门电路及触发器
- 格式:ppt
- 大小:1.76 MB
- 文档页数:48
数字电子技术实验报告 实验三:触发器及其应用一、实验目的:1、 熟悉基本RS 触发器,D 触发器的功能测试。
2、 了解触发器的两种触发方式(脉冲电平触发和脉冲边沿触发)及触发特点。
3、 熟悉触发器的实际应用。
二、实验设备:1、 数字电路实验箱;2、 数字双综示波器;3、 指示灯;4、 74LS00、74LS74。
三、实验原理:1、触发器是一个具有记忆功能的二进制信息存储器件,是构成多种时序电路的最基本逻辑单元,也是数字逻辑电路中一种重要的单元电路。
在数字系统和计算机中有着广泛的应用。
触发器具有两个稳定状态,即“0”和“1”,在一定的外界信号作用下,可以从一个稳定状态翻转到另一个稳定状态。
触发器有集成触发器和门电路(主要是“与非门”)组成的触发器。
按其功能可分为有RS 触发器、JK 触发器、D 触发器、T 功能等触发器。
触发方式有电平触发和边沿触发两种。
2、基本RS 触发器是最基本的触发器,可由两个与非门交叉耦合构成。
基本RS 触发器具有置“0”、置“1”和“保持”三种功能。
基本RS 触发器也可以用二个“或非门”组成,此时为高电平触发有效。
3、 D 触发器在CP 的前沿发生翻转,触发器的次态取决于CP 脉冲上升沿来到之前D 端的状态,即Q n+1 = D 。
因此,它具有置“0”和“1”两种功能。
由于在CP=1期间电路具有阻塞作用,在CP=1期间,D 端数据结构变化,不会影响触发器的输出状态。
和 分别是置“0”端和置“1”端,不需要强迫置“0”和置“1”时,都应是高电平。
74LS74(CC4013),74LS74(CC4042)均为上升沿触发器。
以下为74LS74的引脚图和逻辑图。
D R D S四、实验原理图和实验结果:设计实验:1、一个水塔液位显示控制示意图,虚线表示水位。
传感器A、B被水浸沿时会有高电平输出。
框I是水泵控制电路。
逻辑函数L是水泵的控制信号,为1时水泵开启。
设计框I的逻辑电路,要求:水位低于A时,开启水泵L;水位高于B时,关闭水泵L。
门电路组成的微分型单稳态触发器单稳态触发器的特点:1. 电路中有一个稳态,一个暂稳态。
2. 在外来触发信号作用下,电路由稳态翻转到暂稳态。
3. 暂稳态是一个不能长期保持的状态,由于电路中RC 延时环节的作用,经过一段时间后,电路会自动返回到稳态。
暂稳态的持续时间取决于RC 电路的参数值。
单稳态触发器的这些特点被广泛地应用于脉冲波形的变换与延时中。
1、电路组成及工作原理微分型单稳态触发器可由与非门和或非门电路组成,图1(a)、(b)分别为由与非门和或非门构成的单稳态触发器。
与基本RC 触发器不同,构成单稳态触发器的两个规律门是由RC 耦合的,由于RC 电路为微分电路的形式,故称为微分型单稳态触发器。
下面以CMOS或非门构成的单稳态触发器为例,来说明它的工作原理。
(a) 由与非门构成的微分型单稳态触发器(b) 由或非门构成的微分型单稳态触发器图1 微分型单稳态触发器1. 没有触发信号时,电路处于一种稳态。
没有触发信号时,vⅠ为低电平。
由于门G2的输入端经电阻R 接VDD,因此vO2为低电平;G1的两个输入均为0,故输出vO1为高电平,电容两端的电压接近0V,这是电路的“稳态”。
在触发信号到来之前电路始终处于这个状态:vO1=VOH,vO2=VOL。
2. 外加触发信号,电路由稳态翻转到暂稳态。
当v1正跳变上升到Vth后,开头G1的输出vO1由高变低,经电容C 耦合,使vR为低电平,于是G2的输出vO2由低电平变为高电平。
vO2的高电平接至G1门的输入端,从而在此瞬间导致如下正反馈过程:这样G1导通,G2截止在瞬间完成。
此时,即使触发信号vⅠ撤除(vⅠ变为低电平),由于vO2的作用,vO1仍维持低电平。
然而,电路的这种状态是不能长期保持的,故称之为暂稳态。
暂稳态时,vO1=VOL,vO2=VOH。
3. 电容充电,电路由暂稳态自动返回至稳态。
在暂稳态期间,电源经电阻R和门G1的导通工作管对电容C充电,随着充电时间的增加,vC增加,使vR上升,当vR达到阈值电压Vth 时,电路发生下述正反馈过程(设此时触发器脉冲已消逝):于是G1门快速截止,G2门很快导通,最终使电路由暂稳态返回至稳态,vO1=VOH,vO2=VOL。
触发器原理
触发器是一种用来存储和控制电位状态的逻辑电路元件。
它可以接收输入信号,并根据触发器的特性产生相应的输
出信号。
触发器的原理基于锁存器和门电路的组合,其中
包括晶体管、集成电路等。
触发器的工作原理主要包括以下几个方面:
1. 反馈环路:触发器中的反馈环路是触发器的核心部分。
通过反馈环路,触发器可以实现存储和控制逻辑电平的功能。
当输入信号满足一定条件时,反馈环路会改变触发器
的状态,并产生输出信号。
2. 门电路:触发器内部通常包含与门、或门、非门等逻辑
门电路。
这些门电路可以根据输入信号的不同组合对触发
器进行控制,从而实现特定的逻辑功能。
3. 时钟信号:大多数触发器都需要一个时钟信号来同步其
状态变化。
触发器根据时钟信号的上升或下降沿改变状态,并在时钟信号边沿到来时产生输出信号。
4. 控制信号:触发器可以通过控制信号来改变其操作模式或功能。
通过控制信号,可以控制触发器的使能、复位、设置、清除等操作,从而满足不同的应用需求。
总之,触发器是一种基于逻辑门电路和反馈环路的存储和控制元件,通过输入信号、时钟信号和控制信号的组合来实现不同的功能。
它广泛应用于数字电路、计算机内存、计数器、寄存器等电子设备中。
数字电路复习题(注意:以下题目是作为练习和考试题型而设,不是考题,大家必须融会贯通,举一反三。
) 1、逻辑电路可以分为 组合逻辑电路 电路和 时序逻辑电路 电路。
2、数字电路的基本单元电路是 门电路 和 触发器 。
3、数字电路的分析工具是 逻辑代数(布尔代数) 。
4、(50.375) 10 = (110010.011) 2 = (32.6) 165、3F4H = (0001000000010010 )8421BCD6、数字电路中的最基本的逻辑运算有 与 、 或 、 非 。
7、逻辑真值表是表示数字电路 输入和输出 之间逻辑关系的表格。
8、正逻辑的与门等效于负逻辑的 或门 。
9、表示逻辑函数的 4 种方法是真值表 、 表达式、 卡诺图 、 逻辑电路图 。
其中形式惟一的是 真值表 。
10、对于变量的一组取值,全体最小项之和为 1 。
11、对于任意一个最小项,只有一组变量的取值使其值为 1 ,而在变量取其他各组值时这个最小项的取值都是 0 。
12、对于变量的任一组取值,任意两个最小项之积为 0。
13、与最小项 ABC 相邻的最小项有 ABC 、 ABC 、 ABC 。
14、组合逻辑电路的特点是 输出端的状态只由同一时刻输入端的状态所决定,而与先前的状态没有关系(或输出与输入之间没有反馈延迟通路;电路中不含记忆元件) 。
15、按电路的功能分,触发器可以分为 RS 、 JK 、 D 、 T 、 T’。
16、时序电路可分为 同步时序逻辑电路 和 异步时序逻辑电路 两种工作方式。
17、描述时序电路逻辑功能的方法有逻辑方程组(含 驱动方程 、 输出方程 、状态方程 )、 状态图 、 状态表 、 时序图 。
18、(251) 10 =(11111011) 2 =(FB ) 16 19、全体最小项之和为 1 。
20、按照使用功能来分,半导体存储器可分为RAM 和ROM 。
21、RAM 可分为动态RAM 和静态RAM 。
使用触发器实现逻辑门电路触发器是数字电路中的重要组成部分,可以实现数字信号的存储和转换。
在逻辑门电路中,触发器可以用来实现与门、或门、非门等逻辑运算。
本文将介绍如何使用触发器来实现三种常见的逻辑门电路:与门、或门和非门。
一、与门(AND Gate)与门是最基本的逻辑门之一,它的输出信号只有在所有输入信号都为高电平时才会输出高电平,否则输出低电平。
使用触发器来实现与门电路,可以通过串联触发器和逻辑门的方式实现。
具体步骤如下:1. 将两个触发器以RS(复位-设置)触发器的形式进行串联连接。
2. 将输入信号分别连接到两个触发器的设置端(S)。
3. 将两个触发器的输出信号连同作为与门电路的输出信号。
通过以上步骤,我们成功地使用触发器实现了与门电路。
当输入信号都为高电平时,触发器的输出信号就都为高电平,与门的输出信号也为高电平;否则,输出信号为低电平。
二、或门(OR Gate)或门是另一种常见的逻辑门,它的输出信号只有在任意一个输入信号为高电平时就会输出高电平,只有当所有输入信号都为低电平时才输出低电平。
使用触发器来实现或门电路,可以通过串联触发器和逻辑运算电路来实现。
具体步骤如下:1. 将两个触发器以JK(互斥反相)触发器的形式进行串联连接。
2. 将输入信号分别连接到两个触发器的时钟(CLK)端。
3. 将两个触发器的输出信号分别连接到逻辑运算电路中。
4. 逻辑运算电路可使用与门和非门组合的方式来实现,具体可以根据实际情况进行选择。
通过以上步骤,我们成功地使用触发器实现了或门电路。
当任何一个输入信号为高电平时,至少一个触发器的输出信号就为高电平,或门的输出信号也为高电平;只有当所有输入信号都为低电平时,触发器的输出信号都为低电平,或门的输出信号也为低电平。
三、非门(NOT Gate)非门是最简单的逻辑门,它只有一个输入信号,当输入信号为高电平时,输出信号为低电平;当输入信号为低电平时,输出信号为高电平。
使用触发器来实现非门电路,可以通过反相触发器来实现。
模块八检测题答案(一) 填空题:1.触发器的逻辑功能通常可用、、和等多种方法进行描述。
(功能真值表,逻辑函数式,状态转换图,时序波形图)2.组合逻辑电路的基本单元是,时序逻辑电路的基本单元是。
(门电路,触发器)3.触发器具有“空翻”现象,且属于触发方式的触发器;为抑制“空翻”,人们研制出了触发方式的JK触发器和D触发器。
(钟控RS,电平,边沿)4.JK触发器具有、、和四种功能。
欲使JK触发器实现n+1的功能,则输入端J应接,K应接。
n QQ=(置0 ,置1 ,保持,翻转,1 ,1 )5.同步RS触发器的状态变化是在时钟脉冲期间发生的,主从RS 触发器的状态转变是在时钟脉冲发生的。
(CP=1, 下降沿)6.时序逻辑电路按各位触发器接受信号的不同,可分为步时序逻辑电路和步时序逻辑电路两大类。
在步时序逻辑电路中,各位触发器无统一的信号,输出状态的变化通常不是发生的。
(时钟脉冲控制,同,异,异,时钟脉冲控制,同一时刻)7.分析时序逻辑电路时,首先要根据已知逻辑的电路图分别写出相应的方程、方程和方程,若所分析电路属于步时序逻辑电路,则还要写出各位触发器的方程。
(驱动,输出,次态,异,时钟脉冲)8.寄存器可分为寄存器和寄存器,集成74LS194属于移位寄存器。
用四位移位寄存器构成环行计数器时,有效状态共有个;若构成扭环计数器时,其有效状态是个。
(数码,移位,双向,4 ,8 )9.74LS194是典型的四位型集成双向移位寄存器芯片,具有、并行输入、和等功能。
(TTL,左移和右移,保持数据,清除数据)10.逻辑图输入端子有圆圈的表示触发,输出端子有圆圈的表示;不带三角符号的表示方式,带三角符号的表示方式;带三角符号及圆圈的表示触发,有三角符号不带圆圈的表示触发。
(低电平,“非”,电位触发,边沿触发方式,下降沿,上升沿)(二)判断题(错)1.基本的RS触发器具有“空翻”现象。
(错)2.钟控的RS触发器的约束条件是:R+S=0。
电路设计中的触发器电路设计触发器电路设计的原理和应用电路设计中的触发器电路设计电路设计是电子工程中非常重要的一项任务,而触发器电路则是电路设计中的重要组成部分之一。
本文将介绍触发器电路设计的原理和应用。
一、触发器电路的原理触发器电路是一种存储器件,它可以在特定的输入条件下,通过触发信号改变输出状态。
触发器电路主要由逻辑门电路组成,常见的触发器有RS触发器、JK触发器、D触发器和T触发器等。
下面将逐一介绍这几种触发器的原理和应用。
1. RS触发器RS触发器是一种简单的触发器,它有两个输入端R和S,以及两个输出端Q和Q'。
当输入R为0、输入S为1时,输出Q为0;当输入R为1、输入S为0时,输出Q为1;当输入R和输入S均为1时,输出Q的状态将取决于触发器的具体类型(RS触发器可分为同步和异步两种类型)。
RS触发器常用于存储单个比特的数据,广泛应用于计算机存储器、时序电路等。
2. JK触发器JK触发器是一种改进型的RS触发器,它在RS触发器的基础上增加了一个反馈输入端J和K。
当输入J为0、输入K为1时,输出Q为0;当输入J为1、输入K为0时,输出Q为1;当输入J和输入K均为1时,输出Q的状态将取决于触发器的具体类型。
JK触发器常用于存储单个比特的数据以及实现状态转换等功能,在数字电路、计算机存储器等领域得到广泛应用。
3. D触发器D触发器是一种特殊的触发器,它只有一个输入端D,并且在时钟信号上升沿或下降沿产生输出。
当时钟信号为上升沿时,输入D的值将传递到输出Q上;当时钟信号为下降沿时,输入D的值将传递到输出Q上。
D触发器常用于存储单个比特的数据以及实现时序电路的功能,在数字电路、时序控制等领域得到广泛应用。
4. T触发器T触发器是一种特殊的JK触发器,它的输入端J和K被连接在一起,形成一个输入端T。
当输入T为0时,触发器保持原状态;当输入T为1时,触发器的状态翻转。
T触发器常用于计数器、频率除法器等电路中,广泛应用于数字系统中。
门电路和触发器简介(1)门电路门电路可以看成是数字逻辑电路中最简单的元件。
目前有大量集成化产品可供选用。
最基本的门电路有3种:非门、与门和或门。
非门就是反相器,它把输入的O信号变成1,1变成O。
这种逻辑功能叫“非”,如果输入是A,输出写成P=Ao与门有2个以上输入,它的功能是当输入都是1时,输出才是1。
这种功能也叫逻辑乘,如果输入是A、B,输出写成P=Λ∙Bo或门也有2个以上输入,它的功能是输入有一个1时,输出就是1。
这种功能也叫逻辑加,输出就写成P=A+B。
把这三种基本门电路组合起来可以得到各种复合门电路,如与门加非门成与非门,或门加非门成或非门。
图1是它们的图形符号和真值表。
此外还有与或非门、异或门等等。
电平为O。
(2)触发器触发器实际上就是脉冲电路中的双稳电路,它的电路和功能都比门电路复杂,它也可看成是数字逻辑电路中的元件。
目前也已有集成化产品可供选用。
常用的触发器有D触发器和J—K触发器。
D触发器有一个输入端D和一个时钟信号输入端CP,为了区别在CP端加有箭头。
它有两个输出端,一个是Q一个是Q,加有小圈的输出端是Q端。
另外它还有两个预置端RD和SD,平时正常工作时要RD和SD端都加高电平1,如果使RD=O(SD仍为1),则触发器被置成Q=O;如果使SD=O(RD=I),则被置成Q=I因此RD端称为置O端,SD端称为置1端。
D触发器的逻辑符号见图2,图中Q、D、SD端画在同一侧;Q、RD画在另一侧。
RD和SD都带小圆圈,表示要加上低电平才有效。
D触发器是受CP和D端双重控制的,CP加高电平1时,它的输出和D的状态相同。
如D=O,CP来到后,Q=O;如D=I,CP来到后,Q=I。
CP脉冲起控制开门作用,如果CP=O,则不管D是什么状态,触发器都维持原来状态不变。
这样的逻辑功能画成表格就称为功能表或特性表,见图2。
表中Qn÷1表示加上触发信号后变成的状态,Qn是原来的状态。
"X"表示是。
施密特触发器原理图解重要特性:施密特触发器具有如下特性:输⼊电压有两个阀值VL、VH,VL施密特触发器通常⽤作缓冲器消除输⼊端的⼲扰。
施密特波形图 施密特触发器也有两个稳定状态,但与⼀般触发器不同的是,施密特触发器采⽤电位触发⽅式,其状态由输⼊信号电位维持;对于负向递减和正向递增两种不同变化⽅向的输⼊信号,施密特触发器有不同的阀值电压。
门电路有⼀个阈值电压,当输⼊电压从低电平上升到阈值电压或从⾼电平下降到阈值电压时电路的状态将发⽣变化。
施密特触发器是⼀种特殊的门电路,与普通的门电路不同,施密特触发器有两个阈值电压,分别称为正向阈值电压和负向阈值电压。
在输⼊信号从低电平上升到⾼电平的过程中使电路状态发⽣变化的输⼊电压称为正向阈值电压,在输⼊信号从⾼电平下降到低电平的过程中使电路状态发⽣变化的输⼊电压称为负向阈值电压。
正向阈值电压与负向阈值电压之差称为回差电压。
它是⼀种阈值开关电路,具有突变输⼊——输出特性的门电路。
这种电路被设计成阻⽌输⼊电压出现微⼩变化(低于某⼀阈值)⽽引起的输出电压的改变。
利⽤施密特触发器状态转换过程中的正反馈作⽤,可以把边沿变化缓慢的周期性信号变换为边沿很陡的矩形脉冲信号。
输⼊的信号只要幅度⼤于vt+,即可在施密特触发器的输出端得到同等频率的矩形脉冲信号。
当输⼊电压由低向⾼增加,到达V+时,输出电压发⽣突变,⽽输⼊电压Vi由⾼变低,到达V-,输出电压发⽣突变,因⽽出现输出电压变化滞后的现象,可以看出对于要求⼀定延迟启动的电路,它是特别适⽤的. 从传感器得到的矩形脉冲经传输后往往发⽣波形畸变。
当传输线上的电容较⼤时,波形的上升沿将明显变坏;当传输线较长,⽽且接受端的阻抗与传输线的阻抗不匹配时,在波形的上升沿和下降沿将产⽣振荡现象;当其他脉冲信号通过导线间的分布电容或公共电源线叠加到矩形脉冲信号时,信号上将出现附加的噪声。
⽆论出现上述的那⼀种情况,都可以通过⽤施密特反相触发器整形⽽得到⽐较理想的矩形脉冲波形。