集成触发器和数讲义字触发电路
- 格式:ppt
- 大小:915.00 KB
- 文档页数:12
触发电路的工作原理引言:在现代电子技术中,触发电路是一种重要的电路元件,用于产生特定的脉冲信号,以控制其他电路或设备的工作。
本文将介绍触发电路的工作原理,包括对触发电路的定义、主要类型以及工作原理的详细解释。
一、触发电路的定义触发电路是用于控制其他电路或设备的开关电路,其输入信号被称为触发信号。
触发电路通常由触发器、计数器、比较器等基本元件组成。
通过设置适当的参数和条件,触发电路能够在特定的时刻产生或传递脉冲信号,用于控制其他电路或设备的工作。
二、触发电路的主要类型触发电路根据其工作原理和结构可分为多种类型,其中比较常见的有单稳态触发电路、双稳态触发电路和多稳态触发电路。
下面将分别对这些类型进行详细介绍。
1. 单稳态触发电路:单稳态触发电路在触发信号的作用下,在输出端产生一个持续时间较短的方波脉冲。
单稳态触发电路可分为正脉冲单稳态触发电路和负脉冲单稳态触发电路两种。
正脉冲单稳态触发电路在输入信号为正脉冲时触发,负脉冲单稳态触发电路在输入信号为负脉冲时触发。
2. 双稳态触发电路:双稳态触发电路在触发信号的作用下,在输出端产生两个稳定的状态,即高电平和低电平。
典型的双稳态触发电路有RS触发器、D触发器、JK触发器等。
这些触发器由逻辑门电路构成,能够根据输入信号的变化在输出端产生相应的稳定状态。
3. 多稳态触发电路:多稳态触发电路是指在触发信号的作用下,在输出端产生多个不同的稳定状态。
这类触发电路常用于数字系统中的存储电路和计数器等。
多稳态触发电路的实现较为复杂,通常需要利用逻辑门电路和时序电路来实现。
三、触发电路的工作原理触发电路的工作原理主要涉及触发器的工作机制和逻辑门电路的应用。
触发器是一种存储器件,能够根据输入信号的变化在输出端产生相应的稳定状态。
逻辑门电路则用于控制触发器的输入信号,以实现特定的触发条件。
以JK触发器为例,说明触发电路的工作原理。
JK触发器由两个输入端J和K组成,以及两个输出端Q和Q'。
实验八计数器一、实验目的1.熟悉由集成触发器构成的计数器电路及其工作原理。
2.熟悉掌握常用中规模集成电路计数器及其应用方法。
二、实验原理和电路所谓计数,就是统计脉冲的个数,计数器就是实现“计数”操作的时序逻辑电路。
计数器的应用十分广泛,不仅用来计数,也可用作分频、定时等。
计数器种类繁多。
根据计数体制的不同,计数器可分成二进制(即2”进制)计数器和非二进制计数器两大类。
在非二进制计数器中,最常用的是十进制计数器,其它的一般称为任意进制计数器。
根据计数器的增减趋势不同,计数器可分为加法计数器—随着计数脉冲的输入而递增计数的;减法计数器—随着计数脉冲的输入而递减的;可逆计数器—既可递增,也可递减的。
根据计数脉冲引入方式不同,计数器又可分为同步计数器—计数脉冲直接加到所有触发器的时钟脉冲(CP)输入端;异步计数器—计数脉冲不是直接加到所有触发器的时钟脉冲(CP)输入端。
1.异步二进制加法计数器异步二进制加法计数器是比较简单的。
图 1.8.1(a)是由4个JK(选用双JK74LS112)触发器构成的4位二进制(十六进制)异步加法计数器,图1.8.1(b)和(c)分别为其状态图和波形图。
对于所得状态图和波形图可以这样理解:触发器FF O(最低位)在每个计数沿(CP)的下降沿(1 → 0)翻转,触发器FF1的CP端接FF0的Q0端,因而当FF O(Q O)由1→ 0时,FF1翻转。
类似地,当FF1(Q1)由1→0时,FF2翻转,FF2(Q2)由1→0时,FF3翻转。
4位二进制异步加法计数器从起始态0000到1111共十六个状态,因此,它是十六进制加法计数器,也称模16加法计数器(模M=16)。
从波形图可看到,Q0 的周期是CP周期的二倍;Q1 是Q0的二倍,CP的四倍;Q2是Q1 的二倍,Q0的四倍,CP的八倍;Q3是Q2的二倍,Q1的四倍,Q0的八倍,CP的十六倍。
所以Q0 、Q1、Q2、Q3分别实现了二、四、八、十六分频,这就是计数器的分频作用。
实验四:触发器逻辑功能测试及应用一、实验目的1、掌握集成触发器的逻辑功能及使用方法2、熟悉触发器之间相互转换的方法 二、实验内容及步骤1、测试双JK 触发器74LS112逻辑功能。
在输入信号为双端的情况下,JK 触发器是功能完善、使用灵活和通用性较强的一种触发器。
本实验采用74LS112双JK 触发器,是下降边沿触发的边沿触发器。
JK 触发器的状态方程为Q n+1 =J Q n +K Q n (1)JK 触发器74LS112逻辑电路引脚图如下:图1(2)测试复位、置位功能,将测试结果填入表1。
表1(3)触发功能测试,按表2要求测试JK 触发器逻辑功能。
表2(4)根据图2逻辑图将JK 触发器分别连接成T 触发器和T ′触发器,并通过做实验进行验证。
注释:T 触发器的逻辑功能:当T =0时,时钟脉冲作用后,其状态保持不变;当T =1时,时钟脉冲作用后,触发器状态翻转。
如果将T 触发器的T 端置“1”,即得T'触发器。
在T'触发器的CP 端每来一个CP 脉冲信号,触发器的状态就翻转一次,故称之为反转触发器,广泛用于计数电路中。
图22、测试双D 触发器74LS74的逻辑功能在输入信号为单端的情况下,D 触发器用起来最为方便,其状态方程为 Qn+1=D n,其输出状态的更新发生在CP 脉冲的上升沿,故又称为上升沿触发的边沿触发器,触发器的状态只取决于时钟到来前D 端的状态,D 触发器的应用很广,可用作数字信号的寄存,移位寄存,分频和波形发生等。
(1)D 触发器74LS74逻辑电路引脚图3所示。
图3(2)测试复位、置位功能,将测试结果填入表3。
表3(3)D触发器的功能测试,按表4要求测试D触发器逻辑功能,填入表4。
表4(4)、根据图4所示逻辑图,将D触发器连接成计数单元(即T′触发器)。
并通过实验进行验证。
图4三、思考题1、根据表1的测试结果,R端也称为异步端。
S端也称为异步端。
2、总结JK触发器74LS112的动作特点。
触发电路名词解释触发电路是指一种能够在特定条件下进行控制的电路。
这种电路通常由多个元件组成,包括电阻、电容、晶体管、二极管等。
触发电路被广泛应用于各种电子设备中,如计算机、手机、电视等。
以下是一些常见的触发电路名词解释:1.计时器电路计时器电路是一种可以测量时间的电路。
它通常由一个稳定的时钟信号和一个计数器组成。
计时器电路可以在特定的时间间隔内生成脉冲信号或其他类型的输出信号,以控制其他电路或设备的操作。
2.多谐振荡器电路多谐振荡器电路是一种可以产生多个频率的电路。
它通常由多个谐振电路组成,每个谐振电路可以产生一个不同的频率。
多谐振荡器电路可以用于音频合成、频率分割和其他应用。
3.比较器电路比较器电路是一种可以比较两个电压或信号的电路。
它通常由一个比较器和一个参考电压或信号组成。
比较器电路可以用于电压或信号的比较、电子开关和其他应用。
4.触发器电路触发器电路是一种可以存储和控制信号的电路。
它通常由多个逻辑门组成,包括与门、或门、非门等。
触发器电路可以用于数字时序逻辑、计数器和其他应用。
5.脉冲发生器电路脉冲发生器电路是一种可以产生脉冲信号的电路。
它通常由一个稳定的时钟信号和一个触发器组成。
脉冲发生器电路可以用于数字时序逻辑、计数器和其他应用。
6.电压稳定器电路电压稳定器电路是一种可以稳定输出电压的电路。
它通常由一个稳定的参考电压和一个反馈电路组成。
电压稳定器电路可以用于电源管理、电子设备和其他应用。
7.闪光灯电路闪光灯电路是一种可以产生高亮度脉冲光的电路。
它通常由一个充电电路、一个闪光灯管和一个触发器组成。
闪光灯电路可以用于摄影、测量、科学研究和其他应用。
总结触发电路是电子设备中非常重要的一部分。
它们可以用于各种应用,包括计时器、多谐振荡器、比较器、触发器、脉冲发生器、电压稳定器和闪光灯电路。
这些电路通常由多个元件组成,包括电阻、电容、晶体管、二极管等。
理解这些电路的工作原理和应用可以帮助我们更好地设计和使用电子设备。
触发电路相控触发电路是将控制信号转变为在触发滞后角触发可控整流器、交流调压器、直接降频变频器或有源逆变器中晶闸管的门极驱动脉冲的电路。
大、中功率的变流器广泛应用的是晶体管触发电路,其中以同步信号为锯齿波的触发电路应用最多。
晶闸管门极对触发电路的要求:1)、触发信号要有一定的功率和幅值;2)、触发信号要有一定的宽度;3)、触发信号要有一定的陡度;4)、触发信号要有一定的移相范围并与主电路同步。
1 .同步信号为锯齿波的触发电路输出可为双窄脉冲(适用于有两个晶闸管同时导通的电路),也可为单窄脉冲。
三个基本环节:脉冲的形成与放大、锯齿波的形成和脉冲移相、同步环节。
此外,有强触发和双窄脉冲形成环节.图 1 同步信号为锯齿波的触发电路1) 脉冲形成环节V4、V5 —脉冲形成V7、V8 —脉冲放大控制电压u co加在V4基极上脉冲前沿由V4导通时刻确定,脉冲宽度与反向充电回路时间常数R11C3有关。
电路的触发脉冲由脉冲变压器TP二次侧输出,其一次绕组接在V8集电极电路中。
2)锯齿波的形成和脉冲移相环节锯齿波电压形成的方案较多,如采用自举式电路、恒流源电路等;本电路采用恒流源电路。
恒流源电路方案,由V1、V2、V3和C2等元件组成V1、VS、RP2和R3为一恒流源电路3)同步环节同步——要求触发脉冲的频率与主电路电源的频率相同且相位关系确定。
锯齿波是由开关V2管来控制的。
V2开关的频率就是锯齿波的频率——由同步变压器所接的交流电压决定。
V2由导通变截止期间产生锯齿波——锯齿波起点基本就是同步电压由正变负的过零点。
V2截止状态持续的时间就是锯齿波的宽度——取决于充电时间常数R1C1。
4) 双窄脉冲形成环节内双脉冲电路V5、V6构成“或”门当V5、V6都导通时,V7、V8都截止,没有脉冲输出。
只要V5、V6有一个截止,都会使V7、V8导通,有脉冲输出。
第一个脉冲由本相触发单元的u co对应的控制角α产生。
隔60︒的第二个脉冲是由滞后60︒相位的后一相触发单元产生(通过V6)。
集成触发电路的原理
集成触发电路是一种电子电路,它可以根据输入信号的变化来触发输出信号的变化。
该电路通常由几个二极管、晶体管、电容器和电阻器构成,并通过集成电路技术在一个单一的芯片上实现。
集成触发电路可以用于许多应用,包括定时器、闪光灯、计数器和触发器等。
其中最常见的应用是在数字电路中,用于实现逻辑门电路。
在集成触发电路中,最常用的元件是双稳态多谐振荡器。
该电路由两个反馈电路组成,其中一个电路将输出信号反馈到输入端,另一个电路将输入信号反馈到输出端。
因此,当输入信号发生变化时,输出信号也会发生变化。
集成触发电路的特点是结构简单、可靠性高、功耗低、工作稳定。
它可以通过调节电容器和电阻器的值来改变输出信号的频率和脉宽等参数。
同时,集成触发电路还可以通过组合多个触发器来实现复杂的逻辑功能。
在实际应用中,集成触发电路已经广泛应用于各种领域,包括计算机、通信、医疗、汽车、航空航天等。
随着芯片制造技术的不断进步,集成触发电路的性能和功能将会不断提升,为人们带来更多的便利和创新。
- 1 -。