矩形截面偏心受压构件计算资料
- 格式:pdf
- 大小:2.32 MB
- 文档页数:18
说明:1、本表根据《桥梁混凝土结构设计原理计算示例》(2006)编写。
2、本表用于已知截面、配筋及设计轴力求极限弯矩。
3、本表仅用配普通通钢时矩形截面偏心受压计算。
4、计算时,点击“开始计算”按钮,该按钮用于逼近法求偏心矩增大系数。
5、中间结果右侧的黄色区域可以强制修改对应值,以用于特殊计算或与其它程序对比计算,正常计算时注意对该区域(Q列)清空。
6、当混凝土强度等级高于C50或钢筋为不为HRB335时,请注意修界限受压区高度值,见桥规P25,表5.2.1。
7、本计算假定箍筋足够,不发生剪切破坏。
8、设计轴力(J5)在裂缝计算和承载力计算注意区分。
无条件输入翼板有效宽度bf'(m): 1.3翼板厚度hf'(m):0.1腹板宽b(m):0.225梁高h(m):0.5第一层受拉钢筋直径(mm):22第一层受拉钢筋根数:5第一层受拉钢筋到结构受拉边缘的距离a s1(m):0.07混凝土强度等级C:30第一层受压钢筋直径(mm):28第一层受压钢筋根数:0第一层受压钢筋到结构受压边缘的距离a s1'(m):0.05设计弯矩Md(kN):150#REF!#REF!2006)编写。
钮用于逼近法求偏心矩增大系数。
对应值,以用于特殊计算或与其它程序对比计算,为HRB335时,请注意修界限受压区高度值,见桥规P25,表5.2.1。
第一排受拉钢筋面积(m2):0.0019005第二排受拉钢筋面积(m2):0第三排受拉钢筋面积(m2):0总受拉钢筋面积(m2):0.0019005受拉钢筋到结构受拉边缘的距离as(m):0.07第一排受压钢筋面积(m2):0第二排受压钢筋面积(m2):0第三排受压钢筋面积(m2):0总受压钢筋面积(m2):0受压钢筋到结构受拉边缘的距离as'(m):#REF!混凝土抗压设计强度fcd(MPa):#REF!混凝土相对受压高度x(m):#REF!有效高度h0(m):#REF!M du3(kN):#REF!。
非对称配筋矩形截面偏心受压构件正截面承载力设计与复核1大小偏心的判别当e < h o时,属于小偏心受压。
时,可暂先按大偏心受压计算,若b,再改用小偏心受压计算2、大偏心受压正截面承载力设计1).求A s和A,令b,(HRB33歐,b 0.55; HRB40C级,b 0.52)2Ne i f c bh o b(1 0.5 b)A s REf y(h o a)(混规,f y2).求A sA s A si A s2 A S3(0)若 b 按照大偏心(1)若 b cy 2 i bA ;Ne i f c bh o2 (1 /2)f y(h o a )i f c bh o b NA s 主A s f y适用条件: A s/bh > min,且不小于f t / f y ;A;/ bh > min 0如果 x<2a/,A s N(e h/2 a') f y (h o a/)适用条件:A;/ bh > min,且不小于f t/f y ;A;/bh > min 0 3、小偏心受压正截面承载力设计如果s QA s min bh 再重新求,再计算A s(2)若 h/ h oNe i f c bh(h 。
h )2f y (h o a)然后计算和A sN(h/2 e Q e a a 7)1 f cbh(h/2 a 7) f y (h o a )情况(2)和(3)验算反向破坏。
4、偏心受压正截面承载力复核1).已知N ,求M 或仓。
先根据大偏心受压计算出X : (1)如果 x 2a / ,⑵ 如果2a / x b h 。
,由大偏心受压求e ,再求e 0 ⑶若 b ,可由小偏心受压计算 。
再求e 、e o2).已知e o ,求N 先根据大偏心受压计算出x (1) 如果 X 2a /,(2) 若2a / x b h o ,由大偏心受压求N 。
(3) 若x> b h o ,可由小偏心受压求N 。
矩形截面偏心受压构件正截面承载力的计算一、基本公式1. 计算图式2. 基本公式由0=∑x N 得:)](11[g g g gsa cb u j A A R bx R N N σγγγ-''+=≤ 由0=∑gA M 得:)](1)2(1[00g g g sa cb u j a h A R x h bx R M e N '-''+-=≤γγγ由0=∑'gA M 得:)](1)2(1[0g g g sg a c b u j a h A a x bx R M e N '-+'--=≤'σγγγ 混凝土受压区高度由下式确定:e A R e A xh e bx R g gg g a '''-=+-σ)2(0(对偏心作用力点取矩) e e '、-分别为偏心压力j N 作用点至钢筋g A 合力作用点和钢筋g A '合力作用点的距离,按下式计算:η=e g a h e -+20;η='e g a h e '+-203.公式的注意事项(1)钢筋g A 的应力g σ取值当jg h x ξξ≤=0时,构件属于大偏心受压构件,这时取g g R =σ(受拉钢筋屈服);当jg h x ξξ>=0时,构件属于小偏心受压构件,这时g σ按下式计算,但不大于g R 值:)19.0(003.0-=ξσg g E ,式中g E 为受拉钢筋的弹性模量。
(2)为保证构件破坏时,大偏心受压构件截面上的受压钢筋能达到抗压设计强度gR ',必须满足g a x '≥2,否则受压钢筋的应力可能达不到g R '。
与双筋截面受弯构件类似,这时可近似取g a x '=2,由截面受力平衡条件(0=∑'g A M )可得:)(0gg g s bu j a h A R M e N '-=≤'γγ 上式计算的正截面承载力u M 比不考虑受压钢筋gA '更小时,计算中不考虑受压钢筋g A '的影响。
4.2轴心受压构件承载力计算一、偏心受压构件破坏特征偏心受压构件在承受轴向力N和弯矩M的共同作用时,等效于承受一个偏心距为的偏心力N的作用,当弯矩M相对较小时,气就很小,构件接近于轴心受压,相反当N相对较小时,气就很大,构件接近于受弯,因此,随着气的改变,偏心受压构件的受力性能和破坏形态介于轴心受压和受弯之间。
按照轴向力的偏心距和配筋情况的不同,偏心受压构件的破坏可分为受拉破坏和受压破坏两种情况。
1.受拉破坏当轴向压力偏心距分较大,且受拉钢筋配置不太多时,构件发生受拉破坏。
在这种情况下,构件受轴向压力N后,离N较远一侧的截面受拉,另一侧截面受压。
当N增加到一定程度,首先在受拉区出现横向裂缝,随着荷载的增加,裂缝不断发展和加宽,裂缝截面处的拉力全部由钢筋承担。
荷载继续加大,受拉钢筋首先达到屈服,并形成一条明显的主裂缝,随后主裂缝明显加宽并向受压一侧延伸,受压区高度迅速减小。
最后,受压区边缘出现纵向裂缝,受压区混凝土被压碎而导致构件破坏(图4.3.1)。
此时,受压钢筋一般也能屈服。
由于受拉破坏通常在轴向压力偏心距分较大发生,故习惯上也称为大偏心受压破坏。
受拉破坏有明显预兆,属于延性破坏。
2.受压破坏当构件的轴向压力的偏心距分较小,或偏心距分虽然较大但配置的受拉钢筋过多时,就发生这种类型的破坏。
加荷后整个截面全部受压或大部份受压,靠近轴向压力M 一侧的混凝土压应力较高,远离轴向压力一侧压应力较小甚至受拉。
随着荷载逐渐增加,靠近轴一侧混凝土出现纵向裂缝,进而混凝土达到极限应变先被压碎,受压钢筋的应力也达到远离一侧的钢筋可能受压,也可能受拉,但因本身截面应力太小,或因配筋过多,都达不到屈服强度(图4.3.2)。
由于受压破坏通常在轴向压力偏心距%较小时发生,故习惯上也称为小偏心受压破坏。
受压破坏无明显预兆,属脆性破坏。
3.受拉破坏与受压破坏的界限综上可知,受拉破坏和受压破坏都属于“材料破坏”。
其相同之处是,截面的最终破坏都是受压区边缘混凝土达到极限压应变而被压碎。
矩形截面偏心受压构件正截面的承载力计算一、矩形截面大偏心受压构件正截面的受压承载力计算公式 (一)大偏心受压构件正截面受压承载力计算(1)计算公式由力的平衡条件及各力对受拉钢筋合力点取矩的力矩平衡条件,可以得到下面两个基本计算公式:s y s y c A f A f bx f N -+=''1α (7-23)()'0''012a h A f x h bx f Ne s y c -+⎪⎭⎫ ⎝⎛-=α (7-24)式中: N —轴向力设计值;α1 —混凝土强度调整系数;e —轴向力作用点至受拉钢筋A S 合力点之间的距离;a he e i -+=2η (7-25) a i e e e +=0 (7-26)η—考虑二阶弯矩影响的轴向力偏心距增大系数,按式(7-22)计算;e i —初始偏心距;e 0 —轴向力对截面重心的偏心距,e 0 =M/N ;e a —附加偏心距,其值取偏心方向截面尺寸的1/30和20㎜中的较大者; x —受压区计算高度。
(2)适用条件1) 为了保证构件破坏时受拉区钢筋应力先达到屈服强度,要求b x x ≤ (7-27)式中 x b — 界限破坏时,受压区计算高度,o b b h x ξ= ,ξb 的计算见与受弯构件相同。
2) 为了保证构件破坏时,受压钢筋应力能达到屈服强度,和双筋受弯构件相同,要求满足:'2a x ≥ (7-28) 式中 a ′ — 纵向受压钢筋合力点至受压区边缘的距离。
(二)小偏心受压构件正截面受压承载力计算(1)计算公式根据力的平衡条件及力矩平衡条件可得s s s y c A A f bx f N σα-+=''1 (7-29)⎪⎭⎫ ⎝⎛'-+⎪⎭⎫ ⎝⎛-=s s y c a h A f x h bx f Ne 0''012α (7-30) ()'0''1'2s s s s c a h A a x bx f Ne -+⎪⎭⎫⎝⎛-=σα (7-31)式中 x — 受压区计算高度,当x >h ,在计算时,取x =h ;σs — 钢筋As 的应力值,可根据截面应变保持平面的假定计算,亦可近似取:y b s f 11βξβξσ--=(7-32)要求满足:y s y f f ≤≤σ'x b — 界限破坏时受压区计算高度,0h x b b ξ=;b ξξ、 — 分别为相对受压区计算高度 x/h 0和相对界限受压区计算高度x b /h 0 ;'e e 、′— 分别为轴向力作用点至受拉钢筋A s 合力点和受压钢筋A s ′合力点之间的距离 a he e i -+=2η (7-33) ''2a e he i --=η (7-34) (2)对于小偏心受压构件当bh f N c >时,除按上述式(7-30)和式(7-31)或式(7-32)计算外,还应满足下列条件:()()s s y c a a h A f h h bh f e e a h N -+⎪⎭⎫⎝⎛-≤⎥⎦⎤⎢⎣⎡---'0''00'22 (7-35 )式中 '0h — 钢筋's A 合力点至离纵向较远一侧边缘的距离,即s a h h -='0。
基本构件计算不对称配筋矩形截面偏心受压构件正截面
计算
(一)偏心受压构件正截面计算原理及步骤
1、偏心受压构件正截面计算原理:偏心受压构件的正截面计算是指分析偏心受压构件的正截面,根据受力原理、承载力理论等原理,使用有限元分析方法和有限元程序,即设计必要的有限元划分和边界条件,求得偏心受压构件的正截面应力分布、节点位移及结构安全性等结果。
2、偏心受压构件正截面计算步骤:
(1)构件几何特征分析:分析构件的几何形状及尺寸,包括截面形状、尺寸,材料特性,偏心距、荷载位置、偏心向量等特征。
(2)建立有效的有限元程序:根据构件的几何特征,建立有效的有限元程序,确定有限元单元的类型及节点位置,设计节点或网格的尺寸,确定边界条件等。
(3)计算结果处理:将所有计算结果从节点处理,绘制应力分布曲线,求取偏心受压构件正截面的有效截面系数、最大截面应力、节点位移等性能参数。
(4)模型校核:根据构件的形状、偏心距、荷载位置等,比较试验数据和计算结果,可以很好地判断构件结构的安全性能。