如何画位似图形
- 格式:doc
- 大小:183.50 KB
- 文档页数:2
如何画位似图形位似变换是新课程标准中涉及的一个重要知识点,它是图形变换的一种,实际上它是相似变换的一种特殊情形,存在位似中心———即对应顶点连线的交点.其位似比就是相似比.作为一个新的知识点,越来越受到中考命题者的青睐.图形放大、缩小通常用位似变换的思想作图,位似中心的位置可在图形顶点处、图形边上、图形内部、图形外部.本文以一道中考题为例介绍几种常见画法,供同学们参考.(锦州)如图1,己知四边形ABCD ,用尺规将它放大,使放大前后的图形对应线段的比为1:2.画法一:延长AD 到1D ,使1DD AD =,延长AC 到点1C ,使1CC AC =,延长AB 到点1B ,使1BB AB =,连接11D C ,11C B ,则四边形1111A B C D 即为所求(如图2). 说明:延长AD 得到1D 后,也可以过点1D 作11D C DC ∥,交AC 的延长线于1C ,再过点1C 作11B C BC ∥,交AC 的延长线于1B ,得到四边形1111A B C D . 画法二:延长DA 到点1D ,使12A D A D =,延长CA 到点1C ,使12A C A C =,延长BA 到点1B ,使12AB AB =连接11B C ,11C D ,则四边形1111A B C D 即为所求(如图3).画法三:任取一点O ,连接OA 并延长到点1A ,使1A A O A =,连接OB 并延长到点1B ,使1BB OB =、连接OC 并延长到点1C ,使1CC OC =,连接OD 并延长到点1D ,使1DD OD =,顺次连接11A B ,11B C ,11C D ,11D A ,则四边形1111A B C D 即为所求(如图4).运用这些作图方法可以解决不少数学问题.现举例说明:例 如图5,在给定的锐角ABC △中,求作一个正方形DEFG ,使D E ,落在BC 上,F G ,分别落在AC AB ,边上,要求写出画法.画法:第一步:画一个有三个顶点落在ABC △两边上的正方形D E F G ''''(如图5);第二步:连接BF '并延长交AC 于点F ;第三步:过F 点作FE BC ⊥,垂足为点E ;第四步:过F 作FG BC ∥交AB 于点G ;第五步:过G 作GD BC ⊥,垂足为点D .四边形DEFG 即为所求的正方形.(如图5)想一想:为什么四边形DEFG 是正方形?请读者思考.。
位似图形的画法中考题例析山东王芳两个多边形不仅相似,而且对应顶点的连线相交于一点,并且对应边互相平行,像这样的两个图形叫做位似图形(homothetic figures),这个交点叫做位似中心,这时的相似比又称为位似比。
[1]有必要声明,位似图形的标准定义应是:如果两个图形不仅是相似图形,且对应点连线相交于一点,对应线段相互平行,那么这样的两个图形叫做位似图形,位似图形对应点连线的交点是位似中心。
作图步骤位似比,即位似图形的相似比,指的是要求画的新图形与参照的原图形的相似比①首先确定位似中心,位似中心的位置可随意选择;②确定原图形的关键点,如四边形有四个关键点,即它的四个顶点;③确定位似比,根据位似比的取值,可以判断是将一个图形放大还是缩小;④符合要求的图形不惟一,因为所作的图形与所确定的位似中心的位置有关,并且同一个位似中心的两侧各有一个符合要求的图形,最好做两个。
1.两图形相似.2.每组对应点所在直线都经过同一点.同时满足上述两个条件的两个图形才叫做位似图形.两条件缺一不可.此时,把这个点叫做位似中心.这时的相似比叫做位似比.若两个多边形不仅相似,而且对应点的连线相交于一点,像这样的相似叫做位似.这个交点叫做位似中心,这样的两个图形称为位似图形.学习了位似图形,我们不仅要掌握位似图形的性质,而且要会画位似图形.一、在平面直角坐标内画位似图形.例1(江苏省淮安市2006年中考题)如图,已知O是坐标原点,B、C两点的坐标分别为(3,-1)、(2,1).(1)以0点为位似中心在y轴的左侧将△OBC放大到两倍(即新图与原图的相似比为2),画出图形;(2)分别写出B、C两点的对应点B′、C′的坐标;(3)如果△OBC内部一点M的坐标为(x,y),写出M的对应点M′的坐标.图 1 图2 例2 (2006年福建南平)如图3,已知△ABC的三个顶点坐标如下表:(1)将下表补充完整,并在直角坐标系中,画出△A′B′C′;图3(2)观察△ABC与△A′B′C′,写出有关这两个三角形关系的一个正确结论.二、网格中的位似图形例3(2006年广西南宁)如图5,正方形网格中有一条简笔画“鱼”,请你以点O为位似中心放大,使新图形与原图形的对应线段的比是2∶1(不要求写作法).(x,y)(2x,2y)A(2,1) A′(4,2)B(4,3) B′( , )C(5,1) C′( , )图5例4 (2006年广东省)如图6,图中的小方格都是边长为1的正方形, △ABC 与△A′ B′ C′是关于点0为位似中心的位似图形,它们的顶点都在小正方形的顶点上.图 6图7(1)画出位似中心点0;(2)求出△ABC 与△A′B′C′的位似比;(3)以点0为位似中心,再画一个△A 1B 1C 1,使它与△ABC 的位似比等于1.5.分析:(1)要确定△ABC 与△A′ B′ C′的位似中心,只要连结A′A ,C′C 并延长,其交点即为位似中心O.(2)位似比即对应边的比,可以通过计算对应边的长求出位似比,位似比也等于A OA 'O ;(3)要画△A 1B 1C 1,使其与△ABC 的位似比等于1.5,只要根据位似比确定点A 1、B 1、C 1点的位置,然后顺次连结即可.解:(1)连结A′A 并延长,连结C′C 并延长,A′A 的延长线与C′C 的延长线的交点,即为位似中心0.(2)因为A OA 'O =21,所以△ABC 与△A′B′C′的位似比 1:2 ; (3)如图7,所示,此时23111===OC OC OB OB OA OA .分析 :本题是一道在直角坐标系内画位似图形的试题,根据位似比为2∶1,可延长BO 到B′,使OB′=2BO ,延长CO 到C′,使C′O=2CO ,连结B′C′,则△OB′C′即位所作的位似图形.进一步可以求到B′、C′点的坐标.解:(1)延长BO 到B′,使B′O=2BO ,延长CO 到C′,使C′O=2CO ,连结B′、C′.则△OB′C′即为△OBC 的位似图形(如图2).(2)观察可知B′(-6,2),C′(-4,-2).(3)M′(-2x .-2y).2、分析: 本题的一道集点的坐标变换,作图,探究图形之间关系的于一体的中考试题.首先根据表格信息确定点的B′、C′两点的坐标,在直角坐标系中描出A′、B′、C′三点的坐标,得到△A′B′C′,然后根据两个三角形之间的关系,写出正确结论.解:(1)根据表格信息可知点B′的坐标为(8,6),点C′的坐标为(10,2).描出这A′、B′、C′三点的坐标,可得到△A′B′C′(如图4)(2)观察两个三角形,可知△ABC ∽△A′B′C′两个三角形的是以原点为位似中心的位似三角形,△ABC 与△A′B′C′的位似比为1∶2图43、分析:要做出“鱼”关于点O 成位似中心的位似图形,则只要作出点A 、B 、C 以点O 为位似中心,且位似比为2:1的位似点A′、B′、C′、D′,然后顺次连接A′B′、B′C′、C′D′、D′A′即可得到“鱼”的位似图形解:连接OA 、OB 、OC 、OD 并延长到A′、B′、C′、D′使OA′:OA=OB′:OB=OC′:OC=OD′:OD=2:1顺次连接A′B′、B′C′、C′D′、D′A′,所得图形即为“鱼ABCD”的位似图形(如图5) (辽宁省锦州中考题)如图1,己知四边形ABCD ,用尺规将它放大,使放大前后的图形对应线段的比为1:2.画法一:延长AD 到1D ,使1DD AD =,延长AC 到点1C ,使1CC AC =,延长AB 到点1B ,使1BB AB =,连接11D C ,11C B ,则四边形1111A B C D 即为所求(如图2).说明:延长AD 得到1D 后,也可以过点1D 作11D C DC ∥,交AC 的延长线于1C ,再过点1C 作11B C BC ∥,交AC 的延长线于1B ,得到四边形1111A B C D .画法二:延长DA 到点1D ,使12AD AD =,延长CA 到点1C ,使12AC AC =,延长BA 到点1B ,使12AB AB =连接11B C ,11C D ,则四边形1111A B C D 即为所求(如图3).画法三:任取一点O ,连接OA 并延长到点1A ,使1AA OA =,连接OB 并延长到点1B ,使1BB OB =、连接OC 并延长到点1C ,使1CC OC =,连接OD 并延长到点1D ,使1DD OD =,顺次连接11A B ,11B C ,11C D ,11D A ,则四边形1111A B C D 即为所求(如图4).运用这些作图方法可以解决不少数学问题.现举例说明:例 如图5,在给定的锐角ABC △中,求作一个正方形DEFG ,使D E ,落在BC 上,F G ,分别落在AC AB ,边上,要求写出画法.画法:第一步:画一个有三个顶点落在ABC △两边上的正方形D E F G ''''(如图5); 第二步:连接BF '并延长交AC 于点F ;第三步:过F 点作FE BC ⊥,垂足为点E ;第四步:过F 作FG BC ∥交AB 于点G ;第五步:过G 作GD BC ⊥,垂足为点D .四边形DEFG 即为所求的正方形.(如图5)想一想:为什么四边形DEFG 是正方形?请读者思考.。
如何画位似图形位似变换是新课程标准中涉及的一个重要知识点,它是图形变换的一种,实际上它是相似变换的一种特殊情形,存在位似中心———即对应顶点连线的交点.其位似比就是相似比.作为一个新的知识点,越来越受到中考命题者的青睐.图形放大、缩小通常用位似变换的思想作图,位似中心的位置可在图形顶点处、图形边上、图形内部、图形外部.本文以一道中考题为例介绍几种常见画法,供同学们参考.(辽宁省锦州中考题)如图1,己知四边形ABCD ,用尺规将它放大,使放大前后的图形对应线段的比为1:2.画法一:延长AD 到1D ,使1DD AD =,延长AC 到点1C ,使1CC AC =,延长AB 到点1B ,使1BB AB =,连接11D C ,11C B ,则四边形1111A B C D 即为所求(如图2). 说明:延长AD 得到1D 后,也可以过点1D 作11DC DC ∥,交AC 的延长线于1C ,再过点1C 作11B C BC ∥,交AC 的延长线于1B ,得到四边形1111A B C D . 画法二:延长DA 到点1D ,使12A D A D =,延长CA 到点1C ,使12A C A C =,延长BA 到点1B ,使12AB AB =连接11B C ,11C D ,则四边形1111A B C D 即为所求(如图3).画法三:任取一点O ,连接OA 并延长到点1A ,使1AA OA =,连接OB 并延长到点1B ,使1BB OB =、连接OC 并延长到点1C ,使1CC OC =,连接OD 并延长到点1D ,使1DD OD=,顺次连接11A B ,11B C ,11C D ,11D A ,则四边形1111A B C D 即为所求(如图4). 运用这些作图方法可以解决不少数学问题.现举例说明:例 如图5,在给定的锐角ABC △中,求作一个正方形DEFG ,使D E ,落在BC 上,F G ,分别落在AC AB ,边上,要求写出画法.画法:第一步:画一个有三个顶点落在ABC △两边上的正方形D E F G ''''(如图5); 第二步:连接BF '并延长交AC 于点F ;第三步:过F 点作FE BC ⊥,垂足为点E ;第四步:过F 作FG BC ∥交AB 于点G ;第五步:过G 作GD BC ⊥,垂足为点D .四边形DEFG 即为所求的正方形.(如图5)想一想:为什么四边形DEFG 是正方形?请读者思考.。
如何画位似图形
江苏 张继凤
位似变换是新课程标准中涉及的一个重要知识点,它是图形变换的一种,实际上它是相似变换的一种特殊情形,存在位似中心———即对应顶点连线的交点.其位似比就是相似比.作为一个新的知识点,越来越受到中考命题者的青睐.图形放大、缩小通常用位似变换的思想作图,位似中心的位置可在图形顶点处、图形边上、图形内部、图形外部.本文以一道中考题为例介绍几种常见画法,供同学们参考.
(辽宁省锦州中考题)如图1,己知四边形ABCD ,用尺规将它放大,使放大前后的图形对应线段的比为1:2.
画法一:
延长AD 到1D ,使1DD AD =,延长AC 到点1C ,使1CC AC =,延长AB 到点1B ,使1BB AB =,连接11D C ,11C B ,则四边形1111A B C D 即为所求(如图2). 说明:延长AD 得到1D 后,也可以过点1D 作11D C DC ∥,交AC 的延长线于1C ,再过点1C 作11B C BC ∥,交AC 的延长线于1B ,得到四边形1111A B C D . 画法二:
延长DA 到点1D ,使12AD AD =,延长CA 到点1C ,使12AC AC =,延长BA 到点1B ,使12AB AB =连接11B C ,11C D ,则四边形1111A B C D 即为所求(如图3).
画法三:
任取一点O ,连接OA 并延长到点1A ,使1AA OA =,连接OB 并延长到点1B ,使1BB OB =、连接OC 并延长到点1C ,使1CC OC =,连接OD 并延长到点1D ,使1DD OD =,顺次连接11A B ,11B C ,11C D ,11D A ,则四边形1111A B C D 即为所求(如图4).
运用这些作图方法可以解决不少数学问题.现举例说明: 例 如图5,在给定的锐角ABC △中,求作一个正方形DEFG ,使D E ,落在BC 上,F G ,分别落在AC AB ,边上,要求写出画法.
画法:
第一步:画一个有三个顶点落在ABC △两边上的正方形
D E F G ''''(如图5)
; 第二步:连接BF '并延长交AC 于点F ;
第三步:过F 点作FE BC ⊥,垂足为点E ;
第四步:过F 作FG BC ∥交AB 于点G ;
第五步:过G 作GD BC ⊥,垂足为点D .
四边形DEFG 即为所求的正方形.(如图5)
想一想:为什么四边形DEFG 是正方形?请读者思考.。