钢筋混凝土偏心受压构件正截面受压性能实验
- 格式:doc
- 大小:76.50 KB
- 文档页数:3
实验三矩形截面对称配筋偏心受压柱正截面强度试验姓名班级学号组别组员:试验日期报告日期一、试验名称矩形截面对称配筋偏心受压柱破坏二、试验目的和内容1、通过柱侧面的应变片和纵向钢筋上的应变片,测定截面不同纤维层的应变值,验证平截面假定,并测定混凝土的极限压应变。
2、通过位移计量测柱子的水平挠度,说明纵向弯曲对偏心受压中长柱的影响。
3、观察大偏心受压截面的破坏特性,记录破坏荷载。
4、测定开裂荷载及0.3mm裂缝荷载。
三、试验柱概况(列表)柱编号截面尺寸(b×h)mm×mm受拉钢筋配置保护层厚mm荷载偏心距emm1 150×200 HRB335 14mm×2 20 185四、材料强度指标混凝土:设计强度等级C30 试验实测值f c s= 14.3 N/mm2E c= 3.0X106N/mm2钢筋:试验实测值:HPB235,f y s= 215 N/mm2E s= 2.05X106 N/mm2HRB335,f y s= 300 N/mm2E s=2.05X106 N/mm2五、试验数据记录1、百分表记录表(表1)2、电阻变仪记录表(表2、表3)3、观察裂缝的出现和发展,记录第二裂缝图形,记录破坏时受荷载值六、试验结果分析1、试验情况概述从0开始加载,40kN时挠度发展加快,加载到80kN时开始出现明显裂缝,挠度发展较为明显,肉眼可见明显弯曲,继续加载裂缝不断发展,出现更多可见裂缝2、7应变片的数据变化可以看出中和轴向受压区移动。
临近破坏时受压区混凝土压碎,不能继续加载。
2、试验柱荷载——挠度曲线3、绘制截面应变(平均应变)图基本符合平截面假定,受拉区在开裂后应变分布较为不均匀。
应变到达0.003左右时混凝土压酥,极限压应变约为0.0033、验算试件截面承载力:根据际材料强度,按教材中公式计算截面承载力N值,确定uN= 174kN (理论计算时可扣除为粘贴电阻片而预留的混凝土孔u筒的面积)并与实测N u s= 245kN 比较。
《混凝土结构设计原理》综合性设计性课程实验Comprehensive and Designed Test in the Course ofPrinciples of Reinforced Concrete Structure Design1.引言《混凝土结构设计原理》是土木工程专业平台课,是理论知识与工程应用紧密联系课程,其知识体系、理论分析和设计计算既具有很强的工程性,又具有严密的科学性。
《混凝土结构设计原理》课程实验是该课程的重要实践环节,通过课程实验使学生实现理论与实际的结合、理论分析与工程概念的结合、科学方法与工程应用相结合。
从简单转向综合,从理论转向设计。
更深刻地理解课程的基本原理,掌握设计方法,启发创新意识,培养工程实践能力和动手能力。
构建土木工程师的基本素质。
2.实验的综合性设计性2005—2006学年第一学期,土木工程专业8个班,分为16个实验小组进行实验。
为了实现实验的设计性和综合性,在实验的各个环节上强调学生自己进行讨论、设计、制作和实验。
学生分组讨论确定实验构件一个构件的破坏形态,每人提交一份初步设计计算书,计算书中应包括梁正截面,斜截面承载力设计或大偏心受压构件正截面承载力设计,采用的材料参数、配筋量,预测的开裂荷载、极限荷载。
方案必须能在提供的试验条件下实现。
各组在教师指导下最终确定实验方案。
各组实验前提交最终的设计计算书,并给出对试件极限承载力的预测。
两个实验小组(土02-7班)的实验梁由学生自己制作,在教师指导下学生自己动手拼装模板,绑扎钢筋,按电阻应变片粘贴技术要求贴应变片,计算混凝土配合比和材料用量,浇筑混凝土。
实验按照预定方案,在教师指导下由学生进行加载实验,直至构件破坏,与预测结果比较。
每人提交试验报告一份,包括实验现象,实验全过程的照片,数据的整理,分析构件的受力,预测偏差出现的原因,以及整个试验的体会与心得,应做到图文并茂。
本学期完成教学实验16组,其中正截面受弯构件实验12个,斜截面受剪构件实验3个,大偏心受压构件1个。
混凝土结构原理试验指导书及试验报告班级:学号:组别:姓名:山东建筑大学土木工程学院二零零六年六月目录试验一钢筋混凝土受弯构件正截面破坏试验实验二钢筋混凝土受弯构件斜截面破坏试验试验三矩形截面对称配筋偏心受压柱正截面破坏试验试验一 钢筋混凝土受弯构件正截面破坏试验一、试验目的:1.通过钢筋混凝土受弯构件正截面破坏试验,熟悉钢筋混凝土受弯钩件正截面破坏全过程。
2.进一步学习静载试验中常用的仪器设备的使用方法。
二、实验内容和要求:1.量测试件在各级荷载下的跨中挠度值,绘制梁的f M --图。
2.量测试件在纯弯区段沿截面高度的平均应变和受拉钢筋的应变,绘制沿梁高的应变分布图和M ——s σ。
3.观测试件的裂缝出现和开裂过程,记录开裂荷载tcr P (tcr M ),并与理论值比较。
4.观察和描绘梁的破坏情况和特征,记录破坏荷载tu P (tu M ),并与理论值比较。
三、试件、实验设备及仪表:1.试件试件为钢筋混凝土适筋梁,试件尺寸和配筋如图1所示。
图2 加载示意图图1 配筋图2.仪器设备(1)加载设备一套;(2)百分表及磁性表座若干; (3)压力传感器; (4)静态应变仪两台; (5)电阻应变片及导线若干; (6)刻度放大镜; (7)千斤顶一台。
四、试验方法和试验步骤:1.试验方法:(1)用千斤顶和反力架进行两点加载。
(2)用百分表量测试件的挠度,用应变仪量测钢筋和混凝土的应变。
(3)仪表及加载点布置如图2所示。
2.试验步骤:(1)安装试件,安装仪器仪表并连线调试。
(2)预载,在正式施加荷载试验前,应进行预载,将已就位好的试件,施加少量的荷载(相当于一级荷载),以检查各仪表的工作情况及试验测读人员的操作和读数能力,并消除试件的构造变形。
发现不正常情况,应立即报告指导老师进行解决。
如全部正常,即可开始正式试验。
(3)正式加载前读取百分表和应变仪的初始读数,用放大镜检查有无初始裂缝并记录。
(4)在估计的开裂荷载前分三级加载,每级荷载下认真读取应变仪读数,以确定沿截面高度的应变分布。
矩形截面钢筋混凝土偏心受压构件的正截面抗压承载力的计算程序一、引言矩形截面钢筋混凝土偏心受压构件在土木工程中有着广泛的应用,其正截面抗压承载力的计算是结构设计中的重要环节。
本文将详细介绍矩形截面钢筋混凝土偏心受压构件的正截面抗压承载力的计算程序,以期为工程实践提供参考。
二、计算原理矩形截面钢筋混凝土偏心受压构件的正截面抗压承载力计算基于材料力学、混凝土力学和钢筋力学的基本原理。
通过分析截面的应力分布,结合混凝土和钢筋的应力-应变关系,推导出构件的承载力计算公式。
三、计算步骤1. 确定构件尺寸:根据设计要求和结构布置,确定矩形截面钢筋混凝土偏心受压构件的截面尺寸、配筋等参数。
2. 确定偏心距:根据荷载分布情况,确定作用在构件上的偏心距。
3. 计算混凝土弯矩:根据偏心距和截面尺寸,计算混凝土的弯矩。
4. 计算钢筋拉力:根据混凝土弯矩和配筋情况,计算钢筋的拉力。
5. 确定承载力:根据混凝土和钢筋的应力-应变关系,结合截面的应力分布,计算出构件的正截面抗压承载力。
6. 考虑其他因素:根据具体情况,考虑其他可能影响承载力的因素,如施工质量、环境条件等。
四、案例分析以某框架结构中的矩形截面钢筋混凝土偏心受压构件为例,介绍正截面抗压承载力的计算过程。
该构件尺寸为200mm x 400mm,采用C30混凝土,HRB400级钢筋。
作用在构件上的偏心距为30mm。
1. 混凝土弯矩计算:根据偏心距和截面尺寸,采用材料力学中的弯矩公式计算混凝土弯矩。
弯矩公式为:M = eyfb,其中e为偏心距,y为截面重心到偏心方向的截面边缘的距离,f为混凝土的抗压强度设计值,b为截面宽度。
代入已知参数,得到混凝土弯矩为3.68 x 106 Nmm。
2. 钢筋拉力计算:根据混凝土弯矩和配筋情况,采用结构力学中的弯矩平衡公式计算钢筋的拉力。
弯矩平衡公式为:M = fyAs,其中fy为钢筋的抗拉强度设计值,As为钢筋的截面面积。
代入已知参数,得到钢筋拉力为2.29 x 104 N。
钢筋混凝土柱大偏心受压试验
一、试验目的
通过实验研究认识混凝土结构构件的破坏全过程,掌握测试混凝土大偏心受压构件基本性能的实验方法。
二、实验内容
对大偏心受压短柱施加轴向荷载直至破坏,观察加载过程中裂缝的开展情况,将得到的极限荷载与计算值相比较。
三、试件设计
1、试件的主要尺寸,矩形截面b*h*l=200*90*900
2、混凝土强度等级:实测。
3、纵向钢筋:2Φ6,2Φ8(弯起)
4、箍筋:Φ6@100
5、混凝土保护层厚度:15mm
6、试件尺寸及配筋(见下图)
四、试件制作
试件采用干硬性混凝土,振捣器振捣,自然养护28天,制作试件的同时预留混凝土立方体试块(尺寸为150mm*150mm *150mm)和纵向受力钢筋试件,实测混凝土和钢筋的实际强度。
五、加载装置
采用两点加载,用 YAW-5000型 微机控制电液伺服压力试验机,加载图 见下页。
滚动支座
固定支
座
黑龙江大学
实验报告
一、构件正截面承载力计算
二、构件承载力分析
按照<<混凝土结构设计规范>>给定的材料强度标准值机计算公式,求出本次实验试件的极限承载力,与实测值比较。
三、柱受压破坏类型
如何区分大、小偏心受压短柱,并描述大偏心受压短柱的破坏特征。
四、实验结论。
钢筋混凝土偏心受压构件正截面受压性能实验3.1 实验目的1.掌握制定结构构件试验方案的原则,偏心受压构件正截面受压性能试验的加荷方案和测试方案的设计方法。
2.通过偏心受压构件正截面受压性能试验,了解受压构件发生偏心受压破坏时承载力大小,侧向挠曲变化及裂缝出现和发展过程、破坏特征。
3.掌握偏心受压构件正截面承载力的测定方法,验证偏压构件正截面承载力计算方法。
4.了解偏压构件正位或卧位试验的试件安装、加载装置和加载方法,以及常用结构实验仪器的使用方法。
5.初步掌握结构实验测量数据的整理和分析,实验分析报告的撰写。
3.2 试件及测点布置3.3 实验设备及材料1.静力试验台座、反力架、支座及支墩2.高压油泵全套设备或手动式液压千斤顶3.荷重传感器图柱偏心受压试验示意图3.4 实验步骤(一)试验准备1. 试件的考察,记录相关数据。
2. 混凝土和钢筋力学性能试验。
3. 试件两侧用稀石灰刷白试件,用铅笔画50mm×50mm 的方格线(以便观测裂缝),粘贴应变片或百分表应变装置。
(二)试验加载1. 由教师预先安装或在教师指导下由学生安装试验柱,布置安装试验仪表,要求试验柱垂直、稳定、荷载着力点位置正确、接触良好,并作好试验柱的安全保护工作。
2. 对试验柱进行预加载,利用力传感器进行控制,加荷值可取破坏荷载的10%,分三级加载,每级稳定时间为1 分钟,然后卸载,加载过程中检查试验仪表是否正常。
3. 调整仪表并记录仪表初读数。
4. 按估算极限荷载值的10%左右对试验柱分级加载(第一级应考虑自重),相邻两次加载的时间间隔为2~3 分钟。
在每级加载后的间歇时间内,认真观察试验柱上是否出现裂缝,加载后持续2 分钟后记录电阻应变仪、百分表和手持式应变仪读数。
5. 当达到试验柱极限荷载的90%时,改为按估算极限荷载的5%进行加载,直至试验柱达到极限承载状态,记录试验柱承载力实测值。
6. 当试验柱出现明显较大的裂缝时,撤去百分表,加载到试验柱完全破坏,记录混凝土应变最大值和荷载最大值。
实验一钢筋混凝土梁正截面受弯性能实验一、实验目的1、通过对钢筋混凝土梁正截面的承载力、刚度及抗裂度的实验测定,进一步熟悉钢筋混凝土受弯构件实验的一般过程.2、进一步熟悉结构实验的常用仪表的选择和使用方法。
3、加深对钢筋混凝土梁正截面受弯性能的认识。
二、实验设备和仪器1、试件:试件为普通钢筋混凝土简支梁,截面尺寸及配筋图2—1所示。
混凝土C20,钢筋:主筋Ⅱ级,其它Ⅰ级图2—1试件尺寸及配筋2、加载:采用手动千斤顶和分配梁加载。
3、Y D88应变仪4、应变计5、百分表6、读数显微镜7、压力传感器三、实验方案1、加载装置及测点布置加荷载置和测点布置如图2-2所示。
纯弯区段混凝土表面设置电阻应变片测点,每侧四个:压区顶面一点、受拉钢筋处一点,中间两点按外密内疏布置.另梁内受拉主筋上布有电阻应变片二点。
挠度测点五个:跨中一点,分配梁加载点各一点,支座沉降测点二点。
图2—2 加载装置及测点布置2、加载程序:按标准荷载P b=50kN的20%分级算出加载值。
自重及分配梁作为初级荷载计入。
在开裂荷载(约7kN)之前和接近破坏荷载(66kN)之前,加载值按分级数值的1/2或1/4 取用,以准确测出开裂荷载和破坏荷载。
3、开裂荷载的确定为准确测定开裂荷载值,实验过程中应注意观察第一条裂缝的出现。
在此之前应把荷载级取为标准荷载的5%。
4、破坏荷载的确定当试件进行到破坏时,注意观察试件的破坏特征并确定其破坏荷载值.当发现下列情况之一时,即认为该构件已经达到破坏,并以此时的荷载作为试件的破坏荷载值.(1)正截面强度破坏:①受压混凝土破坏;②纵向受拉钢筋被拉断;③纵向受拉钢筋达到或超过屈服强度后致使构件挠度达到跨度的1/50;或构件纵向受拉钢筋处的最大裂缝宽度达到1.5毫米.(2)斜截面强度破坏①受压区混凝土剪压或斜拉破坏;②箍筋达到或超过屈服强度后致使斜裂缝宽度达到1。
5毫米;③混凝土斜压破坏。
(3)受力筋在端部滑脱或其它锚固破坏。
钢筋混凝土柱大偏心受压试验
一、试验目的
通过实验研究认识混凝土结构构件的破坏全过程,掌握测试混凝土大偏心受压构件基本性能的实验方法。
二、实验内容
对大偏心受压短柱施加轴向荷载直至破坏,观察加载过程中裂缝的开展情况,将得到的极限荷载与计算值相比较。
三、试件设计
1、试件的主要尺寸,矩形截面b*h*l=200*90*900
2、混凝土强度等级:实测。
3、纵向钢筋:2Φ6,2Φ8(弯起)
4、箍筋:Φ6@100
5、混凝土保护层厚度:15mm
6、试件尺寸及配筋(见下图)
四、试件制作
试件采用干硬性混凝土,振捣器振捣,自然养护28天,制作试件的同时预留混凝土立方体试块(尺寸为150mm*150mm *150mm)和纵向受力钢筋试件,实测混凝土和钢筋的实际强度。
五、加载装置
采用两点加载,用 YAW-5000型 微机控制电液伺服压力试验机,加载图 见下页。
滚动支座
固定支
座
黑龙江大学
实验报告
一、构件正截面承载力计算
二、构件承载力分析
按照<<混凝土结构设计规范>>给定的材料强度标准值机计算公式,求出本次实验试件的极限承载力,与实测值比较。
三、柱受压破坏类型
如何区分大、小偏心受压短柱,并描述大偏心受压短柱的破坏特征。
四、实验结论。
钢筋混凝土偏心受压构件正截面受压性能实验
3.1 实验目的
1.掌握制定结构构件试验方案的原则,偏心受压构件正截面受压性能试验的加荷方案和测试方案的设计方法。
2.通过偏心受压构件正截面受压性能试验,了解受压构件发生偏心受压破坏时承载力大小,侧向挠曲变化及裂缝出现和发展过程、破坏特征。
3.掌握偏心受压构件正截面承载力的测定方法,验证偏压构件正截面承载力计算方法。
4.了解偏压构件正位或卧位试验的试件安装、加载装置和加载方法,以及常用结构实验仪器的使用方法。
5.初步掌握结构实验测量数据的整理和分析,实验分析报告的撰写。
3.2 试件及测点布置
3.3 实验设备及材料
1.静力试验台座、反力架、支座及支墩
2.高压油泵全套设备或手动式液压千斤顶
3.荷重传感器
图柱偏心受压试验示意图
3.4 实验步骤
(一)试验准备
1. 试件的考察,记录相关数据。
2. 混凝土和钢筋力学性能试验。
3. 试件两侧用稀石灰刷白试件,用铅笔画50mm×50mm 的方格线(以便观测裂缝),粘贴应变片或百分表应变装置。
(二)试验加载
1. 由教师预先安装或在教师指导下由学生安装试验柱,布置安装试验仪表,要求试验柱垂直、稳定、荷载着力点位置正确、接触良好,并作好试验柱的安全保护工作。
2. 对试验柱进行预加载,利用力传感器进行控制,加荷值可取破坏荷载的10%,分三级加载,每级稳定时间为1 分钟,然后卸载,加载过程中检查试验仪表是否正常。
3. 调整仪表并记录仪表初读数。
4. 按估算极限荷载值的10%左右对试验柱分级加载(第一级应考虑自重),相邻两次加载的时间间隔为2~3 分钟。
在每级加载后的间歇时间内,认真观察试验柱上是否出现裂缝,加载后持续2 分钟后记录电阻应变仪、百分表和手持式应变仪读数。
5. 当达到试验柱极限荷载的90%时,改为按估算极限荷载的5%进行加载,直至试验柱达到极限承载状态,记录试验柱承载力实测值。
6. 当试验柱出现明显较大的裂缝时,撤去百分表,加载到试验柱完全破坏,记录混凝土应变最大值和荷载最大值。
7. 卸载,记录试验柱破坏时裂缝的分布情况。
(三)承载力极限状态确定方法
对柱试件进行偏压承载力试验时,在加载或持载过程中出现下列标记即可认为该结构
构件已经达到或超过承载力极限状态,即可停止加载:
⑴受压区混凝土的压碎破坏;
⑵对有明显物理流限的热轧钢筋,其受拉主筋的受拉应变达到0.01;
⑶受拉主钢筋拉断;
⑷受拉主钢筋处最大垂直裂缝宽度达到1.5mm;
3.5 数据处理
1. 根据试验过程中记录的百分表读数,计算各级荷载作用下试验柱中部的实测挠度值,作出压力和跨中挠度关系P-f对比曲线。
2. 根据试验过程中记录的受压主筋的应变仪读数,作出压力和主筋应变关系P-εs对比曲线。
3. 根据试验过程中记录的手持式应变仪,计算量测标距范围内混凝土的平均应变值,作出试验柱平均应变沿侧向高度的分布图,并进行对比。
4. 根据试验中记录的数据,计算试验柱的开裂压力和破坏压力,并与相关理论计算结果进行对比。
5. 绘制试验柱裂缝分布图。