二叉树查找
- 格式:docx
- 大小:13.08 KB
- 文档页数:4
搜索树的基本操作方法
搜索树是一种有序的二叉树数据结构,常用于存储和搜索数据。
基本的操作方法包括插入、删除和查找。
1. 插入操作(insert):向搜索树中插入新节点。
从根节点开始遍历搜索树,如果待插入节点值小于当前节点值,则继续向左子树搜索;如果待插入节点值大于当前节点值,则继续向右子树搜索;直到找到一个空位置,将待插入节点插入到该位置。
2. 删除操作(delete):删除指定节点。
先在搜索树中找到待删除节点,根据不同情况进行处理:
a) 如果待删除节点没有子节点,直接删除它。
b) 如果待删除节点只有一个子节点,将子节点替代待删除节点的位置。
c) 如果待删除节点有两个子节点,则寻找待删除节点的前驱节点或后继节点来替代该节点。
前驱节点是指比待删除节点值小的最大节点,后继节点是指比待删除节点值大的最小节点。
可以选择使用前驱节点或后继节点来替代待删除节点。
3. 查找操作(search):在搜索树中查找指定值的节点。
从根节点开始遍历搜索树,如果要查找的值等于当前节点值,则返回该节点;如果要查找的值小于当前节点值,则继续向左子树搜索;如果要查找的值大于当前节点值,则继续向右子树搜索。
如果找到了匹配节点,则返回节点;如果搜索到空节点(未找到匹配节点),则返回空值。
以上是搜索树的基本操作方法,对于不同的搜索树实现,可能会有一些其他特定的操作方法。
二叉树的基本操作二叉树是一种常见的数据结构,它由节点组成,每个节点最多有两个子节点。
二叉树在计算机领域中得到广泛应用,它的基本操作包括插入、删除、查找、遍历等。
1.插入操作:二叉树的插入操作是将一个新的节点添加到已有的二叉树中的过程。
插入操作会按照一定规则将新节点放置在正确的位置上。
插入操作的具体步骤如下:-首先,从根节点开始,比较新节点的值与当前节点的值的大小关系。
-如果新节点的值小于当前节点的值,则将新节点插入到当前节点的左子树中。
-如果新节点的值大于当前节点的值,则将新节点插入到当前节点的右子树中。
-如果当前节点的左子树或右子树为空,则直接将新节点插入到该位置上。
-如果当前节点的左子树和右子树都不为空,则递归地对左子树或右子树进行插入操作。
2.删除操作:二叉树的删除操作是将指定节点从二叉树中删除的过程。
删除操作有以下几种情况需要考虑:-如果待删除节点是叶子节点,则直接将其从二叉树中删除即可。
-如果待删除节点只有一个子节点,则将其子节点替换为待删除节点的位置即可。
-如果待删除节点有两个子节点,则需要找到其左子树或右子树中的最大节点或最小节点,将其值替换为待删除节点的值,然后再删除最大节点或最小节点。
3.查找操作:二叉树的查找操作是在二叉树中查找指定值的节点的过程。
查找操作的具体步骤如下:-从根节点开始,将待查找值与当前节点的值进行比较。
-如果待查找值等于当前节点的值,则返回该节点。
-如果待查找值小于当前节点的值,则在当前节点的左子树中继续查找。
-如果待查找值大于当前节点的值,则在当前节点的右子树中继续查找。
-如果左子树或右子树为空,则说明在二叉树中找不到该值。
4.遍历操作:二叉树的遍历操作是按照一定规则依次访问二叉树中的每个节点。
有三种常用的遍历方式:- 前序遍历(Preorder Traversal):先访问根节点,然后递归地前序遍历左子树和右子树。
- 中序遍历(Inorder Traversal):先递归地中序遍历左子树,然后访问根节点,最后递归地中序遍历右子树。
二叉树的建立与基本操作二叉树是一种特殊的树形结构,它由节点(node)组成,每个节点最多有两个子节点。
二叉树的基本操作包括建立二叉树、遍历二叉树、查找二叉树节点、插入和删除节点等。
本文将详细介绍二叉树的建立和基本操作,并给出相应的代码示例。
一、建立二叉树建立二叉树有多种方法,包括使用数组、链表和前序、中序、后序遍历等。
下面以使用链表的方式来建立二叉树为例。
1.定义二叉树节点类首先,定义一个二叉树节点的类,包含节点值、左子节点和右子节点三个属性。
```pythonclass Node:def __init__(self, value):self.value = valueself.left = Noneself.right = None```2.建立二叉树使用递归的方法来建立二叉树,先构造根节点,然后递归地构造左子树和右子树。
```pythondef build_binary_tree(lst):if not lst: # 如果 lst 为空,则返回 Nonereturn Nonemid = len(lst) // 2 # 取 lst 的中间元素作为根节点的值root = Node(lst[mid])root.left = build_binary_tree(lst[:mid]) # 递归构造左子树root.right = build_binary_tree(lst[mid+1:]) # 递归构造右子树return root```下面是建立二叉树的示例代码:```pythonlst = [1, 2, 3, 4, 5, 6, 7]root = build_binary_tree(lst)```二、遍历二叉树遍历二叉树是指按照其中一规则访问二叉树的所有节点,常见的遍历方式有前序遍历、中序遍历和后序遍历。
1.前序遍历前序遍历是指先访问根节点,然后访问左子节点,最后访问右子节点。
```pythondef pre_order_traversal(root):if root:print(root.value) # 先访问根节点pre_order_traversal(root.left) # 递归访问左子树pre_order_traversal(root.right) # 递归访问右子树```2.中序遍历中序遍历是指先访问左子节点,然后访问根节点,最后访问右子节点。
AVL树自平衡的二叉搜索树AVL树是一种自平衡的二叉搜索树,它是根据其发明者 G.M. Adelson-Velsky 和 Evgenii Landis 的姓氏首字母而得名。
AVL树解决了传统二叉搜索树由于插入或删除操作导致树结构不平衡而引发的性能问题。
1. 什么是二叉搜索树?二叉搜索树,又称二叉排序树或二叉查找树,是一种特殊的二叉树结构。
在二叉搜索树中,每个节点都包含一个键值,并且节点的左子树中的键值小于节点的键值,右子树中的键值大于节点的键值。
2. 为什么需要自平衡?传统的二叉搜索树在执行插入或删除操作时,可能会导致树结构不平衡,使得树的高度远大于理想情况下的最小高度。
当树的高度增加后,查找、插入、删除等操作的时间复杂度也会增加,进而影响整体性能。
3. AVL树的自平衡特性AVL树通过保持树的平衡性来提高性能。
对于每一个节点,AVL 树通过计算其左右子树的高度差(平衡因子)来判断是否需要进行旋转操作来保持树的平衡。
当平衡因子超过一定阈值时,进行相应的旋转操作来维持平衡。
4. AVL树的旋转操作AVL树的旋转操作包括左旋和右旋。
左旋操作将当前节点的右子树变为新的根节点,而右旋操作则恰恰相反。
通过旋转操作,AVL树可以在保持二叉搜索树性质的同时,实现树的自平衡。
5. AVL树的插入操作在进行插入操作时,AVL树首先按照二叉搜索树的规则找到插入位置,并插入新的节点。
然后,从插入节点开始沿着路径向上逐层检查平衡因子,若遇到不平衡的节点,执行相应的旋转操作来恢复树的平衡。
6. AVL树的删除操作在进行删除操作时,AVL树首先按照二叉搜索树的规则找到待删除的节点,并执行删除操作。
然后,从删除节点的父节点开始沿着路径向上逐层检查平衡因子,若遇到不平衡的节点,执行相应的旋转操作来恢复树的平衡。
7. AVL树的平衡性保证AVL树的自平衡操作保证了树的高度始终保持在理想情况下的最小高度的常数倍。
通过对平衡因子的检查并执行旋转操作,AVL树能够有效地保持树的平衡性,使得查找、插入、删除等操作能够在较快的时间内完成。
动态规划-最优⼆叉搜索树摘要: 本章介绍了⼆叉查找树的概念及操作。
主要内容包括⼆叉查找树的性质,如何在⼆叉查找树中查找最⼤值、最⼩值和给定的值,如何找出某⼀个元素的前驱和后继,如何在⼆叉查找树中进⾏插⼊和删除操作。
在⼆叉查找树上执⾏这些基本操作的时间与树的⾼度成正⽐,⼀棵随机构造的⼆叉查找树的期望⾼度为O(lgn),从⽽基本动态集合的操作平均时间为θ(lgn)。
1、⼆叉查找树 ⼆叉查找树是按照⼆叉树结构来组织的,因此可以⽤⼆叉链表结构表⽰。
⼆叉查找树中的关键字的存储⽅式满⾜的特征是:设x为⼆叉查找树中的⼀个结点。
如果y是x的左⼦树中的⼀个结点,则key[y]≤key[x]。
如果y是x的右⼦树中的⼀个结点,则key[x]≤key[y]。
根据⼆叉查找树的特征可知,采⽤中根遍历⼀棵⼆叉查找树,可以得到树中关键字有⼩到⼤的序列。
介绍了⼆叉树概念及其遍历。
⼀棵⼆叉树查找及其中根遍历结果如下图所⽰:书中给出了⼀个定理:如果x是⼀棵包含n个结点的⼦树的根,则其中根遍历运⾏时间为θ(n)。
问题:⼆叉查找树性质与最⼩堆之间有什么区别?能否利⽤最⼩堆的性质在O(n)时间内,按序输出含有n个结点的树中的所有关键字?2、查询⼆叉查找树 ⼆叉查找树中最常见的操作是查找树中的某个关键字,除了基本的查询,还⽀持最⼤值、最⼩值、前驱和后继查询操作,书中就每种查询进⾏了详细的讲解。
(1)查找SEARCH 在⼆叉查找树中查找⼀个给定的关键字k的过程与⼆分查找很类似,根据⼆叉查找树在的关键字存放的特征,很容易得出查找过程:⾸先是关键字k与树根的关键字进⾏⽐较,如果k⼤⽐根的关键字⼤,则在根的右⼦树中查找,否则在根的左⼦树中查找,重复此过程,直到找到与遇到空结点为⽌。
例如下图所⽰的查找关键字13的过程:(查找过程每次在左右⼦树中做出选择,减少⼀半的⼯作量)书中给出了查找过程的递归和⾮递归形式的伪代码:1 TREE_SEARCH(x,k)2 if x=NULL or k=key[x]3 then return x4 if(k<key[x])5 then return TREE_SEARCH(left[x],k)6 else7 then return TREE_SEARCH(right[x],k)1 ITERATIVE_TREE_SEARCH(x,k)2 while x!=NULL and k!=key[x]3 do if k<key[x]4 then x=left[x]5 else6 then x=right[x]7 return x(2)查找最⼤关键字和最⼩关键字 根据⼆叉查找树的特征,很容易查找出最⼤和最⼩关键字。
二叉排序树1.二叉排序树定义二叉排序树(Binary Sort Tree)或者是一棵空树;或者是具有下列性质的二叉树:(1)若左子树不空,则左子树上所有结点的值均小于根结点的值;若右子树不空,则右子树上所有结点的值均大于根结点的值。
(2)左右子树也都是二叉排序树,如图6-2所示。
2.二叉排序树的查找过程由其定义可见,二叉排序树的查找过程为:(1)若查找树为空,查找失败。
(2)查找树非空,将给定值key与查找树的根结点关键码比较。
(3)若相等,查找成功,结束查找过程,否则:①当给值key小于根结点关键码,查找将在以左孩子为根的子树上继续进行,转(1)。
②当给值key大于根结点关键码,查找将在以右孩子为根的子树上继续进行,转(1)。
3.二叉排序树插入操作和构造一棵二叉排序树向二叉排序树中插入一个结点的过程:设待插入结点的关键码为key,为将其插入,先要在二叉排序树中进行查找,若查找成功,按二叉排序树定义,该插入结点已存在,不用插入;查找不成功时,则插入之。
因此,新插入结点一定是作为叶子结点添加上去的。
构造一棵二叉排序树则是逐个插入结点的过程。
对于关键码序列为:{63,90,70,55,67,42,98,83,10,45,58},则构造一棵二叉排序树的过程如图6-3所示。
4.二叉排序树删除操作从二叉排序树中删除一个结点之后,要求其仍能保持二叉排序树的特性。
设待删结点为*p(p为指向待删结点的指针),其双亲结点为*f,删除可以分三种情况,如图6-4所示。
(1)*p结点为叶结点,由于删去叶结点后不影响整棵树的特性,所以,只需将被删结点的双亲结点相应指针域改为空指针,如图6-4(a)所示。
(2)*p结点只有右子树或只有左子树,此时,只需将或替换*f结点的*p子树即可,如图6-4(b)、(c)所示。
(3)*p结点既有左子树又有右子树,可按中序遍历保持有序地进行调整,如图6-4(d)、(e)所示。
设删除*p结点前,中序遍历序列为:① P为F的左子女时有:…,Pi子树,P,Pj,S子树,Pk,Sk子树,…,P2,S2子树,P1,S1子树,F,…。
线索二叉树的运算1.查找某结点*p在指定次序下的前趋和后继结点(1)在中序线索二叉树中,查找结点*p的中序后继结点在中序线索二叉树中,查找结点*p的中序后继结点分两种情形:①若*p的右子树空(即p->rtag为Thread),则p->rchild为右线索,直接指向*p的中序后继。
【例】下图的中序线索二叉树中,结点D的中序后继是A。
②若*p的右子树非空(即p->rtag为Link),则*p的中序后继必是其右子树中第一个中序遍历到的结点。
也就是从*p的右孩子开始,沿该孩子的左链往下查找,直至找到一个没有左孩子的结点为止,该结点是*p的右子树中"最左下"的结点,即*P的中序后继结点。
【例】上图的中序线索二叉树中:A的中序后继是F,它有右孩子;F的中序后继是H,它无右孩子;B的中序后继是D,它是B的右孩子。
在中序线索二叉树中求中序后继结点的过程可【参见动画演示】,具体算法如下:BinThrNode *InorderSuccessor(BinThrNode *p){//在中序线索树中找结点*p的中序后继,设p非空BinThrNode *q;if (p->rtag==Thread) //*p的右子树为空Return p->rchild;//返回右线索所指的中序后继else{q=p->rchild;//从*p的右孩子开始查找while (q->ltag==Link)q=q->lchild;//左子树非空时,沿左链往下查找return q;//当q的左子树为空时,它就是最左下结点} //end if}该算法的时间复杂度不超过树的高度h,即O(h)。
(2)在中序线索二叉树中查找结点*p的中序前趋结点中序是一种对称序,故在中序线索二叉树中查找结点*p的中序前趋结点与找中序后继结点的方法完全对称。
具体情形如下:①若*p的左子树为空,则p->1child为左线索,直接指向*p的中序前趋结点;【例】上图所示的中序线索二叉树中,F结点的中序前趋结点是A②若*p的左子树非空,则从*p的左孩子出发,沿右指针链往下查找,直到找到一个没有右孩子的结点为止。
二叉树用途二叉树是一种常用的数据结构,由节点和连接节点的边组成,其中每个节点最多有两个子节点,被称为左子节点和右子节点。
二叉树具有以下特点:1. 有层次结构:节点按照层次排列,每层从左到右。
2. 可以拥有零个、一个或两个子节点。
3. 二叉树的子树也是二叉树。
4. 深度为d的二叉树最多含有2^d-1个节点,其中d为二叉树的深度。
二叉树的用途非常广泛,下面将详细讨论几个主要的应用场景。
1. 搜索、排序和查找:二叉树可以用于快速搜索、排序和查找数据。
二叉搜索树是一种常用的二叉树类型,其中每个节点的值大于左子树的所有节点的值,小于右子树的所有节点的值。
通过二分查找算法,在二叉搜索树中可以快速定位目标值。
2. 堆:二叉堆是一种用于实现优先队列的数据结构。
它具有以下特点:任意节点的关键字值都小于(或大于)或等于其子节点的关键字值,根节点的关键字值最小(或最大);并且堆是一颗完全二叉树。
二叉堆的插入和删除操作的时间复杂度为O(log n),适用于一些需要高效的优先级操作的场景,例如任务调度。
3. 表达式树:二叉树可以用于存储和计算数学表达式。
表达式树是一种二叉树,其叶节点是操作数,内部节点是操作符。
通过遍历表达式树,我们可以通过递归的方式计算整个表达式的值。
4. 文件系统:二叉树可以用于组织和管理文件系统中的文件和文件夹。
每个节点代表一个文件或文件夹,左子节点代表文件夹下的子文件夹,右子节点代表同一层级下的其他文件或文件夹。
通过遍历二叉树,可以实现文件的查找、创建、删除等操作。
5. 数据压缩:哈夫曼树是一种常用的数据压缩算法,通过构建二叉树来实现。
在哈夫曼树中,出现频率较高的字符对应的节点位于树的较低层,而出现频率较低的字符对应的节点位于树的较高层。
通过对字符进行编码,并使用相对较短的编码表示高频字符,可以实现对数据的高效压缩和解压缩。
6. 平衡树:平衡树是一种特殊类型的二叉树,其左子树和右子树的高度差不超过1。
二叉排序树查找的递归算法介绍二叉排序树(Binary Search Tree),也称二叉查找树、有序二叉树或排序二叉树,是一种常用的数据结构。
它具有以下特点:•每个节点都包含一个键值和对应的数据。
•左子树中的所有节点的键值都小于根节点的键值。
•右子树中的所有节点的键值都大于根节点的键值。
•左右子树也分别是二叉排序树。
二叉排序树支持高效的查找、插入和删除操作,其中查找操作是利用递归实现的。
本文将详细介绍二叉排序树查找的递归算法。
二叉排序树的定义二叉排序树的定义如下:class TreeNode:def __init__(self, key, data):self.key = keyself.data = dataself.left = Noneself.right = Noneclass BinarySearchTree:def __init__(self):self.root = None在二叉排序树中,每个节点都是一个TreeNode对象,包含键值key和对应的数据data。
left和right分别指向左子树和右子树的根节点。
树的根节点由BinarySearchTree对象的root属性表示。
二叉排序树查找的递归算法二叉排序树的查找操作是利用递归实现的,其具体算法如下:1.如果待查找的键值等于当前节点的键值,返回当前节点的数据。
2.如果待查找的键值小于当前节点的键值,递归在左子树中查找。
3.如果待查找的键值大于当前节点的键值,递归在右子树中查找。
4.如果在左子树或右子树中找不到对应的键值,则返回空。
下面是二叉排序树查找的递归算法的代码实现:def search_recursive(node, key):if node is None or node.key == key:return node.dataelif key < node.key:return search_recursive(node.left, key)else:return search_recursive(node.right, key)在上述代码中,node表示当前节点,key表示待查找的键值。
以二叉树或树作为表的组织形式,称为树表,它是一类动态查找表,不仅适合于数据查找,也适合于表插入和删除操作。
常见的树表:二叉排序树平衡二叉树B-树B+树9.3.1 二叉排序树二叉排序树(简称BST)又称二叉查找(搜索)树,其定义为:二叉排序树或者是空树,或者是满足如下性质(BST性质)的二叉树:❶若它的左子树非空,则左子树上所有节点值(指关键字值)均小于根节点值;❷若它的右子树非空,则右子树上所有节点值均大于根节点值;❸左、右子树本身又各是一棵二叉排序树。
注意:二叉排序树中没有相同关键字的节点。
二叉树结构满足BST性质:节点值约束二叉排序树503080209010854035252388例如:是二叉排序树。
66不试一试二叉排序树的中序遍历序列有什么特点?二叉排序树的节点类型如下:typedef struct node{KeyType key;//关键字项InfoType data;//其他数据域struct node*lchild,*rchild;//左右孩子指针}BSTNode;二叉排序树可看做是一个有序表,所以在二叉排序树上进行查找,和二分查找类似,也是一个逐步缩小查找范围的过程。
1、二叉排序树上的查找Nk< bt->keybtk> bt->key 每一层只和一个节点进行关键字比较!∧∧p查找到p所指节点若k<p->data,并且p->lchild=NULL,查找失败。
若k>p->data,并且p->rchild=NULL,查找失败。
查找失败的情况加上外部节点一个外部节点对应某内部节点的一个NULL指针递归查找算法SearchBST()如下(在二叉排序树bt上查找关键字为k的记录,成功时返回该节点指针,否则返回NULL):BSTNode*SearchBST(BSTNode*bt,KeyType k){if(bt==NULL||bt->key==k)//递归出口return bt;if(k<bt->key)return SearchBST(bt->lchild,k);//在左子树中递归查找elsereturn SearchBST(bt->rchild,k);//在右子树中递归查找}在二叉排序树中插入一个关键字为k的新节点,要保证插入后仍满足BST性质。
二叉树查找
//树表的查找
#include<iostream>
using namespace std;
typedef struct node{
int key;
struct node *lchild;
struct node *rchild;
}bstnode;//二叉树节点
//二叉树的生成
int insert(bstnode *&p,int k)
{
if(p==NULL)//原来的数时空树
{
p=new bstnode;
p->key=k;
p->lchild=NULL;
p->rchild=NULL;
return 1;
}
else if(k==p->key)
return 0;//树中存在相同的节点,返回0
else if(k<p->key)
return insert(p->lchild,k);
else
return insert(p->rchild,k);
}
//二叉树的创建
bstnode *creat(int *a,int n)
{
bstnode *p=NULL;//初始化空数
int i=0;
while(i<n)
{
insert(p,a[i]);
i++;
}
return p;
}
//二叉树的查找函数
bstnode * search_bst(bstnode *p,int k)
{
if(p==NULL||p->key==k)
return p;
if(k<p->key)
return search_bst(p->lchild,k);
else
return search_bst(p->rchild,k);
}
bool search(bstnode *p,int k)
{
bstnode *bt;
bt=search_bst(p,k);
if(bt==NULL)
return 0;
else
return 1;
}
//二叉树的删除操作
void delete1(bstnode*p,bstnode*&r)//当被删除的节点p有左右节点的时候的删除{
bstnode *q;
if(r->rchild!=NULL)
delete1(p,r->rchild);//递归找到最右下节点
else
{
p->key=r->key;//将r的关键字幅值
q=r;
r=r->lchild;//直接将其左子树的根节点放到被删除节点的位置上
delete q;
}
}
void delete_node(bstnode *&p)//删除节点
{
bstnode *q;
if(p->rchild==NULL)//没有右子树
{
q=p;
p=p->lchild;
delete q;
}
else if(p->lchild==NULL)
{
q=p;
p=p->rchild;
delete q;
}
else
delete1(p,p->lchild);
}
bool delete_bst(bstnode *&p,int k) {
if(p==NULL)
return 0;
else
{
if(k<p->key)
return delete_bst(p->lchild,k);
else if(k>p->key)
return delete_bst(p->rchild,k);
else//找到了要删除的节点
{
delete_node(p);
return 1;
}
}
}
int main()
{
int a[7]={11,7,16,3,9,26,18};
bstnode *p;
p=creat(a,7);
cout<<search(p,0)<<endl;
}
//二分法插入排序
void binary_sort(int *a,int n)
{
int i,j,low,high,mid;
int temp;
for(i=1;i<n;i++)
{
temp=a[i];
low=0;
high=i-1;
while(low<=high)
{
mid=(low+high)/2;
if(temp<a[mid])
high=mid-1;
else
low=mid+1;
}
for(j=i-1;j>=high;j--)
a[j+1]=a[j];
a[high+1]=temp;//插入}
}。