2020考研数学高数常考题型
- 格式:docx
- 大小:11.75 KB
- 文档页数:1
2020考研数学复习:高数常见题型分析2020考研数学复习:高数常见题型分析1、求极限无论数学一、数学二还是数学三,求极限是高等数学的基本要求,所以也是每年必考的内容。
区别在于有时以4分小题形式出现,题目简单;有时以大题出现,需要使用的方法综合性强。
比如大题可能需要用到等价无穷小代换、泰勒展开式、洛比达法则、分离因式、重要极限等几种方法,有时需要选择多种方法综合完成题目。
另外,分段函数在个别点处的导数,函数图形的渐近线,以极限形式定义的函数的连续性、可导性的研究等也需要使用极限手段达到目的,须引起注意!2、利用中值定理证明等式或不等式利用中值定理证明等式或不等式,利用函数单调性证明不等式证明题虽不能说每年一定考,但也基本上十年有九年都会涉及。
等式的证明包括使用4个常见的微分中值定理(即罗尔中值定理、拉格朗日中值定理、柯西中值定理、泰勒中值定理),1个定积分中值定理;不等式的证明有时既可使用中值定理,也可使用函数单调性。
这里泰勒中值定理的使用时的一个难点,但考查的概率不大。
3、求导一元函数求导数,多元函数求偏导数求导数问题主要考查基本公式及运算能力,当然也包括对函数关系的处理能力。
一元函数求导可能会以参数方程求导、变限积分求导或应用问题中涉及求导,甚或高阶导数;多元函数(主要为二元函数)的偏导数基本上每年都会考查,给出的函数可能是较为复杂的显函数,也可能是隐函数(包括方程组确定的隐函数)。
另外,二元函数的极值与条件极值与实际问题联系极其紧密,是一个考查重点。
极值的充分条件、必要条件均涉及二元函数的偏导数。
4、级数级数问题常数项级数(特别是正项级数、交错级数)敛散性的判别,条件收敛与绝对收敛的本质含义均是考查的重点,但常常以小题形式出现。
函数项级数(幂级数,对数一的考生来说还有傅里叶级数,但考查的频率不高)的收敛半径、收敛区间、收敛域、和函数等及函数在一点的幂级数展开在考试中常占有较高的分值。
4、积分的计算积分的计算包括不定积分、定积分、反常积分的计算,以及二重积分的计算,对数一考生来说常主要是三重积分、曲线积分、曲面积分的计算。
全国硕士研究生入学统一考试数学(一)试题一、选择题:1~8小题,每小题4分,共32分.下列每题给出的四个选项中,只有一个选项是符合题目要求的.请将所选项前的字母填在答题纸...指定位置上. (1)若函数0(),0x f x b x >=⎪≤⎩在x 连续,则 (A) 12ab =. (B) 12ab =-. (C) 0ab =. (D) 2ab =.【答案】A【详解】由011lim 2x b ax a +→-==,得12ab =.(2)设函数()f x 可导,且()'()0f x f x >则(A) ()()11f f >- . (B) ()()11f f <-. (C) ()()11f f >-. (D) ()()11f f <-.【答案】C【详解】2()()()[]02f x f x f x ''=>,从而2()f x 单调递增,22(1)(1)f f >-. (3)函数22(,,)f x y z x y z =+在点(1,2,0)处沿着向量(1,2,2)n =的方向导数为 (A) 12. (B) 6.(C) 4.(D)2 .【答案】D【详解】方向余弦12cos ,cos cos 33===αβγ,偏导数22,,2x y z f xy f x f z '''===,代入cos cos cos x y z f f f '''++αβγ即可.(4)甲乙两人赛跑,计时开始时,甲在乙前方10(单位:m)处.图中,实线表示甲的速度曲线1()v v t =(单位:m/s),虚线表示乙的速度曲线2()v v t =(单位:m/s),三块阴影部分面积的数值一次为10,20,3,计时开始后乙追上甲的时刻记为(单位:s),则(A) 010t =. (B) 01520t <<. (C) 025t =. (D) 025t >.【答案】C【详解】在025t =时,乙比甲多跑10m,而最开始的时候甲在乙前方10m 处. (5)设α为n 维单位列向量,E 为n 阶单位矩阵,则 (A) TE -αα不可逆. (B) TE +αα不可逆. (C) T 2E +αα不可逆. (D) T2E -αα不可逆.【答案】A【详解】可设T α=(1,0,,0),则T αα的特征值为1,0,,0,从而T αα-E 的特征值为011,,,,因此T αα-E 不可逆.(6)设有矩阵200021001A ⎛⎫ ⎪= ⎪ ⎪⎝⎭,210020001B ⎛⎫ ⎪= ⎪ ⎪⎝⎭,122C ⎛⎫ ⎪= ⎪ ⎪⎝⎭(A)A 与C 相似,B 与C 相似. (B) A 与C 相似,B 与C 不相似.(C) A 与C 不相似,B 与C 相似. (D) A 与C 不相似,B 与C 不相似. 【答案】B【详解】,A B 的特征值为221,,,但A 有三个线性无关的特征向量,而B 只有两个,所以A 可对角化,B 则不行.(7)设,A B 为随机事件,若0()1P A <<,0()1P B <<,则(|)(|)P A B P B A >的充分必要条件(A) (|)(|)P B A P B A >. (B) (|)(|)P B A P B A <. (C) (|)(|)P B A P B A >. (D) (|)(|)P B A P B A <.【答案】A【详解】由(|)(|)P A B P A B >得()()()()()()1()P AB P AB P A P AB P B P B P B ->=-,即()>()()P AB P A P B ;由(|)(|)P B A P B A >也可得()>()()P AB P A P B . (8)设12,,,(2)n X X X n 为来自总体(,1)N μ的简单随机样本,记11ni i X X n ==∑,则下列结论不正确的是 (A)21()nii X μ=-∑服从2χ分布 . (B) 212()n X X -服从2χ分布.(C)21()nii XX =-∑服从2χ分布. (D) 2()n X -μ服从2χ分布.【答案】B【详解】222211~(0,1)()~(),()~(1)1n ni i i i i X N X n X X n ==----∑∑μμχχ; 221~(,),()~(1);X N n X n-μμχ2211()~(0,2),~(1)2n n X X X X N --χ.二、填空题:9~14小题,每小题4分,共24分.请将答案写在答题纸...指定位置上. (9)已知函数21(),1f x x=+(3)(0)f = . 【答案】0 【详解】2421()1(11)1f x x x x x==-++-<<+,没有三次项.(10)微分方程032=+'+''y y y 的通解为 .【答案】12e ()xy C C -=+【详解】特征方程2230r r ++=得1r =-,因此12e ()x y C C -=+.(11)若曲线积分⎰-+-L y x aydy xdx 122在区域{}1),(22<+=y x y x D 内与路径无关,则=a. 【答案】1-【详解】有题意可得Q Px x∂∂=∂∂,解得1a =-. (12)幂级数111)1(-∞=-∑-n n n nx 在(-1,1)内的和函数()S x = .【答案】21(1)x + 【详解】112111(1)[()](1)n n n n n nxx x ∞∞--=='-=--=+∑∑.(13)⎪⎪⎪⎭⎫ ⎝⎛=110211101A ,321ααα,,是3维线性无关的列向量,则()321,,αααA A A 的秩为 .【答案】2【详解】123(,,)()2r r ααα==A A A A(14)设随即变量X 的分布函数4()0.5()0.5()2x F x x -=Φ+Φ,其中)(x Φ为标准正态分布函数,则EX = . 【答案】2 【详解】00.54()d [0,5()()]d 222x EX xf x x x x x +∞+∞-∞-==+=⎰⎰ϕϕ. 三、解答题:15~23小题,共94分.解答应写出文字说明、证明过程或演算步骤.请将答案写在答题纸...指定位置上. (15)(本题满分10分).设函数(,)f u v 具有2阶连续偏导数,(e ,cos ),xy f x =求2200,x x dyd y dxdx==.【答案】(e ,cos )x y f x =()''12'12''''''''''111212122222''''11122sin ,0(1,1)sin (sin )sin cos 0(1,1)(1,1)(1,1)x x x x x dyf e f x dx dy x f dx d y f e f x e f e f e f x x f x dx d y x f f f dx ∴=-∴===-+---==+- (16)(本题满分10分).求2limln(1)n k kn n→∞+.【答案】212221120012202lim ln(1)1122lim ln(1)ln(1)...ln(1)11122lim ln(1)ln(1)...ln(1)1ln(1)ln(1)21111ln(1)02211111ln 2221n k n n k k nn n n n n n n n n n n n n n n n n n x x dx x d x x x x dxx x ∞→∞=→∞→∞+⎛⎫=++++++ ⎪⎝⎭⎛⎫=++++++ ⎪⎝⎭=+=+=+-+-+=-∑⎰⎰⎰1011002111ln 2[(1)]22111111ln 2[()ln(1)]002221111ln 2(1ln 2)2224dxxx dx dx xx x x +=--++=--++=--+=⎰⎰⎰(17)(本题满分10分).已知函数)(x y 由方程333320x y x y +-+-=确定,求)(x y 的极值. 【答案】333320x y x y +-+-=①,方程①两边对x 求导得:22''33330x y y y +-+=②,令'0y =,得233,1x x ==±.当1x =时1y =,当1x =-时0y =.方程②两边再对x 求导:'22''''66()330x y y y y y +++=,令'0y =,2''6(31)0x y y ++=,当1x =,1y =时''32y =-,当1x =-,0y =时''6y =. 所以当1x =时函数有极大值,极大值为1,当1x =-时函数有极小值,极小值为0.(18)(本题满分10分).设函数()f x 在区间[0,1]上具有2阶导数,且(1)0f >,0()lim 0x f x x+→<.证明: (I )方程()0f x =在区间(0,1)内至少存在一个实根;(II )方程2()''()['()]0f x f x f x +=在区间(0,1)内至少存在两个不同实根. 【答案】 (1)()lim 0x f x x+→<,由极限的局部保号性,(0,),()0c f c δ∃∈<使得,又(1)0,f >由零点存在定理知,(c,1)ξ∃∈,使得,()0f ξ=.(2)构造()()'()F x f x f x =,(0)(0)'(0)0F f f ==,()()'()0F f f ξξξ==,()lim 0,'(0)0,x f x f x +→<∴<由拉格朗日中值定理知(1)(0)(0,1),'()010f f f ηη-∃∈=>-,'(0)'()0,f f η<所以由零点定理知1(0,)(0,1)ξη∃∈⊂,使得1'()0f ξ=,111()()'()0,F f f ξξξ∴== 所以原方程至少有两个不同实根。
2020全国硕士研究生入学统一考试数学一试题详解一、选择题:1~8小题,每小题4分,共32分,下列每小题给出的四个选项中,只有一项符合题目要求的,请将所选项前的字母填在答题纸...指定位置上. (1)当0x +→时,下列无穷小量中最高阶是( )(A )()21xt e dt -⎰(B )(0ln 1xdt +⎰(C )sin 20sin xt dt ⎰(D )1cos 0-⎰【答案】(D )【解析】由于选项都是变限积分,所以导数的无穷小量的阶数比较与函数的比较是相同的。
(A )()()222011x t x e dt e x '-=-~⎰(B )(()(0ln 1ln 1x dt x'+=⎰(C )()()sin 2220sin sin sin xt dt x x '=⎰(D )()1cos 3012xx x-'=⎰经比较,选(D )(2)设函数()f x 在区间()1,1-内有定义,且()0lim 0,x f x →=则( )(A )当0x →=时,()f x 在0x =处可导。
(B )当0x →=时,()f x 在0x =处可导。
(C )当()f x 在0x =处可导时,0x →=。
(D )当()f x 在0x =处可导时,0x →=【答案】(C )【解析】当()f x 在0x =处可导,且()0lim 0x f x →=,则有()00f =,0()lim 0x f x x→=(()f x为x 的高阶无穷小量),所以00x →=,选(C )。
(3)设函数(),f x y 在点()0,0处可微,()0,00,00,,,1f f f n x y ()⎛⎫∂∂==- ⎪∂∂⎝⎭,非零向量n与α垂直,则( ) (A )()(,0,0lim0x y →存在(B )()(,0,0lim0x y →=存在(C )()(,0,0lim0x y →存在(D )()(,0,0lim0x y →存在【答案】(A ) 【解析】由题意可知,(,)(,)limlimx y x y →→(,)limx y →=由于函数(),f x y 在点()0,0处可微,所以(,)lim0x y →,选(A )。
学科数学考研高数真题题型学科数学考研高数真题题型作为考研生,高等数学是我们必须要掌握的一门学科。
高数的考试题型多样,涵盖了数学的各个方面,要想在考试中取得好成绩,我们需要对不同的题型进行充分的了解和准备。
一、选择题选择题是高数考试中常见的题型之一。
在选择题中,考生需要在给出的几个选项中选择一个正确的答案。
这种题型对考生的记忆和理解能力有一定的要求。
在解答选择题时,我们应该先仔细阅读题目,理解题目的意思,然后根据自己的知识来选择正确的答案。
有时候,我们还需要进行一些计算或推理,才能找到正确的答案。
二、填空题填空题是高数考试中另一种常见的题型。
在填空题中,考生需要根据题目给出的条件,填写正确的答案。
填空题对考生的记忆和计算能力有一定的要求。
在解答填空题时,我们应该先仔细阅读题目,理解题目的意思,然后根据给出的条件进行计算,最后填写正确的答案。
有时候,我们还需要根据已知的条件进行推理,才能找到正确的答案。
三、证明题证明题是高数考试中相对较难的题型之一。
在证明题中,考生需要根据给出的条件,通过一系列的推理和演绎,得出结论。
证明题对考生的逻辑思维和推理能力有很高的要求。
在解答证明题时,我们应该先仔细阅读题目,理解题目的意思,然后根据给出的条件进行推理,最后得出结论。
在证明过程中,我们需要运用到一些数学定理和方法,所以我们在平时的学习中要多加强对数学定理和方法的理解和掌握。
四、应用题应用题是高数考试中相对较难的题型之一。
在应用题中,考生需要根据给出的实际问题,应用数学知识进行计算和分析。
应用题对考生的综合能力和应用能力有很高的要求。
在解答应用题时,我们应该先仔细阅读题目,理解题目的意思,然后根据给出的实际问题进行分析和计算,最后得出正确的答案。
在应用题中,我们需要综合运用到多个数学概念和方法,所以我们在平时的学习中要注重对数学知识的整合和应用能力的培养。
总结起来,高数考试题型多样,每一种题型都对考生的不同能力有一定的要求。
2020考研数学复习:高数必考的38个知识点暑假是考研路上或不可缺的黄金时光,大家一定要在这个时间里面好好的抓紧时间复习,下面由小编为你精心准备了“2020考研数学复习:高数必考的38个知识点”,持续关注本站将可以持续获取更多的考试资讯!2020考研数学复习:高数必考的38个知识点一、函数极限连续1、正确理解函数的概念,了解函数的奇偶性、单调性、周期性和有界性,理解复合函数、反函数及隐函数的概念。
2、理解极限的概念,理解函数左、右极限的概念以及极限存在与左右极限之间的关系。
掌握利用两个重要极限求极限的方法。
理解无穷小、无穷大以及无穷小阶的概念,会用等价无穷小求极限。
3、理解函数连续性的概念,会判别函数间断点的类型。
了解初等函数的连续性和闭区间上连续函数的性质(最.大值、最小值定理和介值定理),并会应用这些性质。
重点是数列极限与函数极限的概念,两个重要的极限:lim (sinx/x)=1,lim(1+1/x)=e,连续函数的概念及闭区间上连续函数的性质。
难点是分段函,复合函数,极限的概念及用定义证明极限的等式。
二、一元函数微分学1、理解导数和微分的概念,导数的几何意义,会求平面曲线的切线方程,理解函数可导性与连续性之间的关系。
2、掌握导数的四则运算法则和一阶微分的形式不变性。
了解高阶导数的概念,会求简单函数的n阶导数,分段函数的一阶、二阶导数。
会求隐函数和由参数方程所确定的函数的一阶、二阶导数及反函数的导数。
3、理解并会用罗尔中值定理,拉格朗日中值定理,了解并会用柯西中值定理。
4、理解函数极值的概念,掌握函数最.大值和最小值的求法及简单应用,会用导数判断函数的凹凸性和拐点,会求函数图形水平铅直和斜渐近线。
5、了解曲率和曲率半径的概念,会计算曲率和曲率半径及两曲线的交角。
6、掌握用罗必塔法则求未定式极限的方法,重点是导数和微分的概念,平面曲线的切线和法线方程函数的可导性与连续性之间的关系,一阶微分形式的不变性,分段函数的导数。
2020哈工大数分1. 判断以下命题成立与否,并给出证明(1) f (x )在x =0的任意领域上无界,则当x →0时,f (x )为无穷大。
(2) 数列{a n }的无穷多个子列都收敛于a ,是否可以断定lim n→∞a n =a 。
(3) 设f (x )在有限闭区间[a,b ]上处处都可导,则f ′(x )有界。
(4) 非负数列{u n }满足u n =o (1n ),则∑u n ∞n=1收敛。
(5) 设f (x,y )在(0,0)上的偏导数都存在,则f (x,y )在(0,0)上连续。
2. 设lim n→∞a n =a ,证明lim n→∞12a 1+23a 2+⋯+n n +1n =a 3. 叙述闭区间连续函数的Cantor 定理,并证明。
4. 函数f (x )在(0,a ]上可导,则(1) √xf ′(x )在(0,a ]上有界,求证f (x )在(0,a ]上一致连续; (2) lim x→0+√xf ′(x )在(0,a ]上存在,求证f (x )在(0,a ]上一致连续。
5. 函数f (x )在[a,b ]上具有连续的二阶导数,则存在c ∈[a,b ],使得∫f (x )dx ba=(b −a )f (a +b 2)+124(b −a )3f ′′(c ) 6. 讨论∑ln (1+(−1)n n p )∞n=1的收敛性和绝对收敛性(p >0)7. (1) 数列的和∑u n ∞n=1在区间I 上一致收敛,求证其一般项u n 在I 上一致收敛于0;(2) 讨论级数∑2n sin 13n x∞n=1在x >0上的一致收敛性。
8. (1) 方程:x 2+2y +cos (xy )=0在(0,0)的充分小领域上确定唯一的连续函数y =y (x ),使y =y (0) (2) 讨论y =y (x )在x =0处的可微性 (3) 求极限lim x→0y (x )x9. 求极限lim t→0+1t4∭sin√(x2+y2+z2)dxdydz x2+y2+z2≤t210.求I=∬(x2+az2)dydz+(y2+ax2)dzdx+(z2+ay2)dxdy sS为上半球z=√a2−x2−y2的上侧。
2020年全国硕士研究生招生考试数学(三)(科目代码:303)一、选择题(1〜8小题,每小题4分,共32分.下列每题给出的四个选项中,只有一个选项是符合题目要求的,请将所选项前的字母写在题后的括号内.)(1)设1口心—°= b,则lim sinfQ)—sina=().x-^a x——a x-*a3C——a(A)6sin a(B)6cos a(C)6sin/(a)iIn I14-rr I(2)函数心)=二的第二类间断点的个数为((e—1)(j?—2)(A)l(B)2(03(3)设奇函数心)在(-00,-1-00)上具有连续导数,则().(A)f[cos/"(/)+/^(Olldr是奇函数J0(E)「[cos/(i)+/(O]d^是偶函数J0(C)[[cos/"'(/)+y(t)]d/是奇函数J0(D)「[cos是偶函数J0(D)bcos/(a) ).(D)4(4)设幕级数—2)"的收敛区间为(一2,6),则工a”Q+l)2n的收敛区间为().n=\n=1(A)(-2,6)(B)(-3,l)(0(-5,3)(D)(-17,15)(5)设4阶矩阵A=(a“)不可逆,a*的代数余子式A12丰O,aj,a2,a3,a,为矩阵A的列向量组,A*为A的伴随矩阵,则方程组A*X=0的通解为().(A)X=^1a1+^2a2+^3a3,其中k x,k2,k.为任意常数(B)X=^1a1+k2a2+k3a4,其中k,,k2,k3为任意常数(C)X=bS+展as+匕。
4,其中紅,k2,k3为任意常数(D)X=k i a2k2a3+怂。
4,其中ki,k2^k3为任意常数(6)设A为3阶矩阵,a】,a?为A的属于特征值1的线性无关的特征向量,as为A的属于特征I1°°\值一1的特征向量,则满足P_1AP=0-10的可逆矩阵卩为().'o01'(A)(a j a3,a2,—a3)(B)(a〕+ct2,a2,—a3)(C)(a1+a3,—a3,a2)(D)(a T+a2»—a3,a2)(7)设A,B,C为三个随机事件,且PC A)=P(£)=P(C)=±,P(AB)=O,P(AC)=P(BC)=2,412则A,B,C中恰有一个事件发生的概率为().3215(A)Z(B)T(C)7(D)12(8)设随机变量(X,Y)服从二维正态分布N(0,0;1,4;-,则下列随机变量中服从标准正态分布且与X相互独立的是().(A)啤(X+Y)(B)尝(X—丫)55(C)y(X+Y)(D)y(X-Y)二、填空题(9〜14小题,每小题4分,共24分.请将答案写在题中的横线上.)(9)设z=arctanRy+sin(z+了)],贝0dz|(0,…)=______.(10)曲线jc y+e2iy=0在点(0,—1)处的切线方程为________.(H)设某厂家生产某产品的产量为<2,成本C(Q)=100+13Q,该产品的单价为/,需求量—2,则该厂家获得最大利润时的产量为(12)设平面区域。