的正确性—归纳验证: 证明递推方程的解是()(1)/2W n n n =−()(1)1W n W n n W =−+−(1)=0,(n 1)=n +n=n(n-1)/2+n =n[(n-1)/2+1]=n(n+1)/2n W W +方法:数学归纳法证 n=1,W(1)=1*(1-1)/2=0假设对于解满足方程,则()---------------快速排序--------------------->>>平均工作量:假设首元素排好序在每个位置是等概率的112()()()(1)0n i T n T i O n n T −==+=∑ >>>对于高阶方程应该先化简,然后迭代(1)差消化简:利用两个方程相减,将右边的项尽可能消去,以达到降阶的目的。
分治法的步骤分治法是一种常见的算法设计策略,它将问题分解成更小的子问题,然后递归地解决每个子问题,最后将这些子问题的解合并起来得到原问题的解。
下面将详细介绍分治法的步骤。
一、分治法的定义和基本思想分治法是一种算法设计策略,它将一个大问题分解成若干个相互独立且结构相同的小问题,递归地求解这些小问题,并将它们的结果组合起来得到原问题的解。
在实际应用中,分治法通常用于处理那些具有重复性质或者可以通过递归实现的计算任务。
二、分治法的步骤1. 分解:首先将原问题划分为若干个规模较小、结构相似且独立的子问题。
这个过程通常称为“分解”(divide)。
2. 解决:对每个子问题进行递归求解。
如果子问题足够小而可以直接求解,则直接求解。
这个过程通常称为“解决”(conquer)。
3. 合并:将所有子问题的结果合并成原问题的结果。
这个过程通常称为“合并”(combine)。
三、应用场景1. 排序算法:例如归并排序、快速排序等。
2. 查找算法:例如二分查找。
3. 图论算法:例如最大子数组、矩阵乘法、汉诺塔等。
四、分治法的优缺点1. 优点:分治法可以有效地解决一些具有重复性质或者可以通过递归实现的计算任务,具有较高的效率和可扩展性。
2. 缺点:分治法需要额外的空间来存储子问题的结果,而且在递归过程中可能会出现栈溢出等问题,需要进行合理的优化。
同时,如果分解得不够合理或者子问题之间存在依赖关系,则可能会导致算法效率下降。
五、总结分治法是一种常见的算法设计策略,它将一个大问题划分为若干个规模较小、结构相似且独立的子问题,并递归地求解这些子问题。
在实际应用中,分治法通常用于处理那些具有重复性质或者可以通过递归实现的计算任务。
虽然分治法具有较高的效率和可扩展性,但也存在额外空间开销和栈溢出等问题,需要进行合理优化。
一、概述1.介绍矩阵乘法的概念和意义2.引出递归与分治法在矩阵乘法中的应用二、传统矩阵乘法算法1.介绍传统的矩阵乘法算法原理2.分析传统算法的时间复杂度和空间复杂度3.讨论传统算法在大规模矩阵计算中的局限性三、Strassen矩阵乘法算法原理1.介绍Strassen算法的基本思想和原理2.引出递归与分治法在Strassen算法中的运用3.分析Strassen算法的时间复杂度和空间复杂度四、递归与分治法在Strassen算法中的运用1.详细解释递归与分治法在Strassen算法中的具体应用过程2.分析递归与分治法对算法性能的影响3.讨论递归与分治法在其他算法中的推广应用五、实例分析1.通过具体实例演示Strassen算法和传统算法的计算过程2.对比分析两种算法的计算效率和精度3.总结实例分析结果,展示递归与分治法在Strassen算法中的优势六、改进和优化1.讨论现有Strassen算法的局限性和不足2.提出改进和优化的方案,探讨递归与分治法在算法优化中的作用3.展望递归与分治法在矩阵计算领域的未来发展方向七、结论1.总结文中讨论的内容,强调递归与分治法在Strassen算法中的重要性和价值2.展望递归与分治法在矩阵计算领域的广阔应用前景3.对读者提出建议,鼓励更多的研究者投身于这一领域的研究和探索。
六、改进和优化1. Strassen算法的局限性和不足尽管Strassen算法在理论上具有较低的时间复杂度,但实际应用中也存在一些局限性和不足。
Strassen算法中涉及到的矩阵分块操作会引入额外的运算开销和存储开销,使得在小规模矩阵计算中,并不能体现出明显的优势。
Strassen算法要求矩阵的维度必须为2的幂次方,而实际场景中的矩阵往往难以满足这一条件,限制了算法的适用范围。
另外,由于Strassen算法引入了额外的递归调用,对于小规模矩阵,递归调用会使得算法的性能反而不如传统的矩阵乘法算法。
2. 改进和优化的方案针对Strassen算法的局限性和不足,可以考虑一些改进和优化的方案。