人教版四年级数学下册复习讲义
- 格式:doc
- 大小:601.00 KB
- 文档页数:33
人教版小学四年级数学下册总复习知识点人教版小学四年级数学下册总复习知识点第一单元四则运算1、加、减的意义和各部分间的关系(1)把两个数合并成一个数的运算,叫做加法。
(2)相加的两个数叫做加数。
加得的数叫做和。
(3)求两个数和其中一个加数的乘积的运算叫做减法。
(4)在减法中,已知的和叫做被就减数……。
减法是加法的逆运算。
(5)加法各部分间的关系:和=加数+加数加数=和-另一个加数(6)减法各部分间的关系:差=被减数-减数减数=被减数-差被减数=减数+差2、乘、除法的意义和各部分间的关系(1)求几个相同加数的和和的简便运算,叫做乘法。
(2)相乘的两个数叫做因数。
乘得的数叫做积。
(3)求两个因子和其中一个因子的乘积的运算叫做除法。
(4)在除法中,已知的积叫做被除数…… 。
除法是乘法的逆运算。
(5)乘法各部分间的关系:积=因数×因数因数=积÷另一个因数(6)除法各部分间的关系:商=被除数÷除数除数=被除数×商被除数=商×除数(7)有余数的除法,被除数=商×除数+余数3、加法、减法、乘法、除法统称为四则运算4、四则混和运算的顺序(1)在没有括号的算式里,如果只有加、减法,或者只有乘、除法,都要按(从左往右)的顺序计算;(2)在没有括号的算式里,如果既有乘、除法,又有加、减法,要先算(乘、除法),后算(加、减法);(先乘除,后加减)(3)有括号的公式,先数括号内侧,再数括号外侧。
5、有关0的计算①一个数和0相加,结果还得原数:a + 0 =a 0 + a = a②一个数减去0,结果还得这个数:a - 0 = a③一个数减去它自己,结果得零:a - a = 0④一个数和0相乘,结果得0:a × 0 = 0 ; 0 × a = 0⑤0除以一个非0的数,结果得0:0 ÷ a = 0⑥ 0不能做除数:a÷0 = (无意义)6、租船问题。
总复习总复习——四则运算本学期内容总结:{四则运算观察物体(二)运算定律小数的意义和性质三角形小数的加法和减法图形的运动(二)平均数与条形统计图数学广角——鸡兔同笼四则运算即加、减、乘、除,计算的话相信大家都会,但它们表示的意义以及什么时候使用哪种运算呢?我们就来复习一下例1、加、减、乘、除的概念(1)(),叫做加法。
相加的两个数叫做(),加得的数叫做()。
(2)(),叫做减法。
在减法中,已知的和叫做(),已知的加数叫做(),未知的加数叫做()。
(3)()叫做乘法。
相乘的两个数叫做(),乘得的数叫做()。
(4)()叫做除法。
例2、四则运算中,各部分的关系。
(1)加法各部分的关系:(2)减法各部分的关系:①()①()②()②()③()(3)乘法各部分的关系:(4)除法各部分的关系:①()①()②()②()③()(5)加法与减法互为逆运算,乘法与除法互为逆运算。
例3、四则运算的运算顺序:从()往()运算,先算()法,再算加减法()。
例4、括号有()括号、()括号、()括号,分别写作()、()、()。
例5、四则混合运算的顺序:步骤①:有括号,要先算()里面的式子。
从()往()运算,先算()括号的,再算()括号的,最后算()括号的。
步骤②:没有括号,也要从()往()运算。
先算()法,后算()法。
例6、在计算(200-36×47)÷44时,先算(),再算(),最后算()法,结果是()。
例7、650-320÷80,如果要改变运算顺序,先算减法,那么必须使用括号,算式是()。
例8、根据500÷125=4,4+404=408,804-408=396组成一个综合算式是()。
例9、与0相关的性质(1)一个数加上0,得()。
例如:5+0=5,9+0=9 。
(2)一个数减去0,得()。
例如:5-0=5,9-0=9 。
(3)当被减数等于减数,它们的差等于()。
例如:5-5=(),9-9=()。
人教版小学四年级数学下册同步复习与测试讲义第一章四则运算【知识点归纳总结】1、加减法的意义和各部分间的关系。
(1)把两个数合并成一个数的运算,叫做加法。
加法各部分间的关系:和=加数+加数加数=和-另一个数(2)已知两个数的和与其中一个加数,求另一个数的运算,叫做减法。
减法各部分间的关系:差=被减数-减数减数=被减数-差被减数=差+减数(3)加法和减法是互逆运算。
【经典例题】1.下列算式中,小括号可以省略不写的是()A.(48﹣12)÷9B.87﹣(23+37)C.49+(8×7)【分析】逐个分析选项,找出去掉小括号后运算顺序没有变化的算式即可.【解答】解:A:(48﹣12)÷9是先算小括号里面的减法,再算括号外的除法;去掉小括号后变成48﹣12÷9,是先算除法,再算加法;运算顺序变化了;B:87﹣(23+37)是先算小括号里面的加法,再算减法;去掉小括号后变成87﹣23+37,是先算减法,再算加法;运算顺序变化了;C:49+(8×7)是先算小括号里面的乘法,再算括号外的加法;去掉小括号后变成49+8×7,是先算乘法,再算加法,运算顺序没有变化.所以C选项的小括号可以省略不写.故选:C.【点评】本题考查了小括号的作用:改变运算的顺序.2、乘除法的意义和各部分间的关系。
(1)求几个相同加数的和的简便运算,叫做乘法。
乘法各部分间的关系:积=因数×因数因数=积÷另一个因数(2)已知两个因数的积与其中一个因数,求另一个因数的运算,叫做除法。
除法各部分间的关系:商=被除数÷除数除数=被除数÷商被除数=商×除数(3)乘法和除法是互逆运算。
【经典例题】2.下面的括号里应该填几?8×9﹣=25×6+20=74【分析】(1)先用8乘9,再用求出的积减去25即可;(2)先用74减去20,求出差,再用求出的差除以6即可.【解答】解:(1)8×9﹣25=72﹣25=47即:8×9﹣47=25;(2)(74﹣20)÷6=54÷6=9即:9×6+20=74;故答案为:47,9.【点评】解决本题逆着计算的顺序,根据加减法的互逆关系以及乘除法的互逆关系求解.3、关于“0”的运算(1)、“0”不能做除数;字母表示:a÷0错误(2)、一个数加上0还得原数;字母表示:a+0= a(3)、一个数减去0还得原数;字母表示:a-0= a(4)、被减数等于减数,差是0;字母表示:a-a = 0(5)、一个数和0相乘,仍得0;字母表示:a×0= 0(6)、0除以任何非0的数,还得0;字母表示:0÷a(a≠0)= 0(7)、0÷0得不到固定的商;5÷0得不到商.(8)被减数等于减数,差是0 。
人教版数学四年级下册第一单元四则运算知识点01:加法的意义和各部分间的关系1.把两个数合并成一个数的运算,叫做加法。
2.加法各部分的名称:相加的两个数叫做加数,加得的数叫做和。
3.加法各部分间的关系:和=加数+加数,加数-和=另一个加数。
知识点02:减法的意义和各部分间的关系1.已知两个数的和与其中的一个加数,求另一个加数的运算,叫做减法。
2.减法各部分的名称:在减法中,已知的和叫做被减数,其中的一个加数叫做减数,求得的另一个加数叫做差。
3.减法各部分间的关系:差-被减数=减数,减数=被减数-差,被减数=减数+差。
4.减法是加法的逆运算。
5.根据加、减法各部分间的关系可以进行加、减法的验算。
知识点03:乘法的意义和各部分间的关系1.求几个相同加数的和的简便运算,叫做乘法。
2.乘法各部分间的名称:相乘的两个数叫做因数,乘得的数叫做积。
3.乘法各部分间的关系:积=因数×因数,因数=积÷另一个因数。
知识点04:除法的意义和各部分间的关系1.已知两个因数的积与其中一个因数,求另一个因数的运算,叫做除法。
2.除法各部分的名称:在除法中,已知的积叫做被除数,已知的因数叫做除数,求出的未知因数叫做商。
3.没有余数的除法各部分间的关系:商=被除数÷除数,除数=被除数÷商,被除数=除数×商。
4.有余数的除法各部分间的关系:被除数=商×除数+余数,商=(被除数-余数)÷除数,除数=(被除数-余数)÷商。
5.余数一定比除数小6.除法是乘法的逆运算。
利用乘、除法的互逆关系来验算乘、除法算式。
知识点05:有关0的运算1.0在运算中的特点(1)在加法中,一个数加上0,还得原数;(2)在减法中,一个数减去0,仍得原数,被减数等于减数,差是0;(3)在乘法中,一个数和0相乘得0;(4)在除法中,0除以一个非0的数得0。
2. 0不能作除数注意:0作除数无意义。
人教版四年级下册期末数学复习《小数的加减法》专题讲义(知识归纳+典例讲解+同步测试)一、选择题1. 两个数相加,一个数增加1.4,另一个数减少0.7,和()。
A.增加2.1B.增加0.7C.减少0.7二、填空题皮皮在用竖式计算两个一位小数的加法时,把数位从前面对齐了,得到的结果是67.7,如图,正确的结果是(________)。
三、判断题小数加减法中,小数点对齐就是相同数位上的数对齐。
________四、其他计算列竖式计算.3.1−1.9= 5.6+2.3=7.8+4.3=9.4−6.5= 2.6+4.9= 6.1−5.3=五、连线题蜜蜂采蜜。
(连一连)六、选择题下列算式中,得数小于1的是()。
A.3.6−2.8B.0.6+0.9C.4.2−2.7下列各数中,与10最接近的是().A.9.98B.10.101C.9.99D.10.001甲−3.8=乙−0.8,则甲()乙.A.大于B.小于C.等于D.无法确定小明用竖式计算1.68加一个一位小数时,把数的末尾对齐了,结果得到2.2,正确的结果应该是()。
A.0.52B.3.88C.6.88D.1.16两个小数相加,一个加数增加1.2,另一个加数减少5.8,和()。
A.增加4.6B.增加7C.减少4.6D.减少7甲数比乙数多1.89,甲数是12.03,乙数是()A.13.92B.9.14C.10.14D.9.41甲数与乙数的和比甲数多4.3,比乙数多1.07,则甲数比乙数少().A.3.23B.5.37C.2.238.465−4.365的得数中的0()。
A.可以去掉B.不能去掉C.不能确定小华在计算1.39加一个一位小数时,错误地把数的末尾对齐,结果得到1.84,正确的得数应该是()A.5.89B.4.5C.0.45D.5.27计算3−2.75+时,比较合理的方法是()A.把小数化成分数计算B.把分数化成小数计算C.以上两种方法都可以七、填空题奇思在计算13.5+A时,把A的小数点向右移动了一位,得出的结果是19.3,正确的结果是(________)。
人教版小学四年级数学下册同步复习与测试讲义第一章四则运算【知识点归纳总结】1、加减法的意义和各部分间的关系。
(1)把两个数合并成一个数的运算,叫做加法。
加法各部分间的关系:和=加数+加数加数=和-另一个数(2)已知两个数的和与其中一个加数,求另一个数的运算,叫做减法。
减法各部分间的关系:差=被减数-减数减数=被减数-差被减数=差+减数(3)加法和减法是互逆运算。
【经典例题】1.下列算式中,小括号可以省略不写的是()A.(48﹣12)÷9B.87﹣(23+37)C.49+(8×7)【分析】逐个分析选项,找出去掉小括号后运算顺序没有变化的算式即可.【解答】解:A:(48﹣12)÷9是先算小括号里面的减法,再算括号外的除法;去掉小括号后变成48﹣12÷9,是先算除法,再算加法;运算顺序变化了;B:87﹣(23+37)是先算小括号里面的加法,再算减法;去掉小括号后变成87﹣23+37,是先算减法,再算加法;运算顺序变化了;C:49+(8×7)是先算小括号里面的乘法,再算括号外的加法;去掉小括号后变成49+8×7,是先算乘法,再算加法,运算顺序没有变化.所以C选项的小括号可以省略不写.故选:C.【点评】本题考查了小括号的作用:改变运算的顺序.2、乘除法的意义和各部分间的关系。
(1)求几个相同加数的和的简便运算,叫做乘法。
乘法各部分间的关系:积=因数×因数因数=积÷另一个因数(2)已知两个因数的积与其中一个因数,求另一个因数的运算,叫做除法。
除法各部分间的关系:商=被除数÷除数除数=被除数÷商被除数=商×除数(3)乘法和除法是互逆运算。
【经典例题】2.下面的括号里应该填几?8×9﹣=25×6+20=74【分析】(1)先用8乘9,再用求出的积减去25即可;(2)先用74减去20,求出差,再用求出的差除以6即可.【解答】解:(1)8×9﹣25=72﹣25=47即:8×9﹣47=25;(2)(74﹣20)÷6=54÷6=9即:9×6+20=74;故答案为:47,9.【点评】解决本题逆着计算的顺序,根据加减法的互逆关系以及乘除法的互逆关系求解.3、关于“0”的运算(1)、“0”不能做除数;字母表示:a÷0错误(2)、一个数加上0还得原数;字母表示:a+0= a(3)、一个数减去0还得原数;字母表示:a-0= a(4)、被减数等于减数,差是0;字母表示:a-a = 0(5)、一个数和0相乘,仍得0;字母表示:a×0= 0(6)、0除以任何非0的数,还得0;字母表示:0÷a(a≠0)= 0(7)、0÷0得不到固定的商;5÷0得不到商.(8)被减数等于减数,差是0 。
人教版小学四年级数学下册同步复习与测试讲义第八章平均数与条形统计图【知识点归纳总结】1. 平均数的含义及求平均数的方法1.平均数:是指在一组数据中所有数据之和再除以数据的个数.2.平均数的求解方法:用所有数据相加的总和除以数据的个数,需要计算才得求出.【经典例题】例1:参加某次数学竞赛的女生和男生人数的比是1:3,这次竞赛的平均成绩是82分,其中男生的平均成绩是80分,女生的平均成绩是()A、82分B、86分C、87分D、88分分析:根据题意,可找出数量间的相等关系:女生的平均成绩×1+男生的平均成绩×3=全班平均成绩×4,设女生的平均成绩是x,列并解方程即可.解:设女生的平均成绩是x,因为总成绩不变,由题意得,x×1+3×80=82×(1+3),x+240=328,x=328-240,x=88;或:[82×(1+3)-80×3]÷1,=(328-240)÷1,=88(分);答:女生的平均成绩是88分.故选:D.点评:解答此题关键是先求出全班的总成绩和男生的总成绩,然后求出女生的总成绩,进而求出女生的平均成绩.2.平均数问题求平均数问题是小学学习阶段经常接触的一类典型应用题,如“求一个班级学生的平均年龄、平均身高、平均分数…”平均数问题包括算术平均数、加权平均数、连续数和求平均数、调和平均数和基准数求平均数.解答这类应用题时,主要是弄清楚总数、份数、一份数三量之间的关系,根据总数除以它相对应的份数,求出一份数,即平均数.【经典例题】例1:在抗震救灾的日子里,解放军张叔叔前4天在一线共奋战了74小时,后3天平均每天在一线工作15小时,这一周,张叔叔平均每天在一线工作多少小时?分析:根据题意可以求出张叔叔在7天一共工作了几小时,用总的小时数除以总天数,就是要求的答案.解:(74+15×3)÷(4+3),=(74+45)÷7,=119÷7,=17(小时);答:这一周,张叔叔平均每天在一线工作17小时.点评:此题是典型的解答平均数应用题,关键在于确定“总数量”以及和总数量对应的总份数.例2:甲、乙、丙三种糖果每千克分别是14元、10元、8元.现把甲种糖果4千克,乙种糖果3千克,丙种糖果5千克混合在一起,问买2千克这种混合糖果需多少元?分析:用三种糖混合糖的总钱数除以总千克数就是三种糖混合后的平均价,再用平均价乘2千克就是要求的答案.解:甲、乙、丙三种糖混合后的平均价是:(14×4+10×3+8×5)÷(4+3+5),=126÷12,=10.5(元),买2千克混合糖果的价钱是:10.5×2=21(元),答:买2千克这种混合糖果需21元.点评:解答此题的关键是根据平均数的意义,先求出甲、乙、丙三种糖混合后的平均价,那2千克混合糖的价钱即可求出.3. 两种不同形式的单式条形统计图1.条形图定义:用一个单位长度表示一定的数量,根据数量的多少画成长短不同的条形,条形的宽度必须保持一致,然后把这些条形排列起来,这样的统计图叫做条形统计图.它可以表示出每个项目的具体数量.2.单式条形统计图只表示一种数据的变化情况,比较简单.【经典例题】例1:看图回答问题.(1)哪个季度的月平均销售量多?多多少?(2)从统计图中你还能发现什么信息?分析:(1)先分别求出第一季度和第三季度的月平均销售量,再比较哪个季度的月平均销售量多,进而求出多的具体的数量即可;(2)从统计图中我还能发现以下信息:一月销售120箱,二月销售110箱,三月销售130箱,七月销售195箱,八月销售190箱,九月销售185箱;其中二月销售的箱数最少,七月销售的箱数最多;等等.解:(1)第一季度的月平均销售量:(120+110+130)÷3,=360÷3,=120(箱),第三季度的月平均销售量:(195+190+185)÷3,=570÷3,=190(箱),190>120,190-120=70(箱);答:第三季度的月平均销售量多,多70箱.(2)从统计图中我还能发现以下信息:一月销售120箱,二月销售110箱,三月销售130箱,七月销售195箱,八月销售190箱,九月销售185箱;其中二月销售的箱数最少;七月销售的箱数最多;等等.点评:此题主要考查从条形统计图中获取信息,并根据信息解决问题;也考查了求平均数的方法:平均数=总数量÷总份数.4.两种不同形式的复式条形统计图复式条形统计图:是用一个单位长度表示一定的数量,根据数量的多少画成长短不同的直条,然后把这些直条按一定的顺序排列起来.从复式条形统计图中很容易看出两者数量的多少.复式条形统计图分类:根据直条的方向可以分为横向复式条形统计图和纵向复式条形统计图.①一般在数据种类较多,数据又不是非常大时使用纵向复式条形统计图;②在数据种类较少,每类数据又比较大时,使用横向复式条形统计图.这两种统计图的本质是一样的,只是表现形式不同.【特点】用直条的长短表示数量的多少.【优点】能清楚地看出数量的多少,便于比较两组数据的多少.复式条形统计图画法:1.准备尺子,铅笔,橡皮等画图工具.2.注意写单位,画纵坐标和横坐标,还有日期名字和横坐标上的“0”.3.假如位置有限,例如说0到10,到20,假如你写到200,位置绝对有限,你可以在0的上面画波浪线,然后写100(当然其他数也可以,但最标准的还是画闪电线).4.例如上图两者要有不同的颜色,假如没有色笔,第一个可以用阴影填充,第二个可以涂得严严实实或一个不涂,一个涂阴影.5.在每个图的上方都要写标题.【经典例题】例1:(1)从图上看出男生人数最多的是科技小组,女生人数最少的是数学小组,科技小组的总人数最多,数学小组的总人数最少.(2)通过计算,三个兴趣小组的总人数有39人,男生人数比女生人数多15人.数学小组再增加22人就和科技小组的人数一样多.分析:由图可知:数学小组男生有20人,女生有16人;文艺小组男生有18人,女生有27人;科技小组男生有39人,女生有19人.由以上数据求解.解:(1)39>20>18;科技小组的男生最多;16<19<27;数学小组的女生最少;数学:20+16=36(人);文艺:18+27=45(人);科技:39+19=58(人);58>45>36;科技小组的总人数最多,数学小组的总人数最少.(2)总人数:36+45+58=139(人);男生:20+18+39=77(人);女生:16+27+19=62(人);77-62=15(人);58-36=22(人);三个兴趣小组的总人数有139 人,男生人数比女生人数多15人.数学小组再增加22人就和科技小组的人数一样多.故答案为:科技,数学,科技,数学;139,15,22.点评:本题是复式条形统计图,这类题目先根据图例读出出数量,再由问题找出合适的数据求解.【同步测试】单元同步测试题一.选择题(共8小题)1.一个调查数据被呈现在一扇形图里,下面条形图()与这个扇形图显示的是相同的数据.A.B.C.D.2.一组数据中最大的数是26,最小的是18.下面的数中,()可能是这组数据的平均数.A.30B.23C.123.体操队原来有8名队员,平均体重35千克,现在增加1名体重是38千克的队员,现在体操队队员的平均体重是()A.35千克B.比35千克多一些C.比35千克少一些D.无法确定4.天利家园小区去年年底全部改用节能灯,赵阿姨家上半年节约用电40.2千瓦时,王伯伯家第三季度共节约18千瓦时.()家平均每月节约用电多.A.王伯伯家B.赵阿姨家C.两家一样多5.明明数学、英语、语文的平均分是95分,期中英语是91分,语文96分,数学是()分.A.90B.95C.986.在下面的两幅统计图中,用来表示某地1~6月份的晴天天数的变化情况最为合适的是()A.B.7.踢毽子比赛,小红所在的小组平均每人踢36个,小丽所在的小组平均每人踢32个下面说法正确的是()A.小红一定比小丽踢得多B.小红一定比小丽踢得少C.小红和小丽踢的个数一定相同D.无法确定谁踢得多8.如图,()可以表示下面哪种情况的统计.A.4个学生期末数学考试成绩B.四年级喜欢各项运动的男女生人数C.小明1﹣﹣8岁的身高D.蛋糕店的草莓蛋糕和芒果蛋糕最近5天的销售情况二.填空题(共8小题)9.五年级(1)班同学的身高情况分三段统计,结果如图.(1)这个班身高在1.50~1.59米范围内的男女生相差人.(2)从图中可以看出这个班男生共有人.(3)将合适答案的序号填在横线上.全班同学从高到矮排成一行,张林在第11个,他的身高可能是.A.1.49米B.1.58米C.1.61米10.常用的条形统计图有和两种,条形统计图可以清楚地看出数量的.11.如果条形统计图的纵轴是用0.5厘米表示40人,那么4厘米应表示人,在这个统计图上有一个直条上标有160人,那这个直条的高度应是厘米.12.西西期末三门功课,语文、英语平均分数是94分,要想平均分数提高2分,他的数学应考分.13.一桶水,需要2个人一起抬.3个人要把水从离家180米的地方抬回家,平均每个人要抬米.14.四年级的学生参加体能测试,其中7名同学的成绩如下:80,90,80,76,74,80,80(单位:分).他们的平均成绩是分.15.王大伯攒了一箱鸭蛋,共50个.他任意取出5个鸭蛋称得质量分别为76g、86g、81g、74g、83g,这箱鸭蛋大约重千克.16.3个数的平均数为10,如果把其中一个数改为9,这时3个数的平均数是11,这个被改动的数原来是.三.判断题(共5小题)17.纵向复式条形统计图比横向复式条形统计图表示的更明白..(判断对错)18.甲、乙、丙三个数的平均数是A,且甲>乙>丙,则A>丙.(判断对错)19.在生活中统计一组数据,可以制成条形统计图表示.(判断对错)20.一分钟跳绳,小丽前两次跳的平均数是120下,要使三次跳的平均数是125下,她第三次应跳135下(判断对错)21.小亮身高150cm,他在平均水深135cm的河中游泳,不会有危险.(判断对错)四.操作题(共1小题)22.德凯小学开展体育活动,小明对五(1)班同学的锻炼情况做了统计,并绘制了下面两幅统计图.(1)五(1)班参加体育锻炼的有人,参加的人数最多.(2)根据条件把条形统计图补充完整.五.应用题(共6小题)23.一辆汽车前2小时一共行160千米,后2小时分别行了70千米和50千米,这辆汽车平均每小时行多少千米?24.一批货物重9.8吨,运走了3.5吨.剩下的分3次运完,平均每次运多少吨?25.第一中学三个年级共有912名学生,每个年级有8个班,平均每个班有多少名学生?26.小明计划8天读完一本114页的故事书.前3天读了39页.如果要按计划读完,他从第4天起平均每天要读多少页?27.小萱、小丽、小红、小含四名同学,他们四人的平均身高是132厘米,小明的身高是142厘米,请你帮他们算一算,他们五人的平均身高是多少厘米?28.小文参加舞蹈比赛,7位评委的打分分别是:89分、99分、64分、90分、95分、88分、93分,去掉一个最高分和一个最低分,小文的平均得分是多少?参考答案与试题解析一.选择题(共8小题)1.【分析】由扇形统计图可知:白色占总数的50%,深颜色和浅颜色各占总数的25%;在条形统计图上白色的直条的高度是深色和浅色的2倍,而深色和浅色的直条高度相同.【解答】解:白色占总数的50%,深颜色和浅颜色各占总数的25%;画出条形统计图就是:故选:A.【点评】抓住扇形统计图、条形统计图的绘制特点,即可解决此类问题.2.【分析】因为在一组数中有最大的数,也有最小的数,根据平均数的含义:平均数是指在一组数据中所有数据之和再除以数据的个数;所以平均数比最大的数小,比最小的数大;进而得出结论.【解答】解:根据移多补少求平均数的含义可知:在一组数据中,平均数要比最大的数小,比最小的数大,30、23和12中只有23是大于18小于26的数,所以可能是这组数据的平均数.故选:B.【点评】解答此题应明确平均数的含义,根据平均数的含义进行判断即可.3.【分析】根据题意,用35乘8,求出体操队原来有8个队员的总体重,再加上38千克,即可求出现在体操队队员的平均体重,用现在体操队员的总重量除以总人数,列式解答即可.【解答】解:(35×8+38)÷(8+1)=318÷9≈35.3(千克)35.3>35答:现在体操队队员的平均体重比35千克多一些.故选:B.【点评】解答此题应根据平均数的意义,进行分析、解答即可.4.【分析】首先用40.2除以6,求出赵阿姨家平均每月节约的用电量;然后用18除以(3×3)求出王伯伯家平均每月节约的用电量;最后比较大小,判断出谁家平均每月节约用电多即可.【解答】解:40.2÷6=6.7(千瓦时)18÷(3×3)=18÷9=2(千瓦时)6.7>2答:赵阿姨家平均每月节约用电多.故选:B.【点评】此题主要考查了平均数的含义以及求法的应用.5.【分析】用三科的平均分乘3计算出三科的总成绩,再减去语文和英语成绩之和就是数学的成绩.【解答】解:95×3﹣(96+91)=285﹣187=98(分)答:数学得了98分.故选:C.【点评】此题主要考查平均数计算的灵活运用.关键是用平均分乘科数计算出三科的总成绩.6.【分析】根据折线统计图和条形统计图的特点进行判断.折线统计图可以清楚地反应实物的增减变化情况;条形统计图可以清楚地反应具体的数量.据此判断即可.【解答】解:根据统计图的特点,折线统计图可以清楚地反应实物的增减变化情况;条形统计图可以清楚地反应具体的数量.所以,要反应某地1~6月份的晴天天数的变化情况选折线统计图最为合适.故选:A.【点评】本题主要考查各种统计图的特点.7.【分析】根据平均数的意义可知,平均数只是反映的是一组数据的集中趋势,不表示这组数据中某一个具体数据,据此解答即可.【解答】解:根据平均数的意义可知,虽然知道小红所在的小组平均每人踢36个,比小丽所在的小组平均每人踢32个多,但是平均数只不表示这组数据中某一个具体数据,所以无法确定谁踢得多.故选:D.【点评】解答本题关键是深刻理解平均数的意义和计算方法.8.【分析】根据复式条形统计图的特点和作用,复式条形统计图可以反映两种或两种以上数量的多少,据此解答即可.【解答】解:A,表示4个学生期末数学考试成绩,用单式条形统计图;B,表示四年级喜欢各项运动的男、女生人数,必须用复式条形统计图;C,表示小明1﹣﹣8岁的身高,用单式统计图;D,表示蛋糕店的草莓蛋糕和芒果蛋糕最近5天的销售千克,可以用复式条形统计图,但是统计图中只有4项,所以不符合题意.故选:B.【点评】此题考查的目的是理解掌握条形统计图的特点及作用.二.填空题(共8小题)9.【分析】(1)用身高在1.50~1.59米范围内的男生人数减去女生人数即可解答;(2)把三段的男生人数加起来即可解答;(3)全班同学从高到矮排成一行,张林在第11个,因为男生身高在1.50~1.59米范围内的人数有12人;所以张林身高在1.50~1.59米范围内;即他的身高可能是1.58米.【解答】解:(1)12﹣10=2(人);答:这个班身高在1.50~1.59米范围内的男女生相差2人.(2)3+12+6=15+6=21(人);答:这个班男生共有21人.(3)班同学从高到矮排成一行,张林在第11个,因为男生身高在1.50~1.59米范围内的人数有12人;所以张林身高在1.50~1.59米范围内;即他的身高可能是1.58米;填B.故答案为:2,21,B.【点评】本题主要考查了学生根据统计图中的数据,以及分析数量关系,解答问题的能力.10.【分析】常用的条形统计图有单式和复式两种,条形统计图能很容易看出数量的多少;由此解答即可.【解答】解:常用的条形统计图有单式和复式两种,条形统计图可以清楚地看出数量的多少;故答案为:单式,复式,多少.【点评】此题应根据条形统计图分类和特点进行解答.11.【分析】在同一个条形统计图中,用固定的长度表示一定数量,本题中0.5厘米表示40人,看4厘米中有多少个这样的单位,然后乘以这个单位长底代表的人数就行了,用160人除以每个单位长度代表的人数,看有多少个单位长度,然后乘以这个单位长度的厘米数就行了.【解答】解:由题意知,4÷0.5×40=320(人),160÷40×0.5=2(厘米),故答案为:320,2.【点评】此题考查统计图纵轴的长度和单位长度代表的量之间的关系.12.【分析】根据“平均成绩×科目的数量=总成绩”算出语文、数学、英语三门功课的总成绩以及语文、英语两门功课的总成绩,进而用语文、数学、英语三门功课的总成绩减去语文和英语两门功课的总成绩即可求出数学成绩.【解答】解:(94+2)×3﹣94×2=96×3﹣188=288﹣188=100(分)答:他的数学应考100分.故答案为:100.【点评】解答此题的关键是:先根据平均数的计算方法求出三门课程的总成绩,然后分别减去语文、英语的成绩即可.13.【分析】一桶水总是有两个人抬,所以抬水的人共走了180×2=360米,然后根据平均数的意义,用360除以3就是平均每人要抬水的米数,据此解答即可.【解答】解:180×2÷3=360÷3=120(米)答:平均每人要抬120米.故答案为:120.【点评】本题的难点是理解一桶水总是有两个人抬,所以抬水的人共走了2个180米,而不是1个180米.14.【分析】先求出7名同学的的总成绩,再用总成绩除以7,即得他们的平均成绩.【解答】解:(80+90+80+76+74+80+80)÷7=560÷7=80(分)答:他们的平均成绩是80分.故答案为:80.【点评】此题考查了平均数的意义及求法,平均数=总数÷份数.15.【分析】用这5个鸭蛋的总克数除以5就是这5个鸭蛋平均每个的克数;再用平均每个的克数乘50后换算单位即可求得这箱鸭蛋大约一共重多少千克.【解答】解:(76+86+81+74+83)÷5=400÷5=80(克)80×50=4000(克)4000克=4千克答:这箱鸭蛋大约一共重4千克.故答案为:4.【点评】本题是考查平均数的意义及求法.要记住总数、个数及平均数三者之间的关系.16.【分析】先用原来的平均数乘3,先求出原来3个数的和,同理再求出后来3个数的和,两次和的差就是9比原数多了多少,进而求出原数.【解答】解:11×3﹣10×3=33﹣30=39﹣3=6答:这个被改动的数原来是6.故答案为:6.【点评】解决本题根据总数量=平均数×总份数,求出和的变化,从而得出改动的数是怎么变化的,从而解决问题.三.判断题(共5小题)17.【分析】条形统计图分为:单式条形统计图和复式条形统计图,前者只表示1个项目的数据,后者可以同时表示多个项目的数据;可以是纵向的,也可以是横向的.进而判断即可.【解答】解:根据条形统计图的特点可知:条形统计图的条形可以表示两种不同的数量,可以是纵向的,也可以是横向的.故答案为:×.【点评】此题考查了条形统计图的分类和特点.18.【分析】一组数的平均数要大于这组数中最小的数,要小于这组数中最大的数,由此判断.【解答】解:甲、乙、丙三个数的平均数是A,且甲>乙>丙,由此可知,甲数最大,丙数最小,那么:甲>A>丙;原题说法正确.故答案为:√.【点评】解决本题关键是明确:一组数的平均数要大于这组数中最小的数,要要小于这组数中最大的数.19.【分析】条形统计图能很容易看出数量的多少;折线统计图不仅容易看出数量的多少,而且能反映数量的增减变化情况;扇形统计图能反映部分与整体的关系;由此根据情况选择即可.【解答】解:在生活中统计一组数据,能够比较数量的多少;所以可以制成条形统计图表示,所以原题说法正确.故答案为:√.【点评】此题应根据条形统计图、折线统计图、扇形统计图各自的特点进行解答.20.【分析】要求小丽第三次应跳多少下,根据题意,先求出三次跳绳的总次数,然后求出前两次跳绳的总次数,用三次跳的总次数﹣前两次跳的总次数,即可得出结论.【解答】解:125×3﹣120×2=375﹣240=135(下)答:她第三次应跳135下.故答案为:√.【点评】此题是考查平均数知识的灵活运用情况,做题时应认真审题,找出前后数量间的关系,进而列式解答即可得出结论.21.【分析】平均数只能反映一组数据的平均水平,并不能反应这组数据的中所有数据的大小,河水的平均水深是135cm,可能有的地方水深超过150厘米,下水游泳可能存在危险,据此解答即可.【解答】解:平均数只能反映一组数据的平均水平,并不能反应这组数据的中所有数据的大小,河水的平均水深是135cm,可能有的地方水深超过135厘米,甚至超过150厘米,所以小亮下水游泳可能有危险,所以题干说法不正确.故答案为:×.【点评】此题主要考查了平均数的含义的应用,解答此题的关键是要明确:平均数只能反映一组数据的平均水平,并不能反应这组数据的中所有数据的大小.四.操作题(共1小题)22.【分析】(1)观察条形统计图发现,参加篮球的有20人;再观察扇形统计图可知,把总人数看成单位“1”,参加篮球的人数占总人数的40%,用20人除以40%即可求出参加体育锻炼的有多少人;比较扇形统计图上各部分的扇形占的区域,面积最大就是人数最多的,由此求解;(2)用(1)求出的总人数,分别乘各种运动占总人数的百分数,求出各种运动的人数,然后根据条形统计图的画法,画出条形统计图.【解答】解;(1)20÷40%=50(人)观察扇形统计图发现参加篮球锻炼的人数最多;即:五(1)班参加体育锻炼的有50人,参加篮球的人数最多.(2)足球:50×20%=10(人)其它:50×30%=15(人)乒乓球:50×(1﹣40%﹣30%﹣20%)=50×10%=5(人)统计图如下:故答案为:50,篮球.【点评】解决本题需要结合两种统计图的特点,找出需要的数据,求出各类体育运动的人数,从而解决问题.五.应用题(共6小题)23.【分析】平均速度=总路程÷总时间,总时间是(2+2)小时,总路程是(160+70+50),据此可列式解答.【解答】解:(160+70+50)÷(2+2)=(230+50)÷(2+2)=280÷4=70(千米/小时).答:这辆汽车平均每小时行70千米.【点评】本题考查了学生对平均速度=总路程÷总时间关系式的掌握情况.24.【分析】根据原有的吨数﹣运走的吨数=剩下的吨数,先求出剩下了多少吨,再除以次数3,即可得出平均每次运走多少吨.【解答】解:(9.8﹣3.5)÷3=6.3÷3=2.1(吨)答:平均每次运2.1吨.【点评】此题解答的关键是求出剩下的数量,然后根据平均数问题解答即可.25.【分析】用3×8求出共有班的个数,再用共有的学生人数除以共有的班数就是平均每个班有多少名学生.【解答】解:912÷(3×8)=912÷24=38(名)答:平均每个班有38名学生.【点评】此题主要考查了平均数的计算方法,总数÷总份数=平均数.26.【分析】先用114减去39求出剩下的页数,然后再除以剩下的天数5就是他从第4天起平均每天要读的页数.【解答】姐:(114﹣39)÷(8﹣3)=75÷5=15(页)答:他从第4天起平均每天要读15页.【点评】解答此题应根据平均数、数量和总数三者之间的关系进行解答.关键是求出剩下的页数.27.【分析】根据题干,四人的平均身高是132厘米,则他们的身高之和是132×4=528厘米,再加上小明的身高,即可求出5个人的总身高,再除以5,就是5人的平均身高.【解答】解:(132×4+142)÷5=(528+142)÷5=670÷5=134(厘米)答:5人的平均身高是134厘米.【点评】此题主要考查的是平均数的计算方法的应用.28.【分析】由题意知,共有7个得分,按从大到小顺序排列为:99、95、93、90、89、88、64.要求小文最后的平均得分是多少分,先求得去掉一个最高分(99)和一个最低分(64)后5个得分的和是多少,再除以5即可.【解答】解:(95+93+90+89+88)÷5=455÷5=91(分)答:小文的平均得分是91分.【点评】此题考查一组数据的平均数的求解方法:总数÷份数=平均数.。
第一单元:四那么运算【知识要点1】加减法的意义和各局部间的关系。
【重点内容】★把两个数合并成一个数的运算,叫做加法。
★相加的两个数叫做加数,加得的数叫做和。
★两个数的和与其中一个加数,求另一个加数的运算叫做减法。
★在减法中,的和叫做被减数,减得的数叫做差。
减法是加法的逆运算。
和=加数+加数加数=和-另一个加数差=被减数-减数减数=被减数-差被减数=加数+差【典型例题】根据864+325=1189直接写出下面两道题的得数。
1189-864= 1189-325=【知识要点2】乘除法的意义和各局部间的关系。
【重点内容】★求几个相同加数的和的简便运算,叫做乘法。
★相乘的两个数叫做因数,乘得的数叫做积。
★两个因数的积与其中一个因数,求另一个因数的运算叫做除法。
★在除法中,的积叫做被除数,除得的数叫做商。
除法是乘法的逆运算。
积=因数×因数因数=积÷另一个因数商=被除数÷除数除数=被除数÷商被减数=商×除数有余数的除法各局部间的关系:被除数÷除数=商……余数被除数=商×除数+余数除数=〔被除数-余数〕÷商商=〔被除数-余数〕÷除数余数=被除数-除数×商【典型例题】根据36×14=504直接写出下面两道题的得数。
504÷14= 504÷36=【知识要点3】有关0的运算【重点内容】★一个数加上0,还得原数。
★被减数等于减数,差是0。
★一个数减去0,还得原数。
★一个数和0相乘,仍得0。
★0除以一个非0的数,得0。
★两个不等于0的相同数相除,商一定是1。
★0不能作除数,0可以作被除数。
【典型例题】计算0÷27+5×0+4【知识要点4】四那么运算顺序【重点内容】★加、减、乘、除四种运算统称四那么运算。
★在没有括号的算式里,如果只有加、减法或者只有乘、除法,都要从左往右按顺序计算。
人教版小学四年级数学下册同步复习与测试讲义第二章观察物体(二)【知识点归纳总结】1.长方体的展开图长方体展开图形如下情况:【经典例题】1.图中的展开图,能沿着虚线刚好围成一个长方体的图形是()A.B.C.D.【分析】通过对这四个展开图的分析观察,和动手实践,发现A、C、D沿着虚线都不能围成长方体,只有B可以围成长方体.【解答】解:图中的展开图,能沿着虚线刚好围成一个长方体的图形是B;故选:B.【点评】此题考查长方体的A展开图,解决此题的关键是哪些面是相对的.2.正方体的展开图正方体展开图形如下情况:【经典例题】2.图中的小正方形一样大,把它折成立方体,在这个立方体中,阴影部分相对的面的号码是3.【分析】正方体的表面展开图,相对面之间一定相隔一个正方形,据此解答即可.【解答】解:正方体的表面展开图,相对面之间一定相隔一个正方形,由此可知,在折成的立方体中,阴影部分相对的面的号码是3,故答案为:3.【点评】解决此题的关键是判断展开图属于哪种类型,用折回正方体的方法找答案.3.从不同方向观察物体和几何体视图定义:当我们从某一角度观察一个实物时,所看到的图象叫做物体的一个视图.物体的三视图特指主视图、俯视图、左视图.主视图:在正面内得到的由前向后观察物体的视图,叫做主视图.俯视图:在水平面内得到的由上向下观察物体的视图,叫做俯视图.左视图:在侧面内得到的由左向右观察物体的视图,叫做左视图,有时也叫做侧视图.人在观察目标时,从眼睛到目标的射线叫做视线,眼睛所在的位置叫做视点,有公共视点的两条视线所称的角叫做视角.我们把视线不能到达的区域叫做盲区.【经典例题】3.如图立体图形从上面看到的分别是什么形状?请连一连.【分析】由图观察可知,由图观察可知,下面的立体图形从上面看到情形是①看到的是⑥,②看到的是⑤,图形③看到的是⑥,图形④看到的是⑦.【解答】解:【点评】此题考查了从不同方向观察物体和几何体,锻炼了学生的空间想象力和抽象思维能力.【同步测试】单元同步测试题一.选择题(共10小题)1.如图是一个无盖的纸盒,下面()号图是这个纸盒的展开图.A.B.C.D.2.将如图的正方体展开能得到的图形是()A.B.C.D.3.下面的图形()能折叠成长方体.A.B.C.4.把如图的展开图折成一个长方体,如果B面在底面,那么()面在上面.A.D B.C C.E D.A5.一个由五个方块搭成的图形,从正面看是,从左面看是,它是()A.B.C.6.照相地点距离建筑物最近的是()A.B.C.D.7.如图所示的三个物体中,哪两个物体从上面看的形状相同()A.①和②B.②和③C.①和③8.下面()图形沿虚线折叠后不能围成正方体.A.B.C.9.图一是一个正方体,它展开有6个面,图二给出了其中的5个面,请从图三①~④的位置中选择一个面,补成这个正方体的展开图,这个面是()A.①B.②C.③D.④10.一个长方体沿着棱剪开,得到一个展开图(如图,单位:cm).图中阴影部分的面积是多少平方厘米?下面说法正确的是()A.无法计算B.35平方厘米C.21平方厘米D.15平方厘米二.填空题(共8小题)11.如图所示这个展开图能折成一个长方形,如果F面在前面,从左面看是B面,那么面在上面,面在后面.12.如图是一个正方体的侧面展开图,如果图中“构”字在正方体的左面,那么这个正方体的右面是“”字.13.下面是一个长方体的展开图,这个长方体的长是cm,宽是cm,高是cm.14.★如图,将它折成一个正方体,相交于同一个顶点的三个面上的数之和最小是.15.下面各组都是用5个完全相同的小正方体搭成的立体图形,下面四组图中,从正面看到的形状是,从左面的看到的形状是的图是.16.在夜晚的路灯下,同样高的杆子离路灯越远,它的影子就越.17.仓库里有若干棱长都是5dm的正方体纸箱,拼成了一个几何体,从上面看到的图形是,从左面看到的图形是,这堆纸箱的占地面积是18.根据如图长方体的展开图,可以知道这个长方体的长是厘米,宽是厘米,高是厘米.三.判断题(共5小题)19.如图图形都是正方体的表面展开图.(判断对错)20.同样高的物体,在同一光源下,离光源越近,这个物体的影子越长.(判断对错)21.“欲穷千里目,更上一层楼”说的是站得越高,观察的范围也就越大.(判断对错)22.如图是长方体的表面展开图,与⑥相对的面是③.(判断对错)23.长方体的展开图折叠后不一定就能围成长方体..(判断对错)四.应用题(共3小题)24.如图,是由方块组成的图形的俯视图和左视图,组成这样的图形最多需要多少方块?最少需要多少方块?25.如图是3个棱长为30cm的正方体纸盒堆放在墙角处.露在外面的面积是多少?26.(1)小兔奇奇现在的样子能看到桌子上的萝卜吗?若能看到水果,它能看到几个苹果?看到几个梨?(2)它站在凳子上能看到桌子上所有的水果吗?五.操作题(共2小题)27.如图分别是明明、丁丁、爸爸和妈妈所看到物体的形状,请你在物体旁边标出另外三个人所在的位置.28.分别画出从正面、上面、左面看到的立体图形的形状.六.解答题(共2小题)29.下面四幅图分别是谁看到的?连一连.30.如图(1)是从上面看一些小正方体所搭几何体的平面图,方格中的数字表示该位置的小正方体的个数.请你在图(2)的方格纸中分别画出这个几何体从正面和左面看到的图形.参考答案与试题解析一.选择题(共10小题)1.【分析】根据长方体的特征:6个面都是长方形(特殊情况有两个相对的面是正方形),相对的面的面积相等.据此进行解答.【解答】解:根据题意,一个无盖的纸盒,是由5个面围成的立体图形,它的展开图是5个面,再根据立体图形的形状可以确定它的展开图是B的形状.故选:B.【点评】此题考查的目的是掌握长方体的特征,长方体的6个面都是长方形(特殊情况有两个相对的面是正方形),相对的面的面积相等.2.【分析】根据正方体展开图的特点,与箭头相邻的不能是黑色三角形,由此可以判断第2幅是这个正方体的展开图,据此解答.【解答】解:根据正方体展开图的特点,与箭头相邻的不能是黑色三角形;A、箭头与黑色三角形相邻,所以不符合;B、箭头与黑色三角形不相邻,所以符合;C、箭头与黑色三角形相邻,所以不符合;D、箭头与黑色三角形相邻,所以不符合.故选:B.【点评】此题考查了正方体展开图的特征.3.【分析】根据长方体展开图的特征,图A、B、C都是长方体展开图的“1 4 1”结构,但A、B相对的面不完全相同,不是长方体的展开图;图C是长方体的展开图.【解答】解:图A、图B不符合长方体展开图的特征,不是长方体的展开图,图C是长方体的展开图.故选:C.【点评】本题主要考查长方体的展开图,熟练掌握长方体的特征是解答本题的关键.4.【分析】根据图意,把如图的展开图折成一个长方体,则A和F相对,E和C相对,D和B相对,据此解答即可.【解答】解:如果B面在底面,那么D面在上面.故选:A.【点评】本题考查的是长方体特征的运用,准确掌握长方体的特征是解答本题的关键.5.【分析】A图从正面能看到4个正方形,分两层,下层3个,上层居中1个(不符合题意);从左面能看到3个正方形,分两层,上层1个,下层2个,左齐.B图从正面能看到4个正方形,分两层,下层3个,上层1个,左齐;从左面能看到3个正方形,分两层,上层1个,下层2个,左齐.C图从正面、左面看到的形状相同,都是一行3个正方形(不符合题意).【解答】解:一个由五个方块搭成的图形,从正面看是,从左面看是,它是.故选:B.【点评】本题是考查作简单图形的三视图,能正确辨认从正面、上面、左面(或右面)观察到的简单几何体的平面图形.6.【分析】照相机离景物越远,拍摄以的景物越小,拍摄到画面内容越全面,反之,拍摄到景物越大,甚至不能拍摄到全景.据此即可把这四幅照片按拍摄由远到近排列,找出照相地点距离建筑物最近的一幅.【解答】解:照相地点距离建筑物由远到近:照相地点距离建筑物最近的是故选:D.【点评】关键明白:照相机离景物越远,拍摄以的景物越小,拍摄到画面内容越全面,反之,拍摄到景物越大,甚至不能拍摄到全景.7.【分析】图①从上面能看到一行2个正方形;图②从上面能看到一行3个正方形;图③从上面能看到一行2个正方形.由此可知,图①与图③从上面看到的形状相同.【解答】解:如图图①与图③从上面看到的形状相同,都是一行2个正方形.故选:C.【点评】本题是考查作简单图形的三视图,能正确辨认从正面、上面、左面(或右面)观察到的简单几何体的平面图形.8.【分析】根据正方体展开图的11种特征,A图属于正方体展开图的“1﹣4﹣1”结构、C图属于正方体展开图的“3﹣3”结构,都能折叠成正方体;B图不属于正方体展开图,不能折叠成正方体.【解答】解:、能折叠成正方体;不能折叠成正方体.故选:B.【点评】正方体展开图有11种特征,分四种类型,即:第一种:“1﹣4﹣1”结构,即第一行放1个,第二行放4个,第三行放1个;第二种:“2﹣2﹣2”结构,即每一行放2个正方形,此种结构只有一种展开图;第三种:“3﹣3”结构,即每一行放3个正方形,只有一种展开图;第四种:“1﹣3﹣2”结构,即第一行放1个正方形,第二行放3个正方形,第三行放2个正方形.9.【分析】正方体展开图有6个面,图二是图一展开图的一部分,少一个面.在图二的下面与上行中的任一个面对齐画补上一个面,即可组成正方体体展开图的“1﹣4﹣1”结构.【解答】解:图一是一个正方体,它展开有6个面,图二给出了其中的5个面,从图三①~④的位置中选择一个面,补成这个正方体的展开图(如下图).故选:C.【点评】正方体展开图有11种特征,分四种类型,即:第一种:“1﹣4﹣1”结构,即第一行放1个,第二行放4个,第三行放1个;第二种:“2﹣2﹣2”结构,即每一行放2个正方形,此种结构只有一种展开图;第三种:“3﹣3”结构,即每一行放3个正方形,只有一种展开图;第四种:“1﹣3﹣2”结构,即第一行放1个正方形,第二行放3个正方形,第三行放2个正方形.10.【分析】通过观察长方体的展开图可知:这个长方体的长是7厘米,宽是5厘米,高是3厘米,阴影部分长方形的长是7厘米,宽是3厘米,根据长方形的面积公式:S=ab,把数据代入公式解答.【解答】解:7×3=21(平方厘米),答:阴影部分的面积是21平方厘米.故选:C.【点评】此题考查的目的是理解掌握长方体展开图的特征,以及长方形面积公式的灵活运用,关键是熟记公式.二.填空题(共8小题)11.【分析】将下图长方体展开图,折成一个长方体,A面与F面相对,B面与D面相对,C面与E面相对;如果F面在前面,B面在左面,上面的应该是E面,A面在后面;据此解答.【解答】解:如图,折成一个长方体,A面与F面相对,B面与D面相对,C面与E面相对;如果F面在前面,从左面看是B面,那么C或E面在上面,A面在后面.故答案为:C或E,A.【点评】本题考查了长方体的展开图,也考查了学生的观察能力和空间想象能力.12.【分析】利用正方体及其表面展开图的特点以及题意解题,把“构”字在正方体的左面,然后把平面展开图折成正方体,然后看“构”相对面.【解答】解:这是一个正方体的平面展开图,共有六个面,其中面“构”与面“谐”相对,所以如果图中“构”字在正方体的左面,那么这个正方体的右面是“谐”字.故答案为:谐.【点评】本题考查了正方形相对两个面上的文字问题,同时考查空间想象能力.注意正方体的空间图形,从相对面入手,分析及解答问题.13.【分析】右图属于正方体展开图的“1﹣4﹣1”结构,折成长方体后,长方体的长、高可以直接看出,而宽需要计算,由图可以看出,2个长与2个宽之和是60厘米,长已知,由此可以计算出宽.【解答】解:这个长方体的长是25cm宽是:(60﹣25×2)÷2=(60﹣50)÷2=10÷2=5(cm)高是40cm答:这个长方体的长是25cm,宽是5cm,高是40cm.故答案为:25,5,40.【点评】此题主要是考查长方体展开图的认识.长、宽、高均不相等的长方体的表面展开图分“1﹣4﹣1”型,有27种;“1﹣3﹣2”型,18种;“2﹣2﹣2”型,6种;“3﹣3”型,3种,共计54种.要比正方体展开图复杂.14.【分析】根据正方体展开图的11种特征,此图属于正方体展开图的“1﹣4﹣1”结构.折成正方体后,以1下底,4为上底,相交于同一个顶点的三个面上的数分别是(1、2、5)、(1、3、5)、(1、2、6)、(1、3、6)、(4、2、5)、(4、2、6)、(4、3、5)、(4、3、6).由此可知,相交于同一个顶点的三个面上的数分别是(1、2、5)时最小.【解答】解:如图将它折成一个正方体,相交于同一个顶点的三个面上的数之和最小是:1+2+5=8.故答案为:8.【点评】解答此题最好的办法就是按如图剪一个正方体展开图,标数字,再折成正方体后,看相交于同一顶点的三个面上的数字各是哪三个数字.15.【分析】A图:从正面能看到4个正方形,分两层,上层1个,下层3个,右齐;从左面能看到3个正方形,分两层,上层1个,下层2个,左齐.B图:从正面能看到4个正方形,分两层,上层1个,下层3个,右齐;从左面能看到3个正方形,分两层,上层1个,下层2个,右齐.C图:从正面能看到4个正方形,分两层,上层1个,下层3个,右齐;从左面能看到一列2个正方形.D图:从正面能看到4个正方形,分两层,上层1个,下层3个,右齐;从左面能看到3个正方形,分两层,上层1个,下层2个,左齐.综上所述,符合题意的是B图.【解答】解:如图从正面看到的形状是,从左面的看到的形状是的图是B.故答案为:B.【点评】本题是考查作简单图形的三视图,能正确辨认从正面、上面、左面(或右面)观察到的简单几何体的平面图形.16.【分析】以路灯光源的端点,过杆子顶端画射线与地面相交,杆子、射线、地面线段组成三角形,地面线段长为杆子影长.离杆子越近,射线与杆子组成的夹角越小,影子越知,反之,影子越长.【解答】解:如图(黑色粗条表示杆子离路灯不同距离的影子).在夜晚的路灯下,同样高的杆子离路灯越远,它的影子就越长.故答案为:长.【点评】同样高的物体,离光源越近,影子越短,反之,影子越长.17.【分析】从上面看到的形状是由4个正方形呈“田”字形,不论从其他面看如何,这些纸箱的占地面就是4个边长为5分米的正方形组成的正方形,每个正方形的边长已知,根据正方形面积计算公式“S =a2”求出一个正方形的面积再乘4就是这堆纸箱的占地面积.【解答】解:52×4=25×4=100(dm2)答:这堆纸箱的占地面积是100dm2.故答案为:100dm2.【点评】关键是明白:从上面看到的形状就是这堆纸箱占地的形状.18.【分析】通过观察长方体的展开图可知:这个长方体的长是17厘米,宽是8厘米,高是5厘米.据此解答即可.【解答】解:这个长方体的长是17厘米,宽是8厘米,高是5厘米.故答案为:17、8、5.【点评】此题考查的目的是理解掌握长方体展开图的特征及应用.三.判断题(共5小题)19.【分析】根据正方体展开图的11种特征,图1和图3都属于正方体展开图的“1﹣4﹣1”型,图2不属于正方体展开图.【解答】解:如图,根据正方体展开图的特征,图1和图3都属于正方体展开图,图2不属于正方体展开图.故答案为:×.【点评】正方体展开图有11种特征,分四种类型,即:第一种:“1﹣4﹣1”结构,即第一行放1个,第二行放4个,第三行放1个;第二种:“2﹣2﹣2”结构,即每一行放2个正方形,此种结构只有一种展开图;第三种:“3﹣3”结构,即每一行放3个正方形,只有一种展开图;第四种:“1﹣3﹣2”结构,即第一行放1个正方形,第二行放3个正方形,第三行放2个正方形.20.【分析】以光源为端点,过物体顶端作射线,射线与地的交点到物体的线段为物体的影子,离光源越远,光线与物体的夹角越大,另一直角边越长,即影子越长,反之,影子越短.【解答】解:如图样高的物体,在同一光源下,离光源越近,这个物体的影子越短,离光源越远,这个物体的影子越长原题说法错误.故答案为:×.【点评】此题不难,晚上可以到路灯下体验一下.21.【分析】俗话说:站得高方能看得远,意思是说站得越高,看得越远,看的范围越大,“欲穷千里目,更上一层楼”说的是站得越高,观察的范围也就越大.【解答】解:“欲穷千里目,更上一层楼”说的是站得越高,观察的范围也就越大原题说法正确.故答案为:√.【点评】根据生活实际,站得越高,看得越远.会当凌绝顶一览众山小,也是这个意思.22.【分析】这是长方体展开图的“1﹣4﹣1”结构,折成长方体时,①面和④面相对,③面和⑥面相对,②面和⑤面相对;据此解答.【解答】解:如图是长方体的表面展开图,与⑥相对的面是③.原题说法正确.故答案为:√.【点评】长方体展开图与正方体展开图类似,不同的是正方体展开图是由六个相同的正方形组成,而长方体展开图是六个长方形(有可能相对的两个面是正方形),只有相对面是全等的长方形.23.【分析】根据长方体的特征,6个面都是长方形(特殊情况有两个相对的面是正方形),相对面的面积相等,12条棱分为互相平行的3组,每组4条棱的长度相等.再根据长方体展开图的特征进行解答.【解答】解:长方体的展开图折叠后一定就能围成长方体;故答案为:×.【点评】此题主要考查长方体及其展开图的特征.四.应用题(共3小题)24.【分析】根据从上面、左面看到的形状,所用的小正方体分前、后两排,上、下两层.下层前、后排各两个,前排左边一个与后排右面一个对齐;上层前、后排最少各放1个,最多各放2个.【解答】解:如图组成这样的图形最少需要6个方块,最多需要8个方块(下图):【点评】本题是考查作简单图形的三视图,能正确辨认从正面、上面、左面(或右面)观察到的简单几何体的平面图形.25.【分析】露在外面的面由7个边长是30厘米的正方形,根据正方形的面积计算公式“S=a2”先求出1个正方形的面积,再用1个正方形的面积乘7就是露在外面的面积.【解答】解:如图302×7=900×7=6300(cm2)答:露在外面的面积是6300cm2.【点评】解答此题的关键是根据从正面、上面、右面看到的形状确定露在外面的是多少个边长为30厘米的正方形.26.【分析】(1)小兔子比较矮,站在桌子下面,它不能看到桌子另一边的萝卜,若能看到水果,也只能看到靠近桌边的一个苹果一个梨,据此即可解答;(2)如果站在凳子上,则它与比桌子高出一些,所以桌子上的水果就都能看见了.【解答】解:根据题干分析可得:(1)小兔子比较矮,站在桌子下面,它不能看到桌子另一边的萝卜,若小兔子能看到水果,也只能看到靠近桌边的一个苹果一个梨.(2)如果站在凳子上,则它与比桌子高出一些,所以桌子上的水果就都能看见了.【点评】解答此题结合生活经验,注意视觉的可视范围的正确判断.五.操作题(共2小题)27.【分析】观察图形可知,妈妈看到的是侧面,球在左边;爸爸看到的是侧面,球在右边;丁丁看到的是后面,没有球;据此即可解答问题.【解答】解:根据题干分析可得:【点评】本题考查从不同方向观察物体和几何体,解决此题的关键是得到从不同方向观察立体图形的相应平面图形.28.【分析】这个立体图形由5个相同的小正方体组成.从正面能看到4个正方形,分两层,上层1个,下层3个,右齐;从上面能看到4个正方形,分两层,上层1个,下层3个,左齐;从左面能看到3个正方形,分两层,上层1个,下层2个,右齐.【解答】解:【点评】本题是考查作简单图形的三视图,能正确辨认从正面、上面、左面(或右面)观察到的简单几何体的平面图形.六.解答题(共2小题)29.【分析】观察图形可知,小兔子看到的是壶的正面,壶嘴朝右;小狗看到的是壶的后面,壶嘴朝左;小松鼠看到的是壶的侧面,壶把在中间;小猴子看到的是壶的侧面,壶嘴在中间,据此即可解答问题.【解答】解:根据题干分析可得:【点评】本题是考查作简单图形的三视图,能正确辨认从正面、上面、左面(或右面)观察到的简单几何体的平面图形.30.【分析】此立方体图形由8个相同的小正方体组成,根据图中所示各位置小正方体的个数,从正面能看到6个正方形,分三列,各列从左到右分别是3个、1个、2个;从左面能看到6个正方形,分三列,各列从左到右分别是3个、2个、1个.【解答】解:如图1,是从上面看一些小正方体所搭几何体的平面图,方格中的数字表示该位置的小正方体的个数在图(2)的方格纸中分别画出这个几何体从正面和左面看到的图形如下:【点评】本题是考查作简单图形的三视图,能正确辨认从正面、上面、左面(或右面)观察到的简单几何体的平面图形.。
选择题从300里减去25的4倍,差是多少?正确的算式是()。
A.(300-25)×4B.300-25×4C.300×4-25【答案】B【解析】先用25乘4求出25的4倍是多少,然后再用300减去得到的积即可。
根据分析列算式为:300-25×4。
故答案为:B。
填空题60与45的和乘它们的差,积是多少?列综合算式是________×________。
【答案】(60+45)(60-45)【解析】先求出60与45的和是60+45,60与45的差是60-45,然后用得到的和与差相乘,由于先算加法和减法,所以需要给加法和减法添上小括号;据此解答即可。
根据分析列综合算式为:(60+45)×(60-45)。
故答案为:(60+45);(60-45)。
判断题一个算式有小括号,要先算小括号里面的。
(_____)【答案】√【解析】略计算题列式计算。
62与38的差与76相乘,积是多少?【答案】1824【解析】先求出62与38的差是62-38,再用得出的差与76相乘。
由于先算减法,所以需要给减法添上小括号;再根据整数四则运算法则进行计算。
(62-38)×76=24×76=1824故答案为:1824。
计算题列式计算。
从2000除以25的商里减去15与3的积,差是多少?【答案】35【解析】先求出2000除以25的商是2000÷25,15与3的积是15×3。
再用得出的商和积相减。
根据整数四则运算法则进行计算。
2000÷25-15×3=80-45=35故答案为:35。
计算题列式计算。
8乘以85加20的和,所得的积再除以42,商是多少?【答案】20【解析】最后求商,被除数是8×(85+20)的积,除数是42,据此列式解答。
8×(85+20)÷42=8×105÷42=840÷42=20故答案为:20。
人教版四年级数学下册复习讲义2016年3月第一、二单元知识要点1、运算顺序⑴在没有括号的算式里,如果只有加、减法或者只有乘、除法,都要计算。
(2)在没有括号的算式里,有乘、除法和加、减法,要先算。
(3)算式里有括号的,要先算。
2、加法、减法、乘法和除法统称四则运算。
3、有关0的运算一个数与0相加,还得这个数。
一个数减去0,还得这个数。
一个数与0相乘,得0。
0除以一个非0数,得0。
0不能做除数,例如5÷0 是不存在,没有意义的。
4、四则混合运算方法一看(看数字,运算符号,想想运算顺序是什么。
)二画(画线,哪一步先算,就在哪一步的下面画一条横线,没有计算的要照抄下来。
)三算(按照运算顺序计算)四检验(检验运算顺序是否错误,计算是否算错。
)练习1、填空。
⑴一个加数是90,另一个加数与这个加数相同,它们的和是()。
⑵在一个减法算式中,差是150,减数是80,被减数是()。
⑶两个数的和是540,其中一个加数是200,另一个加数是( )。
⑷被减数是254,差是160,减数是()。
2、看谁算得又对又快。
⑴237+69=306 ⑵502-387=115306-()=237 387+()=502306-()=69 ()-115=3873、在()里填上合适的数。
92×()=184 780÷()=30 ()÷35=42 ()÷23=6......15 942÷()=78 (6)4、计算,1—4题要验算。
⑴190+672= ⑵980-795= ⑶23×56= ⑷4005÷89=⑸2400÷80-14×2 ⑹100-(83+360÷60)⑺960÷【(32+16) ÷3】⑻72×【(35+27) ÷31】5、根据乘除法各部分间的关系,写出另外两个书算式。
⑴23×56=1288 ⑵4005÷89=456、判断。
⑴如果○×□=△,那么○=△÷□。
()⑵如果a÷b=c……e,那么b=(a-c)÷e ( )⑶因为0+0=0,0-0=0,0×0=0,所以0÷0=0 ()7、列式计算。
⑴48与16的和乘它们的差,结果是多少?(2)在加法算式中,两个数的和是735,其中一个加数是235,另一个加数是多少?(3)一个数减去78得150,这个数是多少?(4)被减数是1000,差是485,减数是多少?(5)被减数、减数、差的和是380,被减数是多少?(6)一个数加上756得1000,这个数是多少?(7)甲数除以20,所得的商是16,余数是7,则甲数是多少?8、直接写出得数。
0+47= 53-53= 0×27= 0÷16=50-0= 0+362= 0÷72= 345×0=9、根据指定的运算顺序给算式添上括号。
(1)先算乘法,再算加法,最后算减法。
662-23×12+385(2)先算减法,再算乘法,最后算除法。
792÷72-64×910、解决问题。
⑴王老师去体育用品商店为学校购买足球,每个足球80元,王老师买了20个足球后还剩60元,王老师带了多少钱?⑵一本书共有242页,莉莉看了8天后还剩2页,莉莉平均每天看了多少页?(3)在一道减法算式中,被减数、减数与差的和是460,减数比差少30,被减数、减数和差各是多少?⑷师徒两人共做288个零件,师傅每小时做18个,徒弟每小时做12个,师傅已经做了48个,剩下的师徒合作还要多长时间?(5)四一班有42名同学准备去划船,大船限乘4人,租金每条6元;小船限乘3人,租金每条5元。
请你设计出最便宜的租船方案(怎样租船最省钱)(怎样租船最合算)?(6)某景点门票的售价有以下两种方案:方案A 方案B成人:160元/人团体(5人及5人以上)儿童:40元/人100元/人①如果有5个成人、5个小孩,那么怎样+购票最合算?②②如果有3个成人、5个小孩,那么怎样购票最合算?11.填一填,找出从正面、上面、左面看到的形状。
12.填一填,找出从正面、上面、左面、右面看到的形状。
13、下面的物体分别从正面、侧面、上面看到的形状分别是什么?请你在方格纸上画出来。
第三单元知识要点一、运算定律与算式特点(1)加法交换律a+b=b+a 34+89+66=34+66+8926+47-6=26-6+471、只有加法,减法。
2、注意减法时要将前面的“-”号一起交换。
3、在简便计算时,一般将加法交换律和加法结合律同时运用。
(2)加法结合律a+b+c=a+(b+c)88+104+96=88+(104+96)79+26-9=26+(79-9)(3)乘法交换律a × b=b× a4×58×25=4×25×581、只有乘法。
2、在简便计算时,一般将乘法交换律和乘法结合律同时运用。
3、注意找好朋友:2×5=104×25=1008×125=1000(4)乘法结合律a×b×c=a×(b×c)125×67×8=67×(125×8)(5)乘法分配律拆:(a+b)×c=a×c+b×c25×(200+4)=25×200+25×4合:a×b+a×c=a×(b+c)265×105-265×5=265×(105-5)1、有乘法和加法;或者有乘法和减法。
2、拆的时候,是将括号外面的数分给括号里面的两个数。
3、合的时候,是提取相同的因数,将不同的因数相加或相减。
特别注意:乘法结合律与乘法分配律的区别例如:125×(8×20)125×(8+20)= == == =2、运算性质连减的性质:一个数连续减去两个数,可以减去这两个数的和。
公式:a-b-c=a-(b+c)举例:128-57-43=128-(57+43)记忆:减变,加不变连除的性质:一个数连续除以两个数,可以除以这两个数的积公式:a÷b÷c=a÷(b×c)举例:2000÷125÷8=2000÷(125×8)记忆:除变,乘不变3、两个数相乘,可以将其中一个数进行拆分,再简便计算。
例如:72×125 23×99=(9×8)×125 =23×(100-1)=9×(8×125)=23×100-23×1=9×1000 =2300-23=9000 =2277练习一、填空(1)()+45=55+(),这里运用了加法(),用字母表示是()。
(2)交换两个()的位置,()不变,这叫做乘法交换律。
(3)乘法分配律可用字母表示为()。
(4)45×(20×39)=(45×20)×39这是应用了()律。
(5)用简便方法计算376+592+24,要先算(),这样计算是根据()律。
(6)在○里填上运算符号,在横线上填上合适的数。
436-279-21=436-(279○____)34×125×8=34×(___○____)120÷5÷4=120÷(___○____)49×38+50×38+38=(49+___+___)×___a+(30+8)=(□+□)+30二、大法官判对错。
(1)215-67+33=215-(67+33) ( )(2)102×47=100×47+2 ( )(3)等式84×25=80×25﹢4×25运用了乘法分配律。
( )(4)先乘前两个数,或者先乘后两个数,积不变,这是乘法结合律。
( )(5)125×4×25×8的简便算法是(125×8)×(4×25)。
( ) 三、择优录取。
(将正确答案的序号填在括号里)(1)53×24+53×36=53×(24+36)运用了( )。
A.乘法交换律B.乘法结合律C.乘法分配律(2)792×99=792×100○792×1,○里应该填( )A.﹢ B.- C.×(3)三个数相乘,先乘前两个数或者先乘后两个数,积不变,这叫乘法( )。
A.交换律B.结合律C.分配律(4)49×25×4=49×(25×4)这是根据()。
A.乘法交换律B.乘法分配律C.乘法结合律(5)986-297的简便算法是()。
A.986-300-3 B.986-300+3C. 986-(300+3)四、用线段连一连。
326×50×8 109×(498+2)498×109+2×109 72×36220×18 200×18+20×1842+99+68+1 (42+68)+(99+1)72×9×4 326×(50×8)五、我是神算手。
1.直接写出得数。
98×0= 2400÷25= 35×20= 180-79-21=25×13×4= 200÷5÷4= 5÷5×5= 125×3×8=0÷150÷200= 56-56÷56=2.计算下面各题,怎样简便就怎样算。
214×27-14×27 478-163-137 5000÷125÷899×34 44×25 125×15×8136×101-136 591+482+118六、列式计算。
1.125与79的积加上125与21的积,和是多少?2.777与560的差,再除以7,商是多少?七、解决生活中的问题。
1.一本漫画书有188页,林林第一天看了57页,第二天看了43页,还剩下多少页没看完?2、一件上衣173元,一条裤子127元,买39套这样的上衣和裤子需要多少钱?3、下表中5名同学的平均体重是多少千克?姓名小芳小红小明小东小莉体重(千克)23 32 28 30 274、学校买来5盒羽毛球,每盒12个,共用240元,平均每个羽毛球多少元钱?5、月月3分钟跳绳522下,莉莉3分钟跳了504下,平均每分钟月月比莉莉多跳多少下?第四单元知识要点1、小数的意义:把一个物体平均分成10份,100份,1000份、、、,每一份占其中的,,、、、P51:分母是10的分数可以写成一位小数,分母是100的分数可以写成两位小数,分母是1000的分数可以写成三位小数、、、小数的计数单位是十分之一,百分之一,千分之一、、、,分别写作0.1,0.01,0.001、、、每相邻两个计数单位之间的进率是。