递归与分治
- 格式:doc
- 大小:89.50 KB
- 文档页数:16
递归算法得优缺点:3优点:结构清晰,可读性强,而且容易用数学归纳法来证明算法得正确性,因此它为设计算法、调试程序带来很大方便。
3缺点:递归算法得运行效率较低,无论就是耗费得计算时间还就是占用得存储空间都比非递归算法要多。
边界条件与递归方程就是递归函数得二个要素应用分治法得两个前提就是问题得可分性与解得可归并性以比较为基础得排序算法得最坏倩况时间复杂性下界为0(n I o g2n)。
回溯法以深度优先得方式搜索解空间树T,而分支限界法则以广度优先或以最小耗费优先得方式搜索解空间树T。
舍伍德算法设计得基本思想:设A就是一个确定性算法,当它得输入实例为x时所需得计算时间记为tA(x)。
设Xn就是算法A得输入规模为n得实例得全体,则当问题得输入规模为n时,算法A所需得平均时间为这显然不能排除存在x€Xn使得得可能性。
希望获得一个随机化算法B,使得对问题得输入规模为n得每一个实例均有拉斯维加斯(Las Vegas )算法得基本思想:设p(x)就是对输入x调用拉斯维加斯算法获得问题得一个解得概率。
一个正确得拉斯维加斯算法应该对所有输入x均有p(x)>0。
设t(x)就是算法obst in ate找到具体实例x得一个解所需得平均时间,s(x)与e(x)分别就是算法对于具体实例x求解成功或求解失败所需得平均时间,则有:解此方程可得:蒙特卡罗(Monte Carlo)算法得基本思想:设p就是一个实数,且1/2<p<1。
如果一个蒙特卡罗算法对于问题得任一实例得到正确解得概率不小于p,则称该蒙特卡罗算法就是p正确得,且称p1/2就是该算法得优势。
如果对于同一实例,蒙特卡罗算法不会给出2个不同得正确解答,则称该蒙特卡罗算法就是一致得。
线性规划基本定理:如果线性规划问题有最优解,则必有一基本可行最优解。
单纯形算法得特点就是:(1) 只对约束条件得若干组合进行测试,测试得每一步都使目标函数得值增加;(2) 一般经过不大于m或n次迭代就可求得最优解。
分治算法知识点总结一、基本概念分治算法是一种递归的算法,其基本思想就是将原问题分解成多个相互独立的子问题,然后分别解决这些子问题,最后将子问题的解合并得到原问题的解。
分治算法的核心思想可以用一句话概括:分而治之,分即是将原问题分解成若干个规模较小的子问题,治即是解决这些子问题,然后将子问题的解合并起来得到原问题的解。
分治算法通常包括三个步骤:(1)分解:将原问题分解成若干个规模较小的子问题;(2)解决:递归地解决这些子问题;(3)合并:将子问题的解合并起来得到原问题的解。
分治算法的典型特征包括递归和合并。
递归指的是将原问题分解成若干个规模较小的子问题,然后递归地解决这些子问题;合并指的是将子问题的解合并得到原问题的解。
通常来说,分治算法的递归实现方式很容易编写,但有时可能会面临大量的重复计算,因此需要合并操作来避免这种情况。
二、原理分治算法的原理可以通过一个简单的例子来说明。
我们以计算数组中的最大值为例,具体的步骤如下:(1)分解:将数组分解成两个规模相等的子数组;(2)解决:递归地在这两个子数组中分别找到最大值;(3)合并:比较这两个子数组的最大值,得到原数组的最大值。
从这个例子可以看出,分治算法将原问题分解成两个子问题:分别在左边子数组和右边子数组中找到最大值,然后将这两个子问题的解合并起来得到原数组的最大值。
这种将问题分解成若干个规模较小的子问题,然后合并子问题的解得到原问题的解的方法正是分治算法的核心原理。
分治算法的优势在于它可以将原问题分解成多个规模较小的子问题,然后并行地解决这些子问题,最后合并子问题的解得到原问题的解。
这种并行的设计思路使得分治算法非常适合于并行计算,能够有效地提高计算效率。
三、应用分治算法在计算机科学领域有着广泛的应用,包括排序、搜索、图论、动态规划等多个方面。
下面我们将以排序算法和搜索算法为例,来介绍分治算法在实际应用中的具体情况。
1. 排序算法排序算法是计算机科学领域中一个重要的问题,分治算法在排序算法中有着广泛的应用。
常见的程序设计方法程序设计是指将问题拆解为一系列可执行的指令或算法,并将其转化为计算机能够识别和执行的代码。
常见的程序设计方法包括顺序、选择、循环、递归、分治和动态规划等。
1.顺序:顺序是最简单和最常见的程序设计方法。
顺序程序设计是按照定义的顺序依次执行一系列的语句或指令,每个语句按照顺序执行,直到程序结束。
顺序程序设计常用于简单的计算和数据处理任务。
2.选择:选择是根据特定条件选择不同的执行路径。
常见的选择结构有if语句和switch语句。
if语句根据条件的真假执行不同的代码块,而switch语句根据不同的表达式值执行相应的代码块。
选择结构常用于根据用户的输入或条件的满足来决定程序的执行逻辑。
3.循环:循环是根据特定条件重复执行段代码。
常见的循环结构有while循环、do-while循环和for循环。
这些循环结构可根据循环条件的真假来确定循环的执行次数,从而实现重复执行特定操作的功能。
循环结构常用于处理大量数据或重复需要进行的任务。
4.递归:递归是指在函数或算法的实现中,调用自身来解决更小规模的同类问题。
递归算法是将一个复杂问题分解为更简单的子问题,并通过反复调用自身来解决子问题,最终达到解决原问题的目的。
递归常用于解决具有相似结构的问题,如数学问题、图形问题等。
5.分治:分治是指将问题划分成独立的子问题,对每个子问题进行求解,最后将子问题的解合并成原问题的解。
分治算法的核心思想是将复杂问题分解成多个规模较小且结构相同的子问题,并通过递归地解决这些子问题,最终得到整个问题的解。
分治算法常用于解决问题、排序问题等。
6.动态规划:动态规划是一种将问题划分为重叠子问题并缓存子问题解的方法。
与分治算法不同的是,动态规划算法会通过缓存已求解的子问题的解来避免重复计算,从而提高算法的效率。
动态规划常用于解决优化问题,如背包问题、最短路径问题等。
除以上常见的程序设计方法外,还有一些高级的方法如面向对象编程、函数式编程和事件驱动编程等。
计算机算法设计五⼤常⽤算法的分析及实例摘要算法(Algorithm)是指解题⽅案的准确⽽完整的描述,是⼀系列解决问题的清晰指令,算法代表着⽤系统的⽅法描述解决问题的策略机制。
也就是说,能够对⼀定规范的输⼊,在有限时间内获得所要求的输出。
如果⼀个算法有缺陷,或不适合于某个问题,执⾏这个算法将不会解决这个问题。
不同的算法可能⽤不同的时间、空间或效率来完成同样的任务。
其中最常见的五中基本算法是递归与分治法、动态规划、贪⼼算法、回溯法、分⽀限界法。
本⽂通过这种算法的分析以及实例的讲解,让读者对算法有更深刻的认识,同时对这五种算法有更清楚认识关键词:算法,递归与分治法、动态规划、贪⼼算法、回溯法、分⽀限界法AbstractAlgorithm is the description to the problem solving scheme ,a set of clear instructions to solve the problem and represents the describe the strategy to solve the problem using the method of system mechanism . That is to say, given some confirm import,the Algorithm will find result In a limited time。
If an algorithm is defective or is not suitable for a certain job, it is invalid to execute it. Different algorithms have different need of time or space, and it's efficiency are different.There are most common algorithms: the recursive and divide and conquer、dynamic programming method、greedy algorithm、backtracking、branch and bound method.According to analyze the five algorithms and explain examples, make readers know more about algorithm , and understand the five algorithms more deeply.Keywords: Algorithm, the recursive and divide and conquer, dynamic programming method, greedy algorithm、backtracking, branch and bound method⽬录1. 前⾔ (4)1.1 论⽂背景 (4)2. 算法详解 (5)2.1 算法与程序 (5)2.2 表达算法的抽象机制 (5)2.3 算法复杂性分析 (5)3.五中常⽤算法的详解及实例 (6)3.1 递归与分治策略 (6)3.1.1 递归与分治策略基本思想 (6)3.1.2 实例——棋盘覆盖 (7)3.2 动态规划 (8)3.2.1 动态规划基本思想 (8)3.2.2 动态规划算法的基本步骤 (9)3.2.3 实例——矩阵连乘 (9)3.3 贪⼼算法 (11)3.3.1 贪⼼算法基本思想 (11)3.3.2 贪⼼算法和动态规划的区别 (12)3.3.3 ⽤贪⼼算法解背包问题的基本步骤: (12)3.4 回溯发 (13)3.4.1 回溯法基本思想 (13)3.3.2 回溯发解题基本步骤 (13)3.3.3 实例——0-1背包问题 (14)3.5 分⽀限界法 (15)3.5.1 分⽀限界法思想 (15)3.5.2 实例——装载问题 (16)总结 (18)参考⽂献 (18)1. 前⾔1.1 论⽂背景算法(Algorithm)是指解题⽅案的准确⽽完整的描述,是⼀系列解决问题的清晰指令,算法代表着⽤系统的⽅法描述解决问题的策略机制。
分治法的概念分治法的概念一、引言在计算机科学和数学领域中,分治法是一种重要的算法设计技术。
它将一个大问题划分成若干个小问题,然后递归地解决每个小问题,并将它们的结果组合起来得到原问题的解。
分治法通常用于解决那些具有重叠子问题和具有相对独立性的子问题的问题。
二、分治法的基本思想分治法是一种递归式算法,其基本思想可以概括为三个步骤:1. 分解:将原问题划分成若干个规模较小、相互独立且与原问题形式相同的子问题。
2. 解决:递归地求解每个子问题。
如果子问题足够小,则直接求解。
3. 合并:将所有子问题的解合并成原问题的解。
三、分治法应用举例1. 归并排序归并排序是一种经典的排序算法,它采用了分治策略。
该算法将待排序数组不断切割为两半,直到每个子数组只剩下一个元素为止。
然后,对这些单元素数组进行合并操作,直到最终得到完整有序数组。
2. 快速排序快速排序也是一种经典的排序算法,它同样采用了分治策略。
该算法选择一个基准元素,将数组中小于等于基准元素的元素放到左边,大于基准元素的元素放到右边。
然后递归地对左右子数组进行排序。
3. 棋盘覆盖问题棋盘覆盖问题是一道经典的计算机科学问题,它可以用分治法来解决。
该问题要求在一个大小为2^n x 2^n的棋盘上,用L型骨牌覆盖所有空格,其中每个L型骨牌占据三个格子且不能重叠。
该问题可以通过将棋盘划分为四个大小相等、形状相似的子棋盘,并递归地解决每个子棋盘来得到解决。
四、分治法的优缺点1. 优点:分治法通常具有高效性和可扩展性。
由于它将大问题划分成若干个小问题,并且每个小问题都可以独立地求解,因此可以很容易地将算法并行化以提高效率。
2. 缺点:分治法通常需要额外的空间来存储子问题和合并结果。
此外,在实践中,分治法的递归深度可能非常大,这可能会导致堆栈溢出等问题。
五、总结分治法是一种重要的算法设计技术,它将一个大问题划分成若干个小问题,并递归地解决每个小问题,最终将它们的结果组合起来得到原问题的解。
分治法的步骤分治法是一种常见的算法设计策略,它将问题分解成更小的子问题,然后递归地解决每个子问题,最后将这些子问题的解合并起来得到原问题的解。
下面将详细介绍分治法的步骤。
一、分治法的定义和基本思想分治法是一种算法设计策略,它将一个大问题分解成若干个相互独立且结构相同的小问题,递归地求解这些小问题,并将它们的结果组合起来得到原问题的解。
在实际应用中,分治法通常用于处理那些具有重复性质或者可以通过递归实现的计算任务。
二、分治法的步骤1. 分解:首先将原问题划分为若干个规模较小、结构相似且独立的子问题。
这个过程通常称为“分解”(divide)。
2. 解决:对每个子问题进行递归求解。
如果子问题足够小而可以直接求解,则直接求解。
这个过程通常称为“解决”(conquer)。
3. 合并:将所有子问题的结果合并成原问题的结果。
这个过程通常称为“合并”(combine)。
三、应用场景1. 排序算法:例如归并排序、快速排序等。
2. 查找算法:例如二分查找。
3. 图论算法:例如最大子数组、矩阵乘法、汉诺塔等。
四、分治法的优缺点1. 优点:分治法可以有效地解决一些具有重复性质或者可以通过递归实现的计算任务,具有较高的效率和可扩展性。
2. 缺点:分治法需要额外的空间来存储子问题的结果,而且在递归过程中可能会出现栈溢出等问题,需要进行合理的优化。
同时,如果分解得不够合理或者子问题之间存在依赖关系,则可能会导致算法效率下降。
五、总结分治法是一种常见的算法设计策略,它将一个大问题划分为若干个规模较小、结构相似且独立的子问题,并递归地求解这些子问题。
在实际应用中,分治法通常用于处理那些具有重复性质或者可以通过递归实现的计算任务。
虽然分治法具有较高的效率和可扩展性,但也存在额外空间开销和栈溢出等问题,需要进行合理优化。
主方法,递归法
"主方法" 和 "递归法" 通常在算法和数据结构的课程中提到,尤其是在介绍
排序算法的时候。
在这里,我将对它们进行简要的解释:
1. 主方法(Master Method):这是用于分析某些特定的分治算法(如快
速排序和归并排序)的时间复杂度的方法。
主方法主要基于递归关系的分析,以及对于最坏、平均和最好情况下的时间复杂度估计。
2. 递归法(Recursive Method):这是一种解决问题的方法,其中问题被
分解为更小的子问题,然后这些子问题的解被用来解决原始问题。
递归是许多算法(包括排序算法)的核心思想,因为它允许我们处理大规模数据集,通过将它们分解为更小的部分来简化问题。
在排序算法中,递归通常与分治策略一起使用。
例如,快速排序就是一个使用递归和分治的例子。
快速排序的基本思想是选择一个"主元",然后将数组分为两部分,左边的元素都比主元小,右边的元素都比主元大。
然后对这两部分递归地进行排序。
如果你是在询问编程中的方法或函数,那么"主方法"可能是指某个特定语言或框架的主要入口点,如Java的`public static void main(String[] args)`。
在这种情况下,"递归法"可能是指一种通过反复调用自身来解决问题的编程技术。
希望这能帮到你!如果你有关于这两个概念的具体问题或需要更详细的解释,请告诉我!。
用递归算法实现汉诺塔问题。
汉诺塔问题是一个经典的递归问题,它涉及到的思维方式是分治法,而递归则是实现分治法的一种方式。
要解决汉诺塔问题,我们需要了解其规则和思路。
汉诺塔游戏的规则如下:1. 有三根柱子A、B、C,开始时A柱上有一些大小不等的圆盘,按大小从上到下依次叠放。
2. 目标是把A柱上的圆盘全部移到C柱上,可以借助B柱。
3. 每次只能移动一个圆盘,且大圆盘不能叠在小圆盘上。
解决汉诺塔问题的思路:1. 对于每个规模为n的问题,我们可以分解为三个步骤:将A柱上的n-1个圆盘移到B柱上,将A柱上的最大圆盘移到C柱上,最后将B柱上的n-1个圆盘移到C柱上。
2. 每个步骤都是一个规模为n-1的子问题,因此可以使用递归来解决。
接下来,我们用递归算法实现汉诺塔问题。
```pythondef hanoi(n, A, B, C):"""递归函数hanoi参数:n:表示A柱上的圆盘数量A:表示原柱子B:表示辅助柱子C:表示目标柱子"""if n == 1: # 如果只有一个圆盘,直接从A柱移到C柱print(f"将第1个圆盘从 {A} 移动到 {C}")returnelse:# 将A柱上的n-1个圆盘移到B柱上hanoi(n-1, A, C, B)# 将A柱上的最大圆盘移到C柱上print(f"将第{n}个圆盘从 {A} 移动到 {C}")# 将B柱上的n-1个圆盘移到C柱上hanoi(n-1, B, A, C)# 测试n = 3 # 圆盘数量为3hanoi(n, 'A', 'B', 'C')```对于圆盘数量为3的情况,我们可以得到以下步骤:将第1个圆盘从 A 移动到 C将第2个圆盘从 A 移动到 B将第1个圆盘从 C 移动到 B将第3个圆盘从 A 移动到 C将第1个圆盘从 B 移动到 A将第2个圆盘从 B 移动到 C将第1个圆盘从 A 移动到 C通过递归的方式,我们可以解决汉诺塔问题并打印出每一步的移动过程。
总结分治法的基本思想分治法是一种非常重要的算法设计的思想和方法。
它的基本思想是将一个大问题划分成若干个相互独立的子问题,然后分别解决这些子问题,最后将子问题的解合并起来得到原问题的解。
在该过程中,分治法可递归地将原问题划分成更小规模的子问题,直到问题的规模足够小,可以将其直接解决。
分治法的基本步骤包括:分解、解决和合并。
首先,分解过程将原问题划分成若干个规模较小且相互独立的子问题。
这一步骤通常通过递归的方式实现。
通过递归,可以将原问题不断地分解成规模更小、更为简单的子问题。
分解得到的子问题可以独立地解决,这是分治法的关键之一。
其次,解决过程将规模较小的子问题逐一求解。
对于子问题的求解可以采用相同的分治法策略,即递归地继续分解成更小的子问题,直到问题足够简单被直接求解。
在这一步骤中,每个子问题的解是相互独立的,可以并行地被求解。
这也是分治法的另一个优势,可以提高问题求解的效率。
最后,合并过程将子问题的解合并成原问题的解。
合并操作将独立求解出来的子问题的解融合在一起,得到原始问题的解。
在这一步骤中,分治法通常会利用子问题的解法,将其组合起来得到原问题的解。
这一步骤是分治法求解问题的最后一步,也是最重要的一步。
通过上述三个步骤,分治法能够有效地解决问题。
它的核心思想是通过逐步分解问题,将原问题转化成更小、更为简单的子问题,然后依次求解子问题,最后将子问题的解合并起来得到原问题的解。
分治法的思想具有普适性和可拓展性,可以应用于各种类型的问题求解。
分治法广泛应用于算法设计和问题求解中。
例如,在排序算法中,归并排序和快速排序都是基于分治法的思想。
归并排序将一个无序的序列划分成两个规模相等的子序列,然后分别对子序列进行排序,最后将两个有序的子序列合并得到一个有序的序列。
快速排序则通过选取一个主元素将序列分为两个部分,然后递归地对两个子序列进行排序。
除了排序问题,分治法还可以应用于图的搜索、最优化问题、数值计算等领域。
分治算法的基本步骤
分治算法的基本步骤
分治算法是一种高效的算法,它将一个大问题分成若干个小问题,通过解决小问题来解决大问题。
分治算法通常用递归的方式实现,可以有效地降低时间复杂度。
下面将介绍分治算法的基本步骤。
一、将原问题划分为若干个子问题
分治算法的第一步是将原问题划分为若干个子问题。
这些子问题应该是相互独立的,并且与原问题具有相同的结构。
划分子问题的方法可以根据不同的情况进行选择,例如二分、三分、四分等。
二、递归地解决子问题
在将原问题划分为若干个子问题后,接下来需要递归地解决这些子问题。
对于每个子问题,都要采用同样的方法进行处理。
如果一个子问题不能再进一步划分,则称之为基本情况。
三、合并各个子问题的解
当所有子问题都得到了解决后,需要将它们合并起来得到原始问题的解。
这一步通常称为“合并”或“归并”。
在合并时,需要考虑如何
将不同子问题得到的结果组合起来得到最终结果。
四、确定递归的终止条件
分治算法是通过递归实现的,因此需要确定递归的终止条件。
在每一
次递归时,都需要判断是否已经达到了终止条件。
如果已经达到了终
止条件,则不再进行递归,而是直接返回结果。
五、分析算法的复杂度
最后一步是分析算法的复杂度。
分治算法通常具有较好的时间复杂度,但也需要考虑空间复杂度和其他因素。
总结
以上就是分治算法的基本步骤。
在实际应用中,可以根据具体问题进
行调整和优化。
例如,在划分子问题时可以采用贪心策略或动态规划
等方法,以提高算法效率。
分治法的基本步骤分治法在每一层递归上都有三个步骤:1.分解:将原问题分解为若干个规模较小,相互独立,与原问题形式相同的子问题;2.解决:若子问题规模较小而容易被解决则直接解,否则递归地解各个子问题;3.合并:将各个子问题的解合并为原问题的解。
它的一般的算法设计模式如下:Divide-and-Conquer(P)1. if |P|≤n02. then return(ADHOC(P))3. 将P分解为较小的子问题 P1 ,P2 ,...,P k4. for i←1 to k5. do yi ← Divide-and-Conquer(P i) △递归解决Pi6. T ← MERGE(y1,y2,...,y k) △合并子问题7. return(T)其中|P|表示问题P的规模;n0为一阈值,表示当问题P的规模不超过n0时,问题已容易直接解出,不必再继续分解。
ADHOC(P)是该分治法中的基本子算法,用于直接解小规模的问题P。
因此,当P的规模不超过n0时,直接用算法ADHOC(P)求解。
算法MERGE(y1,y2,...,y k)是该分治法中的合并子算法,用于将P的子问题P1 ,P2 ,...,P k的相应的解y1,y2,...,y k合并为P的解。
根据分治法的分割原则,原问题应该分为多少个子问题才较适宜?各个子问题的规模应该怎样才为适当?这些问题很难予以肯定的回答。
但人们从大量实践中发现,在用分治法设计算法时,最好使子问题的规模大致相同。
换句话说,将一个问题分成大小相等的k个子问题的处理方法是行之有效的。
许多问题可以取k=2。
这种使子问题规模大致相等的做法是出自一种平衡(balancing)子问题的思想,它几乎总是比子问题规模不等的做法要好。
分治法的合并步骤是算法的关键所在。
有些问题的合并方法比较明显,如下面的例1,例2;有些问题合并方法比较复杂,或者是有多种合并方案,如例3,例4;或者是合并方案不明显,如例5。
第1章算法引论11.1 算法与程序11.2 表达算法的抽象机制11.3 描述算法31.4 算法复杂性分析13小结16习题17第2章递归与分治策略192.1 递归的概念192.2 分治法的基本思想262.3 二分搜索技术272.4 大整数的乘法282.5 Strassen矩阵乘法302.6 棋盘覆盖322.7 合并排序342.8 快速排序372.9 线性时间选择392.10 最接近点对问题432.11 循环赛日程表53小结54习题54第3章动态规划613.1 矩阵连乘问题62目录算法设计与分析(第2版)3.2 动态规划算法的基本要素67 3.3 最长公共子序列713.4 凸多边形最优三角剖分753.5 多边形游戏793.6 图像压缩823.7 电路布线853.8 流水作业调度883.9 0-1背包问题923.10 最优二叉搜索树98小结101习题102第4章贪心算法1074.1 活动安排问题1074.2 贪心算法的基本要素1104.2.1 贪心选择性质1114.2.2 最优子结构性质1114.2.3 贪心算法与动态规划算法的差异1114.3 最优装载1144.4 哈夫曼编码1164.4.1 前缀码1174.4.2 构造哈夫曼编码1174.4.3 哈夫曼算法的正确性1194.5 单源最短路径1214.5.1 算法基本思想1214.5.2 算法的正确性和计算复杂性123 4.6 最小生成树1254.6.1 最小生成树性质1254.6.2 Prim算法1264.6.3 Kruskal算法1284.7 多机调度问题1304.8 贪心算法的理论基础1334.8.1 拟阵1334.8.2 带权拟阵的贪心算法1344.8.3 任务时间表问题137小结141习题141第5章回溯法1465.1 回溯法的算法框架1465.1.1 问题的解空间1465.1.2 回溯法的基本思想1475.1.3 递归回溯1495.1.4 迭代回溯1505.1.5 子集树与排列树1515.2 装载问题1525.3 批处理作业调度1605.4 符号三角形问题1625.5 n后问题1655.6 0\|1背包问题1685.7 最大团问题1715.8 图的m着色问题1745.9 旅行售货员问题1775.10 圆排列问题1795.11 电路板排列问题1815.12 连续邮资问题1855.13 回溯法的效率分析187小结190习题191第6章分支限界法1956.1 分支限界法的基本思想1956.2 单源最短路径问题1986.3 装载问题2026.4 布线问题2116.5 0\|1背包问题2166.6 最大团问题2226.7 旅行售货员问题2256.8 电路板排列问题2296.9 批处理作业调度232小结237习题238第7章概率算法2407.1 随机数2417.2 数值概率算法2447.2.1 用随机投点法计算π值2447.2.2 计算定积分2457.2.3 解非线性方程组2477.3 舍伍德算法2507.3.1 线性时间选择算法2507.3.2 跳跃表2527.4 拉斯维加斯算法2597.4.1 n 后问题2607.4.2 整数因子分解2647.5 蒙特卡罗算法2667.5.1 蒙特卡罗算法的基本思想2667.5.2 主元素问题2687.5.3 素数测试270小结273习题273第8章 NP完全性理论2788.1 计算模型2798.1.1 随机存取机RAM2798.1.2 随机存取存储程序机RASP2878.1.3 RAM模型的变形与简化2918.1.4 图灵机2958.1.5 图灵机模型与RAM模型的关系297 8.1.6 问题变换与计算复杂性归约299 8.2 P类与NP类问题3018.2.1 非确定性图灵机3018.2.2 P类与NP类语言3028.2.3 多项式时间验证3048.3 NP完全问题3058.3.1 多项式时间变换3058.3.2 Cook定理3078.4 一些典型的NP完全问题3108.4.1 合取范式的可满足性问题3118.4.2 3元合取范式的可满足性问题312 8.4.3 团问题3138.4.4 顶点覆盖问题3148.4.5 子集和问题3158.4.6 哈密顿回路问题3178.4.7 旅行售货员问题322小结323习题323第9章近似算法3269.1 近似算法的性能3279.2 顶点覆盖问题的近似算法3289.3 旅行售货员问题近似算法3299.3.1 具有三角不等式性质的旅行售货员问题330 9.3.2 一般的旅行售货员问题3319.4 集合覆盖问题的近似算法3339.5 子集和问题的近似算法3369.5.1 子集和问题的指数时间算法3369.5.2 子集和问题的完全多项式时间近似格式337 小结340习题340第10章算法优化策略34510.1 算法设计策略的比较与选择34510.1.1 最大子段和问题的简单算法34510.1.2 最大子段和问题的分治算法34610.1.3 最大子段和问题的动态规划算法34810.1.4 最大子段和问题与动态规划算法的推广349 10.2 动态规划加速原理35210.2.1 货物储运问题35210.2.2 算法及其优化35310.3 问题的算法特征35710.3.1 贪心策略35710.3.2 对贪心策略的改进35710.3.3 算法三部曲35910.3.4 算法实现36010.3.5 算法复杂性36610.4 优化数据结构36610.4.1 带权区间最短路问题36610.4.2 算法设计思想36710.4.3 算法实现方案36910.4.4 并查集37310.4.5 可并优先队列37610.5 优化搜索策略380小结388习题388第11章在线算法设计39111.1 在线算法设计的基本概念39111.2 页调度问题39311.3 势函数分析39511.4 k 服务问题39711.4.1 竞争比的下界39711.4.2 平衡算法39911.4.3 对称移动算法39911.5 Steiner树问题40311.6 在线任务调度40511.7 负载平衡406小结407习题407词汇索引409参考文献415习题1-1 实参交换1习题1-2 方法头签名1习题1-3 数组排序判定1习题1-4 函数的渐近表达式2习题1-5 O(1) 和 O(2) 的区别2习题1-7 按渐近阶排列表达式2习题1-8 算法效率2习题1-9 硬件效率3习题1-10 函数渐近阶3习题1-11 n !的阶4习题1-12 平均情况下的计算时间复杂性4算法实现题1-1 统计数字问题4算法实现题1-2 字典序问题5算法实现题1-3 最多约数问题6算法实现题1-4 金币阵列问题8算法实现题1-5 最大间隙问题11第2章递归与分治策略14 习题2-1 Hanoi 塔问题的非递归算法14习题2-2 7个二分搜索算法15习题2-3 改写二分搜索算法18习题2-4 大整数乘法的 O(nm log(3/2))算法19习题2-5 5次 n /3位整数的乘法19习题2-6 矩阵乘法21习题2-7 多项式乘积21习题2-8 不动点问题的 O( log n) 时间算法22习题2-9 主元素问题的线性时间算法22习题2-10 无序集主元素问题的线性时间算法22习题2-11 O (1)空间子数组换位算法23习题2-12 O (1)空间合并算法25习题2-13 n 段合并排序算法32习题2-14 自然合并排序算法32习题2-15 最大值和最小值问题的最优算法35习题2-16 最大值和次大值问题的最优算法35习题2-17 整数集合排序35习题2-18 第 k 小元素问题的计算时间下界36习题2-19 非增序快速排序算法37习题2-20 随机化算法37习题2-21 随机化快速排序算法38习题2-22 随机排列算法38习题2-23 算法qSort中的尾递归38习题2-24 用栈模拟递归38习题2-25 算法select中的元素划分39习题2-26 O(n log n) 时间快速排序算法40习题2-27 最接近中位数的 k 个数40习题2-28 X和Y 的中位数40习题2-29 网络开关设计41习题2-32 带权中位数问题42习题2-34 构造Gray码的分治算法43习题2-35 网球循环赛日程表44目录算法设计与分析习题解答(第2版)算法实现题2-1 输油管道问题(习题2-30) 49算法实现题2-2 众数问题(习题2-31) 50算法实现题2-3 邮局选址问题(习题2-32) 51算法实现题2-4 马的Hamilton周游路线问题(习题2-33) 51算法实现题2-5 半数集问题60算法实现题2-6 半数单集问题62算法实现题2-7 士兵站队问题63算法实现题2-8 有重复元素的排列问题63算法实现题2-9 排列的字典序问题65算法实现题2-10 集合划分问题(一)67算法实现题2-11 集合划分问题(二)68算法实现题2-12 双色Hanoi塔问题69算法实现题2-13 标准二维表问题71算法实现题2-14 整数因子分解问题72算法实现题2-15 有向直线2中值问题72第3章动态规划76习题3-1 最长单调递增子序列76习题3-2 最长单调递增子序列的 O(n log n) 算法77习题3-7 漂亮打印78习题3-11 整数线性规划问题79习题3-12 二维背包问题80习题3-14 Ackermann函数81习题3-17 最短行驶路线83习题3-19 最优旅行路线83算法实现题3-1 独立任务最优调度问题(习题3-3) 83算法实现题3-2 最少硬币问题(习题3-4) 85算法实现题3-3 序关系计数问题(习题3-5) 86算法实现题3-4 多重幂计数问题(习题3-6) 87算法实现题3-5 编辑距离问题(习题3-8) 87算法实现题3-6 石子合并问题(习题3-9) 89算法实现题3-7 数字三角形问题(习题3-10) 91算法实现题3-8 乘法表问题(习题3-13) 92算法实现题3-9 租用游艇问题(习题3-15) 93算法实现题3-10 汽车加油行驶问题(习题3-16) 95算法实现题3-11 圈乘运算问题(习题3-18) 96算法实现题3-12 最少费用购物(习题3-20) 102算法实现题3-13 最大长方体问题(习题3-21) 104算法实现题3-14 正则表达式匹配问题(习题3-22) 105算法实现题3-15 双调旅行售货员问题(习题3-23) 110算法实现题3-16 最大 k 乘积问题(习题5-24) 111算法实现题3-17 最小 m 段和问题113算法实现题3-18 红黑树的红色内结点问题115第4章贪心算法123 习题4-2 活动安排问题的贪心选择123习题4-3 背包问题的贪心选择性质123习题4-4 特殊的0-1背包问题124习题4-10 程序最优存储问题124习题4-13 最优装载问题的贪心算法125习题4-18 Fibonacci序列的Huffman编码125习题4-19 最优前缀码的编码序列125习题4-21 任务集独立性问题126习题4-22 矩阵拟阵126习题4-23 最小权最大独立子集拟阵126习题4-27 整数边权Prim算法126习题4-28 最大权最小生成树127习题4-29 最短路径的负边权127习题4-30 整数边权Dijkstra算法127算法实现题4-1 会场安排问题(习题4-1) 128算法实现题4-2 最优合并问题(习题4-5) 129算法实现题4-3 磁带最优存储问题(习题4-6) 130算法实现题4-4 磁盘文件最优存储问题(习题4-7) 131算法实现题4-5 程序存储问题(习题4-8) 132算法实现题4-6 最优服务次序问题(习题4-11) 133算法实现题4-7 多处最优服务次序问题(习题4-12) 134算法实现题4-8 d 森林问题(习题4-14) 135算法实现题4-9 汽车加油问题(习题4-16) 137算法实现题4-10 区间覆盖问题(习题4-17) 138算法实现题4-11 硬币找钱问题(习题4-24) 138算法实现题4-12 删数问题(习题4-25) 139算法实现题4-13 数列极差问题(习题4-26) 140算法实现题4-14 嵌套箱问题(习题4-31) 140算法实现题4-15 套汇问题(习题4-32) 142算法实现题4-16 信号增强装置问题(习题5-17) 143算法实现题4-17 磁带最大利用率问题(习题4-9) 144算法实现题4-18 非单位时间任务安排问题(习题4-15) 145算法实现题4-19 多元Huffman编码问题(习题4-20) 147算法实现题4-20 多元Huffman编码变形149算法实现题4-21 区间相交问题151算法实现题4-22 任务时间表问题151第5章回溯法153习题5\|1 装载问题改进回溯法(一)153习题5\|2 装载问题改进回溯法(二)154习题5\|4 0-1背包问题的最优解155习题5\|5 最大团问题的迭代回溯法156习题5\|7 旅行售货员问题的费用上界157习题5\|8 旅行售货员问题的上界函数158算法实现题5-1 子集和问题(习题5-3) 159算法实现题5-2 最小长度电路板排列问题(习题5-9) 160算法实现题5-3 最小重量机器设计问题(习题5-10) 163算法实现题5-4 运动员最佳匹配问题(习题5-11) 164算法实现题5-5 无分隔符字典问题(习题5-12) 165算法实现题5-6 无和集问题(习题5-13) 167算法实现题5-7 n 色方柱问题(习题5-14) 168算法实现题5-8 整数变换问题(习题5-15) 173算法实现题5-9 拉丁矩阵问题(习题5-16) 175算法实现题5-10 排列宝石问题(习题5-16) 176算法实现题5-11 重复拉丁矩阵问题(习题5-16) 179算法实现题5-12 罗密欧与朱丽叶的迷宫问题181算法实现题5-13 工作分配问题(习题5-18) 183算法实现题5-14 独立钻石跳棋问题(习题5-19) 184算法实现题5-15 智力拼图问题(习题5-20) 191算法实现题5-16 布线问题(习题5-21) 198算法实现题5-17 最佳调度问题(习题5-22) 200算法实现题5-18 无优先级运算问题(习题5-23) 201算法实现题5-19 世界名画陈列馆问题(习题5-25) 203算法实现题5-20 世界名画陈列馆问题(不重复监视)(习题5-26) 207 算法实现题5-21 部落卫队问题(习题5-6) 209算法实现题5-22 虫蚀算式问题211算法实现题5-23 完备环序列问题214算法实现题5-24 离散01串问题217算法实现题5-25 喷漆机器人问题218算法实现题5-26 n 2-1谜问题221第6章分支限界法229习题6-1 0-1背包问题的栈式分支限界法229习题6-2 用最大堆存储活结点的优先队列式分支限界法231习题6-3 团顶点数的上界234习题6-4 团顶点数改进的上界235习题6-5 修改解旅行售货员问题的分支限界法235习题6-6 解旅行售货员问题的分支限界法中保存已产生的排列树237 习题6-7 电路板排列问题的队列式分支限界法239算法实现题6-1 最小长度电路板排列问题一(习题6-8) 241算法实现题6-2 最小长度电路板排列问题二(习题6-9) 244算法实现题6-3 最小权顶点覆盖问题(习题6-10) 247算法实现题6-4 无向图的最大割问题(习题6-11) 250算法实现题6-5 最小重量机器设计问题(习题6-12) 253算法实现题6-6 运动员最佳匹配问题(习题6-13) 256算法实现题6-7 n 后问题(习题6-15) 259算法实现题6-8 圆排列问题(习题6-16) 260算法实现题6-9 布线问题(习题6-17) 263算法实现题6-10 最佳调度问题(习题6-18) 265算法实现题6-11 无优先级运算问题(习题6-19) 268算法实现题6-12 世界名画陈列馆问题(习题6-21) 271算法实现题6-13 骑士征途问题274算法实现题6-14 推箱子问题275算法实现题6-15 图形变换问题281算法实现题6-16 行列变换问题284算法实现题6-17 重排 n 2宫问题285算法实现题6-18 最长距离问题290第7章概率算法296习题7-1 模拟正态分布随机变量296习题7-2 随机抽样算法297习题7-3 随机产生 m 个整数297习题7-4 集合大小的概率算法298习题7-5 生日问题299习题7-6 易验证问题的拉斯维加斯算法300习题7-7 用数组模拟有序链表300习题7-8 O(n 3/2)舍伍德型排序算法300习题7-9 n 后问题解的存在性301习题7-11 整数因子分解算法302习题7-12 非蒙特卡罗算法的例子302习题7-13 重复3次的蒙特卡罗算法303习题7-14 集合随机元素算法304习题7-15 由蒙特卡罗算法构造拉斯维加斯算法305习题7-16 产生素数算法306习题7-18 矩阵方程问题306算法实现题7-1 模平方根问题(习题7-10) 307算法实现题7-2 集合相等问题(习题7-17) 309算法实现题7-3 逆矩阵问题(习题7-19) 309算法实现题7-4 多项式乘积问题(习题7-20) 310算法实现题7-5 皇后控制问题311算法实现题7-6 3-SAT问题314算法实现题7-7 战车问题315算法实现题7-8 圆排列问题317算法实现题7-9 骑士控制问题319算法实现题7-10 骑士对攻问题320第8章NP完全性理论322 习题8-1 RAM和RASP程序322习题8-2 RAM和RASP程序的复杂性322习题8-3 计算 n n 的RAM程序322习题8-4 没有MULT和DIV指令的RAM程序324习题8-5 MULT和DIV指令的计算能力324习题8-6 RAM和RASP的空间复杂性325习题8-7 行列式的直线式程序325习题8-8 求和的3带图灵机325习题8-9 模拟RAM指令325习题8-10 计算2 2 n 的RAM程序325习题8-11 计算 g(m,n)的程序 326习题8-12 图灵机模拟RAM的时间上界326习题8-13 图的同构问题326习题8-14 哈密顿回路327习题8-15 P类语言的封闭性327习题8-16 NP类语言的封闭性328习题8-17 语言的2 O (n k) 时间判定算法328习题8-18 P CO -NP329习题8-19 NP≠CO -NP329习题8-20 重言布尔表达式329习题8-21 关系∝ p的传递性329习题8-22 L ∝ p 330习题8-23 语言的完全性330习题8-24 的CO-NP完全性330习题8-25 判定重言式的CO-NP完全性331习题8-26 析取范式的可满足性331习题8-27 2-SAT问题的线性时间算法331习题8-28 整数规划问题332习题8-29 划分问题333习题8-30 最长简单回路问题334第9章近似算法336习题9-1 平面图着色问题的绝对近似算法336习题9-2 最优程序存储问题336习题9-4 树的最优顶点覆盖337习题9-5 顶点覆盖算法的性能比339习题9-6 团的常数性能比近似算法339习题9-9 售货员问题的常数性能比近似算法340习题9-10 瓶颈旅行售货员问题340习题9-11 最优旅行售货员回路不自相交342习题9-14 集合覆盖问题的实例342习题9-16 多机调度问题的近似算法343习题9-17 LPT算法的最坏情况实例345习题9-18 多机调度问题的多项式时间近似算法345算法实现题9-1 旅行售货员问题的近似算法(习题9-9) 346 算法实现题9-2 可满足问题的近似算法(习题9-20) 348算法实现题9-3 最大可满足问题的近似算法(习题9-21) 349 算法实现题9-4 子集和问题的近似算法(习题9-15) 351算法实现题9-5 子集和问题的完全多项式时间近似算法352算法实现题9-6 实现算法greedySetCover(习题9-13) 352算法实现题9-7 装箱问题的近似算法First Fit(习题9-19) 356算法实现题9-8 装箱问题的近似算法Best Fit(习题9-19) 358算法实现题9-9 装箱问题的近似算法First Fit Decreasing(习题9-19) 360算法实现题9-10 装箱问题的近似算法Best Fit Decreasing(习题9-19) 361算法实现题9-11 装箱问题的近似算法Next Fit361第10章算法优化策略365 习题10-1 算法obst的正确性365习题10-2 矩阵连乘问题的 O(n 2) 时间算法365习题10-6 货物储运问题的费用371习题10-7 Garsia算法371算法实现题10-1 货物储运问题(习题10-3) 374算法实现题10-2 石子合并问题(习题10-4) 374算法实现题10-3 最大运输费用货物储运问题(习题10-5) 375算法实现题10-4 五边形问题377算法实现题10-5 区间图最短路问题(习题10-8) 381算法实现题10-6 圆弧区间最短路问题(习题10-9) 381算法实现题10-7 双机调度问题(习题10-10) 382算法实现题10-8 离线最小值问题(习题10-11) 390算法实现题10-9 最近公共祖先问题(习题10-12) 393算法实现题10-10 达尔文芯片问题395算法实现题10-11 多柱Hanoi塔问题397算法实现题10-12 线性时间Huffman算法400算法实现题10-13 单机调度问题402算法实现题10-14 最大费用单机调度问题405算法实现题10-15 飞机加油问题408第11章在线算法设计410习题11-1 在线算法LFU的竞争性410习题11-4 多读写头磁盘问题的在线算法410习题11-6 带权页调度问题410算法实现题11-1 最优页调度问题(习题11-2) 411算法实现题11-2 在线LRU页调度(习题11-3) 414算法实现题11-3 k 服务问题(习题11-5) 416参考文献422。
分治法的概念引言分治法(Divide and Conquer)是一种算法设计的方法,它将一个大的问题划分为多个相同或类似的子问题,并通过递归的方式解决每个子问题,最后将子问题的解合并起来得到原问题的解。
该方法常用于解决复杂问题,通过将问题分解为较小的子问题,简化了问题的求解过程,提高了算法的效率。
分治法的基本步骤分治法的解决过程通常包括以下三个基本步骤:分解(Divide)将原问题划分为多个相同或类似的子问题。
这种划分应当满足两个条件:首先,原问题可以被划分为多个子问题;其次,子问题的解决方案可以直接用来解决原问题。
解决(Conquer)递归地解决子问题。
当子问题足够小,可以直接求解时,就不再继续递归,而是通过基本的求解方法得到子问题的解。
合并(Combine)将子问题的解合并起来,得到原问题的解。
分治法的应用场景分治法适用于那些可以被划分为多个子问题,并且可以通过合并子问题的解得到原问题解的问题。
它在很多领域都有广泛的应用,下面介绍几个常见的应用场景。
排序算法分治法在排序算法中有着重要的应用,例如快速排序和归并排序。
快速排序将一个未排序的数组划分为两个子数组,并分别对这两个子数组进行递归的快速排序,最终将数组排序。
归并排序将一个数组划分为两个有序的子数组,然后合并这两个有序数组,得到一个有序的数组。
查找问题分治法也可以应用于一些查找问题。
例如,在一个有序数组中查找某个元素,可以通过将数组划分为两个子数组,然后递归地在某个子数组中查找,直到找到目标元素或者确定该元素不存在。
图算法分治法在图算法中也有一些应用。
例如,快速求解最短路径的问题。
可以将原问题划分为多个子问题,每个子问题是求解从起点到某个顶点的最短路径。
然后通过递归地解决每个子问题,并将最短路径合并起来,最终得到整个图的最短路径。
分治法的优缺点分治法的优点在于它能够降低问题的复杂度,将一个大问题拆解为多个小问题,简化了问题的求解过程。
同时,由于各个子问题是相互独立的,可以并行地求解,提高了算法的效率。
分治算法一、分治算法分治算法的基本思想是将一个规模为N的问题分解为K个规模较小的子问题,这些子问题相互独立且与原问题性质相同。
求出子问题的解,就可得到原问题的解。
分治法解题的一般步骤:(1)分解,将要解决的问题划分成若干规模较小的同类问题;(2)求解,当子问题划分得足够小时,用较简单的方法解决;(3)合并,按原问题的要求,将子问题的解逐层合并构成原问题的解。
当我们求解某些问题时,由于这些问题要处理的数据相当多,或求解过程相当复杂,使得直接求解法在时间上相当长,或者根本无法直接求出。
对于这类问题,我们往往先把它分解成几个子问题,找到求出这几个子问题的解法后,再找到合适的方法,把它们组合成求整个问题的解法。
如果这些子问题还较大,难以解决,可以再把它们分成几个更小的子问题,以此类推,直至可以直接求出解为止。
这就是分治策略的基本思想。
下面通过实例加以说明。
【例1】[找出伪币] 给你一个装有1 6个硬币的袋子。
1 6个硬币中有一个是伪造的,并且那个伪造的硬币比真的硬币要轻一些。
你的任务是找出这个伪造的硬币。
为了帮助你完成这一任务,将提供一台可用来比较两组硬币重量的仪器,利用这台仪器,可以知道两组硬币的重量是否相同。
比较硬币1与硬币2的重量。
假如硬币1比硬币2轻,则硬币1是伪造的;假如硬币2比硬币1轻,则硬币2是伪造的。
这样就完成了任务。
假如两硬币重量相等,则比较硬币3和硬币4。
同样,假如有一个硬币轻一些,则寻找伪币的任务完成。
假如两硬币重量相等,则继续比较硬币5和硬币6。
按照这种方式,可以最多通过8次比较来判断伪币的存在并找出这一伪币。
另外一种方法就是利用分而治之方法。
假如把1 6硬币的例子看成一个大的问题。
第一步,把这一问题分成两个小问题。
随机选择8个硬币作为第一组称为A组,剩下的8个硬币作为第二组称为B组。
这样,就把1 6个硬币的问题分成两个8硬币的问题来解决。
第二步,判断A和B组中是否有伪币。
可以利用仪器来比较A组硬币和B组硬币的重量。
假如两组硬币重量相等,则可以判断伪币不存在。
假如两组硬币重量不相等,则存在伪币,并且可以判断它位于较轻的那一组硬币中。
最后,在第三步中,用第二步的结果得出原先1 6个硬币问题的答案。
若仅仅判断硬币是否存在,则第三步非常简单。
无论A组还是B组中有伪币,都可以推断这1 6个硬币中存在伪币。
因此,仅仅通过一次重量的比较,就可以判断伪币是否存在。
现在假设需要识别出这一伪币。
把两个或三个硬币的情况作为不可再分的小问题。
注意如果只有一个硬币,那么不能判断出它是否就是伪币。
在一个小问题中,通过将一个硬币分别与其他两个硬币比较,最多比较两次就可以找到伪币。
这样,1 6硬币的问题就被分为两个8硬币(A组和B组)的问题。
通过比较这两组硬币的重量,可以判断伪币是否存在。
如果没有伪币,则算法终止。
否则,继续划分这两组硬币来寻找伪币。
假设B是轻的那一组,因此再把它分成两组,每组有4个硬币。
称其中一组为B1,另一组为B2。
比较这两组,肯定有一组轻一些。
如果B1轻,则伪币在B1中,再将B1又分成两组,每组有两个硬币,称其中一组为B1a,另一组为B1b。
比较这两组,可以得到一个较轻的组。
由于这个组只有两个硬币,因此不必再细分。
比较组中两个硬币的重量,可以立即知道哪一个硬币轻一些。
较轻的硬币就是所要找的伪币。
【例2】在n个元素中找出最大元素和最小元素。
我们可以把这n个元素放在一个数组中,用直接比较法求出。
算法如下:void maxmin1(int A[],int n,int *max,int *min){ int i;*min=*max=A[0];for(i=2;i < n;i++){ if(A> *max) *max= A;if(A < *min) *min= A;}}上面这个算法需比较2(n-1)次。
能否找到更好的算法呢?我们用分治策略来讨论。
把n个元素分成两组:A1={A[1],...,A[int(n/2)]}和A2={A[INT(N/2)+1],...,A[N]}分别求这两组的最大值和最小值,然后分别将这两组的最大值和最小值相比较,求出全部元素的最大值和最小值。
如果A1和A2中的元素多于两个,则再用上述方法各分为两个子集。
直至子集中元素至多两个元素为止。
例如有下面一组元素:-13,13,9,-5,7,23,0,15。
用分治策略比较的过程如下:图中每个方框中,左边是最小值,右边是最大值。
从图中看出,用这种方法一共比较了10次,比直接比较法的14次减少4次,即约减少了1/3。
算法如下:void maxmin2(int A[],int i,int j,int *max,int *min)/*A存放输入的数据,i,j存放数据的范围,初值为0,n-1,*max,int *m in 存放最大和最小值*/{ int mid,max1,max2,min1,min2;if (j==i) {最大和最小值为同一个数;return;}if (j-1==i) {将两个数直接比较,求得最大会最小值;return;}mid=(i+j)/2;求i~mid之间的最大最小值分别为max1,min1;求mid+1~j之间的最大最小值分别为max2,min2;比较max1和max2,大的就是最大值;比较min1和min2,小的就是最小值;}利用分治策略求解时,所需时间取决于分解后子问题的个数、子问题的规模大小等因素,而二分法,由于其划分的简单和均匀的特点,是经常采用的一种有效的方法,例如二分法检索。
运用分治策略解决的问题一般来说具有以下特点:1、原问题可以分解为多个子问题,这些子问题与原问题相比,只是问题的规模有所降低,其结构和求解方法与原问题相同或相似。
2、原问题在分解过程中,递归地求解子问题,由于递归都必须有一个终止条件,因此,当分解后的子问题规模足够小时,应能够直接求解。
3、在求解并得到各个子问题的解后,应能够采用某种方式、方法合并或构造出原问题的解。
不难发现,在分治策略中,由于子问题与原问题在结构和解法是的相似性,用分治方法解决的问题,大都采用了递归的形式。
在各种排序方法中,如归并排序、堆排序、快速排序等,都存在有分治的思想。
递归算法递归算法:是一种直接或者间接地调用自身的算法。
在计算机编写程序中,递归算法对解决一大类问题是十分有效的,它往往使算法的描述简洁而且易于理解。
递归算法的特点递归过程一般通过函数或子过程来实现。
递归算法:在函数或子过程的内部,直接或者间接地调用自己的算法。
递归算法的实质:是把问题转化为规模缩小了的同类问题的子问题。
然后递归调用函数(或过程)来表示问题的解。
递归算法解决问题的特点:(1) 递归就是在过程或函数里调用自身。
(2) 在使用递增归策略时,必须有一个明确的递归结束条件,称为递归出口。
(3) 递归算法解题通常显得很简洁,但递归算法解题的运行效率较低。
所以一般不提倡用递归算法设计程序。
(4) 在递归调用的过程当中系统为每一层的返回点、局部量等开辟了栈来存储。
递归次数过多容易造成栈溢出等。
所以一般不提倡用递归算法设计程序。
递归算法所体现的“重复”一般有三个要求:一是每次调用在规模上都有所缩小(通常是减半);二是相邻两次重复之间有紧密的联系,前一次要为后一次做准备(通常前一次的输出就作为后一次的输入);三是在问题的规模极小时必须用直接给出解答而不再进行递归调用,因而每次递归调用都是有条件的(以规模未达到直接解答的大小为条件),无条件递归调用将会成为死循环而不能正常结束。
例子如下:描述:把一个整数按n(2<=n<=20)进制表示出来,并保存在给定字符串中。
比如121用二进制表示得到结果为:“1111001”。
参数说明:s: 保存转换后得到的结果。
n: 待转换的整数。
b: n进制(2<=n<=20)voidnumbconv(char *s, int n, int b){int len;if(n == 0) {strcpy(s, "");return;}/* figure out first n-1 digits */numbconv(s, n/b, b);/* add last digit */len = strlen(s);s[len] = "0123456789ABCDEFGHIJKLMNOPQRSTUVW XYZ"[n%b];s[len+1] = '\0';}voidmain(void){char s[20];int i, base;FILE *fin, *fout;fin = fopen("palsquare.in", "r");fout = fopen("palsquare.out", "w");assert(fin != NULL && fout != NULL);fscanf(fin, "%d", &base);/*PLS set START and END*/for(i=START; i <= END; i++) {numbconv(s, i*i, base);fprintf(fout, "%s\n", s);}exit(0);}递归算法简析(PASCAL语言)递归是计算机科学的一个重要概念,递归的方法是程序设计中有效的方法,采用递归编写程序能是程序变得简洁和清晰.一递归的概念1.概念一个过程(或函数)直接或间接调用自己本身,这种过程(或函数)叫递归过程(或函数).如:procedure a;begin...a;...end;这种方式是直接调用.又如:procedure b; procedure c;begin begin. .. .. .c; b;. .. .. .end; end;这种方式是间接调用.例1计算n!可用递归公式如下:1 当n=0 时fac(n)={n*fac(n-1) 当n>0时可编写程序如下:program fac2;varn:integer;function fac(n:integer):real;beginif n=0 then fac:=1 else fac:=n*fac(n-1) end;beginwrite('n=');readln(n);writeln('fac(',n,')=',fac(n):6:0);end.例2 楼梯有n阶台阶,上楼可以一步上1阶,也可以一步上2阶,编一程序计算共有多少种不同的走法.设n阶台阶的走法数为f(n)显然有1 n=1f(n)={f(n-1)+f(n-2) n>2可编程序如下:program louti;var n:integer;function f(x:integer):integer;beginif x=1 then f:=1 elseif x=2 then f:=2 else f:=f(x-1)+f(x-2);end;beginwrite('n=');read(n);writeln('f(',n,')=',f(n))end.二,如何设计递归算法1.确定递归公式2.确定边界(终了)条件三,典型例题例3 梵塔问题如图:已知有三根针分别用1,2,3表示,在一号针中从小放n个盘子,现要求把所有的盘子从1针全部移到3针,移动规则是:使用2针作为过度针,每次只移动一块盘子,且每根针上不能出现大盘压小盘.找出移动次数最小的方案.程序如下:program fanta;varn:integer;procedure move(n,a,b,c:integer);beginif n=1 then writeln(a,'--->',c)else beginmove(n-1,a,c,b);writeln(a,'--->',c);move(n-1,b,a,c);end;end;beginwrite('Enter n=');read(n);move(n,1,2,3);end.例4 快速排序快速排序的思想是:先从数据序列中选一个元素,并将序列中所有比该元素小的元素都放到它的右边或左边,再对左右两边分别用同样的方法处之直到每一个待处理的序列的长度为1, 处理结束.程序如下:program kspv;const n=7;typearr=array[1..n] of integer;vara:arr;i:integer;procedure quicksort(var b:arr; s,t:integer);var i,j,x,t1:integer;begini:=s;j:=t;x:=b ;repeatwhile (b[j]>=x) and (j>i) do j:=j-1;if j>i then begin t1:=b; b:=b[j];b[j]:=t1;end;while (b<=x) and (i<j) do i:=i+1;if i<j then begin t1:=b[j];b[j]:=b;b:=t1; enduntil i=j;b:=x;i:=i+1;j:=j-1;if s<j then quicksort(b,s,j);if i<t then quicksort(b,i,t);end;beginwrite('input data:');for i:=1 to n do read(a);writeln;quicksort(a,1,n);write('output data:');for i:=1 to n do write(a:6);writeln;end.二叉树遍历二叉树的遍历搜索路径遍历概念:所谓遍历(Traversal)是指沿着某条搜索路线,依次对树中每个结点均做一次且仅做一次访问。