简单二叉树的创建,删除,查找
- 格式:doc
- 大小:49.50 KB
- 文档页数:7
二叉树的基本操作二叉树是一种常见的数据结构,它由节点组成,每个节点最多有两个子节点。
二叉树在计算机领域中得到广泛应用,它的基本操作包括插入、删除、查找、遍历等。
1.插入操作:二叉树的插入操作是将一个新的节点添加到已有的二叉树中的过程。
插入操作会按照一定规则将新节点放置在正确的位置上。
插入操作的具体步骤如下:-首先,从根节点开始,比较新节点的值与当前节点的值的大小关系。
-如果新节点的值小于当前节点的值,则将新节点插入到当前节点的左子树中。
-如果新节点的值大于当前节点的值,则将新节点插入到当前节点的右子树中。
-如果当前节点的左子树或右子树为空,则直接将新节点插入到该位置上。
-如果当前节点的左子树和右子树都不为空,则递归地对左子树或右子树进行插入操作。
2.删除操作:二叉树的删除操作是将指定节点从二叉树中删除的过程。
删除操作有以下几种情况需要考虑:-如果待删除节点是叶子节点,则直接将其从二叉树中删除即可。
-如果待删除节点只有一个子节点,则将其子节点替换为待删除节点的位置即可。
-如果待删除节点有两个子节点,则需要找到其左子树或右子树中的最大节点或最小节点,将其值替换为待删除节点的值,然后再删除最大节点或最小节点。
3.查找操作:二叉树的查找操作是在二叉树中查找指定值的节点的过程。
查找操作的具体步骤如下:-从根节点开始,将待查找值与当前节点的值进行比较。
-如果待查找值等于当前节点的值,则返回该节点。
-如果待查找值小于当前节点的值,则在当前节点的左子树中继续查找。
-如果待查找值大于当前节点的值,则在当前节点的右子树中继续查找。
-如果左子树或右子树为空,则说明在二叉树中找不到该值。
4.遍历操作:二叉树的遍历操作是按照一定规则依次访问二叉树中的每个节点。
有三种常用的遍历方式:- 前序遍历(Preorder Traversal):先访问根节点,然后递归地前序遍历左子树和右子树。
- 中序遍历(Inorder Traversal):先递归地中序遍历左子树,然后访问根节点,最后递归地中序遍历右子树。
树结构的定义和基本操作树结构是一种非线性的数据结构,其形状类似于自然界中的树。
树由一组节点(或称为顶点)和一组连接这些节点的边组成。
树结构的常见学习对象有二叉树、二叉树、AVL树、红黑树等。
树结构的基本操作包括创建、插入、删除、查找和遍历。
首先,创建树结构需要定义树节点的结构。
每个节点至少包含一个数据元素以及指向其子节点的指针。
树结构可以使用链式存储结构或数组存储结构。
1.创建树结构:树结构的创建有多种方式。
其中一种常见的方法是通过递归实现。
递归函数首先创建根节点,然后再递归地创建根节点的左子树和右子树。
2.插入节点:要插入一个新节点,首先要定位到合适的位置。
比较要插入的节点值与当前节点值的大小,如果小于当前节点,则进入左子树,如果大于当前节点,则进入右子树。
最终找到合适的位置插入新节点。
如果要插入的节点已经存在,可以替换或忽略该节点。
3.删除节点:删除节点分为三种情况:删除叶子节点、删除只有一个子节点的节点、删除有两个子节点的节点。
-删除叶子节点:直接删除即可。
-删除只有一个子节点的节点:将子节点与父节点连接起来,删除当前节点。
-删除有两个子节点的节点:找到当前节点的后继节点(比当前节点大的最小节点),将后继节点的值复制到当前节点,然后删除后继节点。
4.查找节点:树的查找可以使用递归或迭代的方式实现。
递归方式从根节点开始,根据节点值与目标值的大小关系递归地遍历左子树或右子树,直到找到目标值或遍历完成。
迭代方式使用循环和栈或队列的数据结构来实现。
5.遍历节点:树的遍历有三种方式:前序遍历、中序遍历和后序遍历。
-前序遍历:根节点->左子树->右子树-中序遍历:左子树->根节点->右子树-后序遍历:左子树->右子树->根节点树的遍历也可以通过递归或迭代的方式实现。
递归方式较为简单,使用迭代方式需要借助栈或队列来保存遍历的节点。
除了上述基本操作外,树结构还有一些扩展的操作,如树的深度计算、查找最大值或最小值、查找前驱节点或后继节点等。
二叉树的顺序存储及基本操作二叉树的顺序存储是将树中的节点按照完全二叉树从上到下、从左到右的顺序依次存储到一个一维数组中,采用这种方式存储的二叉树也被称为完全二叉树。
一、在使用顺序存储方式时,可以使用以下公式来计算一个节点的左右子节点和父节点:
1. 左子节点:2i+1(i为父节点的在数组中的下标)
2. 右子节点:2i+2
3. 父节点:(i-1)/2(i为子节点在数组中的下标)
二、基本操作:
1. 创建二叉树:按照上述公式将节点存储到数组中。
2. 遍历二叉树:可采用递归或非递归方式,进行前序、中序、后序、层次遍历。
3. 插入节点:先将节点插入到数组末尾,然后通过比较节点和其父节点的大小,进行上浮操作直到满足二叉树的性质。
4. 删除节点:先将待删除节点和最后一个节点交换位置,然后通过比较交换后的节点和其父节点的大小,进行下沉操作直到满足二
叉树的性质。
5. 查找节点:根据节点值进行查找,可采用递归或非递归方式。
6. 修改节点:根据节点值进行查找,然后进行修改操作。
二叉树的创建和初始化步骤一、确定二叉树的节点数首先,我们需要确定二叉树中节点的数量。
这可以通过输入用户的需求来确定,或者根据具体的问题背景和数据结构要求来确定。
二、确定节点的值接下来,我们需要为每个节点分配一个唯一的值。
这些值可以是数字、字符或其他数据类型,具体取决于我们的需求和应用场景。
三、创建根节点在确定了节点数和节点值之后,我们可以开始创建二叉树的根节点。
根节点是二叉树中最重要的节点,它没有父节点,并且存储了整个二叉树的信息。
四、初始化二叉树接下来,我们需要初始化二叉树。
这包括为每个节点分配内存空间,并将其初始化为一个空节点。
在初始化过程中,我们需要为每个节点分配一个唯一的位置,以便后续的插入和删除操作。
五、构建左子树接下来,我们需要构建二叉树的左子树。
这可以通过递归地插入节点来完成。
在插入节点时,我们需要判断节点的左子节点是否为空,如果不为空则插入到右子树中。
在构建左子树时,我们需要遵循二叉树的性质,确保左子树的所有节点的值小于根节点的值。
六、构建右子树类似地,我们需要构建二叉树的右子树。
在构建右子树时,我们需要遵循二叉树的性质,确保右子树的所有节点的值大于根节点的值。
我们可以通过递归地插入节点来完成右子树的构建。
七、插入节点如果需要向二叉树中插入新的节点,我们可以按照以下步骤进行:1. 首先,我们需要找到要插入新节点的位置。
这可以通过递归地搜索二叉树来完成。
在搜索过程中,我们需要判断当前节点的左子节点和右子节点是否为空,如果为空则插入新节点,如果不为空则继续搜索。
2. 插入新节点时,我们需要更新节点的指针和引用计数器。
指针指向新节点,引用计数器加一。
同时,我们需要调整父节点的指针,指向新节点。
3. 最后,我们需要重新平衡二叉树,以确保其保持平衡和高效性能。
平衡二叉树的方法有很多种,包括AVL树、红黑树等。
八、遍历二叉树遍历二叉树是另一种重要的操作。
遍历可以帮助我们更好地理解二叉树的构造和结构,并能够更好地应用和处理二叉树中的数据。
C平衡⼆叉树(AVL)创建和删除 AVL是最先发明的⾃平衡⼆叉查找树算法。
在AVL中任何节点的两个⼉⼦⼦树的⾼度最⼤差别为⼀,所以它也被称为⾼度平衡树,n个结点的AVL树最⼤深度约1.44log2n。
查找、插⼊和删除在平均和最坏情况下都是O(log n)。
增加和删除可能需要通过⼀次或多次树旋转来重新平衡这个树。
定义 ⽤LH,EH,RH分别表⽰左⼦树⾼,等⾼,右⼦树⾼,即平衡因⼦1、0、-1#include <stdio.h>#include <stdlib.h>#include <stdbool.h>#define LH 1 // 左⾼#define EH 0 // 等⾼#define RH -1 // 右⾼typedef struct TreeNode{int data;int bf;struct TreeNode *left, *right;}TreeNode; 旋转处理 左旋和右旋,记住“左逆右顺”就可以/************************************************* 对以*p为根的⼆叉排序树作右旋处理,处理之后p指向新的树根结点,* A B* / / \* B 旋转后变为 C A* / \ /* C D D* 即旋转处理之前的左⼦树的结点。
************************************************/void r_rotate(TreeNode **p){TreeNode *l = (*p)->left;(*p)->left = l->right;l->right = (*p);*p = l;}/************************************************* 对以*p为根的⼆叉排序树作左旋处理,处理之后p指向新的树根结点,* A B* \ / \* B 旋转后变为 A D* / \ \* C D C* 即旋转处理之前的右⼦树的结点。
二叉树用途二叉树是一种常用的数据结构,由节点和连接节点的边组成,其中每个节点最多有两个子节点,被称为左子节点和右子节点。
二叉树具有以下特点:1. 有层次结构:节点按照层次排列,每层从左到右。
2. 可以拥有零个、一个或两个子节点。
3. 二叉树的子树也是二叉树。
4. 深度为d的二叉树最多含有2^d-1个节点,其中d为二叉树的深度。
二叉树的用途非常广泛,下面将详细讨论几个主要的应用场景。
1. 搜索、排序和查找:二叉树可以用于快速搜索、排序和查找数据。
二叉搜索树是一种常用的二叉树类型,其中每个节点的值大于左子树的所有节点的值,小于右子树的所有节点的值。
通过二分查找算法,在二叉搜索树中可以快速定位目标值。
2. 堆:二叉堆是一种用于实现优先队列的数据结构。
它具有以下特点:任意节点的关键字值都小于(或大于)或等于其子节点的关键字值,根节点的关键字值最小(或最大);并且堆是一颗完全二叉树。
二叉堆的插入和删除操作的时间复杂度为O(log n),适用于一些需要高效的优先级操作的场景,例如任务调度。
3. 表达式树:二叉树可以用于存储和计算数学表达式。
表达式树是一种二叉树,其叶节点是操作数,内部节点是操作符。
通过遍历表达式树,我们可以通过递归的方式计算整个表达式的值。
4. 文件系统:二叉树可以用于组织和管理文件系统中的文件和文件夹。
每个节点代表一个文件或文件夹,左子节点代表文件夹下的子文件夹,右子节点代表同一层级下的其他文件或文件夹。
通过遍历二叉树,可以实现文件的查找、创建、删除等操作。
5. 数据压缩:哈夫曼树是一种常用的数据压缩算法,通过构建二叉树来实现。
在哈夫曼树中,出现频率较高的字符对应的节点位于树的较低层,而出现频率较低的字符对应的节点位于树的较高层。
通过对字符进行编码,并使用相对较短的编码表示高频字符,可以实现对数据的高效压缩和解压缩。
6. 平衡树:平衡树是一种特殊类型的二叉树,其左子树和右子树的高度差不超过1。
数据结构实验报告—二叉树数据结构实验报告—二叉树引言二叉树是一种常用的数据结构,它由节点和边构成,每个节点最多有两个子节点。
在本次实验中,我们将对二叉树的基本结构和基本操作进行实现和测试,并深入了解它的特性和应用。
实验目的1. 掌握二叉树的基本概念和特性2. 熟练掌握二叉树的基本操作,包括创建、遍历和查找等3. 了解二叉树在实际应用中的使用场景实验内容1. 二叉树的定义和存储结构:我们将首先学习二叉树的定义,并实现二叉树的存储结构,包括节点的定义和节点指针的表示方法。
2. 二叉树的创建和初始化:我们将实现二叉树的创建和初始化操作,以便后续操作和测试使用。
3. 二叉树的遍历:我们将实现二叉树的前序、中序和后序遍历算法,并测试其正确性和效率。
4. 二叉树的查找:我们将实现二叉树的查找操作,包括查找节点和查找最大值、最小值等。
5. 二叉树的应用:我们将探讨二叉树在实际应用中的使用场景,如哈夫曼编码、二叉搜索树等。
二叉树的定义和存储结构二叉树是一种特殊的树形结构,它的每个节点最多有两个子节点。
节点被表示为一个由数据和指向其左右子节点的指针组成的结构。
二叉树可以分为三类:满二叉树、完全二叉树和非完全二叉树。
二叉树可以用链式存储结构或顺序存储结构表示。
- 链式存储结构:采用节点定义和指针表示法,通过将节点起来形成一个树状结构来表示二叉树。
- 顺序存储结构:采用数组存储节点信息,通过计算节点在数组中的位置来进行访问和操作。
二叉树的创建和初始化二叉树的创建和初始化是二叉树操作中的基础部分。
我们可以通过手动输入或读取外部文件中的数据来创建二叉树。
对于链式存储结构,我们需要自定义节点和指针,并通过节点的方式来构建二叉树。
对于顺序存储结构,我们需要定义数组和索引,通过索引计算来定位节点的位置。
一般来说,初始化一个二叉树可以使用以下步骤:1. 创建树根节点,并赋初值。
2. 创建子节点,并到父节点。
3. 重复步骤2,直到创建完整个二叉树。
实验名称:树的操作实验实验目的:1. 理解树的基本概念和操作。
2. 掌握树的创建、插入、删除、查找等基本操作。
3. 熟悉树在计算机科学中的应用。
实验环境:1. 操作系统:Windows 102. 编程语言:Java3. 开发工具:Eclipse实验内容:1. 树的基本概念2. 树的创建3. 树的插入4. 树的删除5. 树的查找6. 树的应用实验步骤:一、树的基本概念1. 树的定义:树是一种非线性数据结构,由若干节点组成,每个节点有一个唯一的父节点(根节点除外),除了根节点外,其他节点都有一个子节点。
2. 树的术语:- 节点:树中的数据元素。
- 父节点:节点的直接前驱节点。
- 子节点:节点的直接后继节点。
- 根节点:没有父节点的节点。
- 叶节点:没有子节点的节点。
- 节点的度:节点拥有的子节点个数。
- 树的深度:根节点到叶节点的最长路径长度。
二、树的创建1. 创建二叉树:```javapublic class BinaryTree {private TreeNode root;public BinaryTree() {root = null;}public void createTree(int[] data) {if (data == null || data.length == 0) {return;}root = new TreeNode(data[0]);int i = 1;Queue<TreeNode> queue = new LinkedList<>(); queue.offer(root);while (!queue.isEmpty()) {TreeNode node = queue.poll();if (i < data.length && data[i] != 0) {node.left = new TreeNode(data[i]); queue.offer(node.left);i++;}if (i < data.length && data[i] != 0) { node.right = new TreeNode(data[i]); queue.offer(node.right);i++;}}}}```2. 创建二叉搜索树:```javapublic class BinarySearchTree {private TreeNode root;public BinarySearchTree() {root = null;}public void createTree(int[] data) {if (data == null || data.length == 0) {return;}for (int i = 0; i < data.length; i++) {root = insert(root, data[i]);}}private TreeNode insert(TreeNode node, int data) { if (node == null) {return new TreeNode(data);}if (data < node.data) {node.left = insert(node.left, data);} else if (data > node.data) {node.right = insert(node.right, data);}return node;}}```三、树的插入1. 在二叉树中插入节点:```javapublic void insert(TreeNode node, int data) {if (node == null) {return;}if (data < node.data) {insert(node.left, data);} else if (data > node.data) {insert(node.right, data);}}```2. 在二叉搜索树中插入节点:```javaprivate TreeNode insert(TreeNode node, int data) { if (node == null) {return new TreeNode(data);}if (data < node.data) {node.left = insert(node.left, data);} else if (data > node.data) {node.right = insert(node.right, data);}return node;}```四、树的删除1. 在二叉树中删除节点:```javapublic void delete(TreeNode node, int data) {if (node == null) {return;}if (data < node.data) {delete(node.left, data);} else if (data > node.data) {delete(node.right, data);} else {if (node.left == null && node.right == null) { node = null;} else if (node.left == null) {node = node.right;} else if (node.right == null) {node = node.left;} else {TreeNode minNode = findMin(node.right);node.data = minNode.data;delete(node.right, minNode.data);}}}```2. 在二叉搜索树中删除节点:```javaprivate TreeNode delete(TreeNode node, int data) {if (node == null) {return null;}if (data < node.data) {node.left = delete(node.left, data);} else if (data > node.data) {node.right = delete(node.right, data);} else {if (node.left == null && node.right == null) { node = null;} else if (node.left == null) {node = node.right;} else if (node.right == null) {node = node.left;} else {TreeNode minNode = findMin(node.right);node.data = minNode.data;node.right = delete(node.right, minNode.data); }}return node;}```五、树的查找1. 在二叉树中查找节点:```javapublic TreeNode search(TreeNode node, int data) {if (node == null) {return null;}if (data == node.data) {return node;} else if (data < node.data) {return search(node.left, data);} else {return search(node.right, data);}}```2. 在二叉搜索树中查找节点:```javapublic TreeNode search(TreeNode node, int data) {if (node == null) {return null;}if (data == node.data) {return node;} else if (data < node.data) {return search(node.left, data);} else {return search(node.right, data);}}```六、树的应用1. 堆排序:利用二叉堆的属性,实现高效排序。
二叉树实验报告1. 引言二叉树是一种常用的数据结构,广泛应用于计算机科学和信息技术领域。
本实验旨在通过对二叉树的理解和实现,加深对数据结构与算法的认识和应用能力。
本报告将介绍二叉树的定义、基本操作以及实验过程中的设计和实现。
2. 二叉树的定义二叉树是一个有序树,其每个节点最多有两个子节点。
树的左子节点和右子节点被称为二叉树的左子树和右子树。
3. 二叉树的基本操作3.1 二叉树的创建在实验中,我们通过定义一个二叉树的节点结构来创建一个二叉树。
节点结构包含一个数据域和左右指针,用于指向左右子节点。
创建二叉树的过程可以通过递归或者迭代的方式来完成。
3.2 二叉树的插入和删除二叉树的插入操作是将新节点插入到树中的合适位置。
插入时需要考虑保持二叉树的有序性。
删除操作是将指定节点从树中删除,并保持二叉树的有序性。
在实验中,我们可以使用递归或者循环的方式实现这些操作。
3.3 二叉树的遍历二叉树的遍历是指按照某种次序访问二叉树的所有节点。
常见的遍历方式包括前序遍历、中序遍历和后序遍历。
前序遍历先访问根节点,然后按照左孩子-右孩子的顺序递归遍历左右子树。
中序遍历按照左孩子-根节点-右孩子的顺序递归遍历左右子树。
后序遍历按照左孩子-右孩子-根节点的顺序递归遍历左右子树。
3.4 二叉树的查找查找操作是指在二叉树中查找指定的值。
可以通过递归或者循环的方式实现二叉树的查找操作。
基本思路是从根节点开始,通过比较节点的值和目标值的大小关系,逐步向左子树或者右子树进行查找,直到找到目标节点或者遍历到叶子节点。
4. 实验设计和实现在本实验中,我们设计并实现了一个基于Python语言的二叉树类。
具体实现包括二叉树的创建、插入、删除、遍历和查找操作。
在实验过程中,我们运用了递归和迭代的方法实现了这些操作,并进行了测试和验证。
4.1 二叉树类的设计我们将二叉树的节点设计为一个类,其中包括数据域和左右子节点的指针。
另外,我们设计了一个二叉树类,包含了二叉树的基本操作方法。
c语言二叉树代码以下是一个简单的C语言二叉树代码,包括二叉树的创建、插入、遍历、删除等操作:```#include<stdio.h>#include<stdlib.h>//定义二叉树节点类型typedef struct node{int data;struct node *left;struct node *right;}Node;//创建二叉树Node* create_tree(){int value;printf('请输入节点的值(-1表示结束):');scanf('%d', &value);if(value == -1){return NULL;}else{Node *p = (Node*)malloc(sizeof(Node));p->data = value;printf('请输入%d的左子节点:', value);p->left = create_tree();printf('请输入%d的右子节点:', value);p->right = create_tree();return p;}}//插入节点Node* insert_node(Node *root, int value){if(root == NULL){Node *p = (Node*)malloc(sizeof(Node));p->data = value;p->left = NULL;p->right = NULL;return p;}else if(value < root->data){root->left = insert_node(root->left, value);}else if(value > root->data){root->right = insert_node(root->right, value); }return root;}//先序遍历void preorder_traversal(Node *root){if(root != NULL){printf('%d ', root->data);preorder_traversal(root->left);preorder_traversal(root->right);}}//中序遍历void inorder_traversal(Node *root){if(root != NULL){inorder_traversal(root->left);printf('%d ', root->data);inorder_traversal(root->right);}}//后序遍历void postorder_traversal(Node *root){if(root != NULL){postorder_traversal(root->left);postorder_traversal(root->right);printf('%d ', root->data);}}//查找节点Node* search_node(Node *root, int value){ if(root == NULL){return NULL;}else if(root->data == value){return root;}else if(value < root->data){return search_node(root->left, value);}else{return search_node(root->right, value); }}//删除节点Node* delete_node(Node *root, int value){if(root == NULL){return NULL;}else if(value < root->data){root->left = delete_node(root->left, value); }else if(value > root->data){root->right = delete_node(root->right, value); }else{//情况一:被删除节点没有子节点if(root->left == NULL && root->right == NULL){ free(root);root = NULL;}//情况二:被删除节点只有一个子节点else if(root->left == NULL){Node *temp = root;root = root->right;free(temp);}else if(root->right == NULL){Node *temp = root;root = root->left;free(temp);}//情况三:被删除节点有两个子节点else{Node *temp = root->right;while(temp->left != NULL){temp = temp->left;}root->data = temp->data;root->right = delete_node(root->right, temp->data); }}return root;}//主函数int main(){Node *root = NULL;int choice, value;while(1){printf('请选择操作: ');printf('1.创建二叉树 ');printf('2.插入节点');printf('3.遍历二叉树 ');printf('4.查找节点');printf('5.删除节点');printf('6.退出程序');scanf('%d', &choice); switch(choice){case 1:root = create_tree(); break;case 2:printf('请输入要插入的节点值:');scanf('%d', &value);root = insert_node(root, value);break;case 3:printf('先序遍历:');preorder_traversal(root);printf('中序遍历:');inorder_traversal(root);printf('后序遍历:');postorder_traversal(root);printf('');break;case 4:printf('请输入要查找的节点值:');scanf('%d', &value);Node *result = search_node(root, value);if(result != NULL){printf('找到节点:%d', result->data);}else{printf('未找到节点:%d', value);}break;case 5:printf('请输入要删除的节点值:');scanf('%d', &value);root = delete_node(root, value); break;case 6:printf('程序已退出。
《数据结构》实验报告
姓名:
班级:
学号:
一、算法简介
简单二叉树的创建,删除,查找
二、基本原理
定义节点的结构体,内部成员包括数据data,父节点指针*parent,左子节点指针*lchild,右子结点指针*rchild,以及指针next,然后通过add()和move()函数建立一个二叉树;最后通过del()删除整个二叉树。
三、实现步骤
第一,创建二叉树结点
第二,创建构造二叉树的函数add()和move().在add()中调用move();然后在主函数中初始化二叉树为7个结点(通过建立二叉树的函数)。
创建的二叉树如图:
1 2
3 4 5 6
第三,最后一个个通过查找的方式进行删除结点。
该方式不局限于顺序删除,可以
从任何一个结点开始删除,删除后会通过move重新构建,直到删除为止。
四、实验结果如下图
五、结论
本套算法在创建二叉树同时增加了有序检查,通过创建和删除一棵完全二叉树,还可以实现查找结点的功能,未实现遍历、插入、修改、替换等算法,程序较为简单,但是代码工整严谨,时间复杂度和空间复杂度可忽略不计。
六、源程序
#include<stdio.h>
struct node
{ int data;
struct node *parent;
struct node *lchild;
struct node *rchild;
struct node *next;
}*head=NULL;
int num=0,b[10];
void move(struct node *p,struct node *s)
{
while(0)
{
if(s->data > p->data )
{
if(p->rchild==NULL)
{
p->rchild=s;
break;
}
else
{
p=p->rchild;
}
}
else
{
if(p->lchild==NULL)
{
p->lchild=s;
break;
}
}
}
}
void add(int x)
{
struct node *s=malloc(sizeof(struct node)),*p=malloc(sizeof(struct node));
s->data=x;
s->lchild=NULL;
s->rchild=NULL;
s->parent=NULL;
if(head==NULL)
{
head=s;
}
else
{
p=head;
move(p,s);
}
int a=1,v=1,k=6,f=1;
struct node *print(struct node *head,int x,int y)//打印或查找功能,x=1,打印
{
struct node *p=malloc(sizeof(struct node));
p=head;
if(p!=NULL)
{
print(p->lchild,x,y);
b[++num]=p->data;
if(x==1)
{
if(v==0)
{
printf("creat node %d: %d \n",a,p->data);
a=a+1;
}
}
print(p->rchild,x,y);
}
}
void del(int x)
{
struct node *m=malloc(sizeof(struct node));
if(head->data==x)//删除头结点
{
if(head->lchild==NULL && head->rchild==NULL)//头结点无左右子树
{
head=NULL;
}
else if(head->rchild==NULL)//头结点无右子树
{
head=head->lchild;
head->parent=NULL;
}
else //头结点左右子树均有(这里让左子树继位)
{
move(head->lchild,head->rchild);
head=head->lchild;
}
}
else
{
if(m->lchild==NULLL)
{
if(m->data > m->parent->data) //右子树
{
m->parent->rchild=NULL;
}
else
{
m->parent->lchild=NULL;
}
}
else if(m->lchild==NULL)
{
if(m->data > m->parent->data) //右子树
{
m->parent->rchild=m->rchild;
}
else
{
m->parent->lchild=m->rchild;
}
}
else if(m->rchild!=NULL)
{
m-> rchild=m->lchild;
}
else//这里让左子树继位
{
m->lchild-> parent;
}
}
free(m);
}
void main()
{
int a[]={0,1,2,3,4,5,6},i;
printf("program start!\n");
printf("Now create a binary tree:\n\n");
v=0;
for(i=0;i<7;i++)
{
add(a[i]);//建立二叉树
}
print(head,1,0);//屏幕输出
printf("\n");
printf("Now delete begin:\n\n");
v=1;
for(k;k>=0;k--)
{
printf("Delete node %d:\n",a[k]);
del(a[k]);//删除节点
}
num=0;
print(head,1,0);
printf("\n");
scanf("%d",a);
}。